
Advances	in	Engineering	Innovation	Vol.15 EWA	Publishing
DOI:	10.54254/2977-3903/2024.19435 

Copyright: © 2024 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons 

Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). https://aei.ewadirect.com 

A MDA-based multi-modal framework for panoramic viewport 

prediction 

Jinghao Lyu 

School of Computer Science (National Pilot Software Engineering School), Beijing University of Posts and Telecommunications,  

Beijing, China  

791603612@qq.com 

Abstract. Panoramic viewport prediction is crucial in 360-degree video streaming, aiming to forecast users' future viewing regions 

for efficient bandwidth management. To achieve accurate panoramic viewport prediction, existing frameworks have explored the 

utilization of multi-modal inputs, combining trajectory, visual, and audio data. However, they uniformly process different 

modalities through standardized pipelines and use concatenation-based feature fusion regardless of modality characteristics. With 

the unmodified application of computationally intensive Transformer architectures, the uniform design exacerbates computational 

overhead. Besides that, the concatenation-based feature fusion lacks the ability to model global dependencies and explicit 

interactions between different modalities, which limits the prediction accuracy. To overcome these issues, we introduce a 

lightweight Modality Diversity-Aware (MDA) framework including two primary components: a lightweight feature refinement 

module and a cross-modal attention module. The feature refinement module uses compact latent tokens to sequentially process 

audio-visual data, thereby filtering out irrelevant background signals and reducing model parameters. Following this, our cross-

modal attention module effectively fuses trajectory features with the refined audio-visual features by allocating attention weights 

on the effective features, improving the prediction accuracy. Experimental results on a standard 360-degree video benchmark 

demonstrate that our MDA framework achieves higher prediction accuracy than current multi-modal frameworks, while requiring 

up to 50% fewer parameters.  
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1. Introduction 

The advancement of panoramic video technology has revolutionized immersive experiences in applications such as virtual reality 

and live streaming, offering users a 360-degree spherical view of dynamic scenes. However, the data volume of panoramic video 

is significantly higher than that of traditional video formats, which has led to the urgent need to optimize transmission [1] and 

reduce bandwidth consumption. To address this issue, viewport prediction, which anticipates users' future viewing regions within 

360-degree content, has emerged as a critical technique for optimizing resource allocation. Accurate prediction enables prioritized 

streaming of high-resolution content within the predicted viewport, minimizing bandwidth waste [2].  

Early solutions predominantly relied on user trajectory data—historical head rotation angles and gaze positions—to model 

viewing patterns, using techniques like linear regression [3], recurrent neural networks (RNNs) [4], or long short-term memory 

(LSTM) networks [5]. While such single-modal approaches achieved reasonable results, their performance significantly degraded 

in scenarios involving dynamic scene-driven signals such as moving objects or salient sounds. Recent methods incorporate visual, 

audio, and trajectory information to improve prediction accuracy. Figure 1(a) shows the framework of existing methods [11, 28]. 

The data of audio, visual, and trajectory modality are encoded by the respective encoders Ea, Ev, and Et. Then the encoded features 

are treated uniformly, going through the computationally intensive Transformer networks of multiple layers and get concatenated 

during the feature fusion module. These existing solutions treat each modality uniformly, causing two major challenges. First, 

uniformly processing all inputs often inflates model size and computational cost, hindering real-time performance. They lack an 

effective mechanism to filter out irrelevant information such as static backgrounds in visual or ambient noise in audio, resulting 

in less accurate predictions and added computational overhead. Secondly, the feature fusion based on concatenation fails to capture 

global dependencies and explicit interactions across different modalities, which restricts the overall prediction accuracy. 
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Figure 1. Comparison of existing frameworks and our framework. (a) shows the framework of existing methods [11, 28], where 

a uniform Transformer-based feature extraction and basic feature fusion lead to high complexity and unreliable predictions. (b) 

presents our Modality Diversity-Aware (MDA) framework, featuring a lightweight feature refinement module to remove irrelevant 

audio-visual cues and a cross-modal attention fusion module for selective integration with trajectory feature, thereby achieving 

more accurate prediction at reduced computational cost. 

In this paper, we propose a Modality Diversity-Aware (MDA) framework that significantly reduces computational overhead 

while improving prediction accuracy. As illustrated in Figure 1(b), we first utilized the similar encoders 𝐸𝑎, 𝐸𝑣, and 𝐸𝑡 to encode 

the audio, visual, and trajectory input data. After that, a lightweight feature refinement module processes audio-visual data via 

compact latent tokens, effectively filtering out irrelevant elements. This design substantially lowers parameters without 

undermining representational quality. Subsequently, a cross-modal attention fusion module fuses the refined audio-visual features 

with trajectory features by allocating attention weights to the most pertinent features, which improves the panoramic viewport 

prediction accuracy. Extensive experiments demonstrate that the MDA framework not only surpasses state-of-the-art multi-modal 

baselines in prediction accuracy but also achieves up to 50% fewer parameters, making it well-suited for resource-constrained 

deployment. 

Our main contributions are summarized as follows: 

⚫     We propose a Modality Diversity-Aware (MDA) framework for efficient and accurate panoramic viewport prediction, 

effectively balancing computational complexity with prediction performance. 

⚫     We develop two novel components, a lightweight feature refinement module and a cross-modal attention module, which 

jointly filter out non-essential audio-visual information and dynamically integrate trajectory cues, leading to accurate 

viewport prediction and up to 50% fewer parameters compared to existing baselines. 

2. Related work 

The viewport prediction problem is often modeled as a time series prediction problem [6] because the users' viewport position is 

temporally correlated [7]. Some traditional temporal prediction methods are widely used in this scenario, including linear 
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regression and probabilistic statistics. However, these methods cannot maintain a high level of accuracy because they are difficult 

to learn the complex behavior patterns of users [8]. 

With the development of deep learning and reinforcement learning theories, researchers have proposed to apply learning-based 

methods to solve the challenge of low accuracy of viewport prediction. Bao et al. [14] proposed to use Long Short-Term Memory 

(LSTM) network model to improve the accuracy of prediction algorithms in long-term prediction. Xu et al. [15] established a deep 

reinforcement learning model for viewport prediction. Lee et al [16] introduced an attention module and combined the LSTM and 

Gated Recurrent Unit (GRU) to more accurately predict the users' viewport position in panoramic videos.  

In addition to the viewport prediction method only based on history trajectory, there are video content-dependent methods that 

combine the users' history trajectory with the visual and audio content of the panoramic video for viewport prediction. Researchers 

integrated visual cues [12], as users naturally focus on dynamic objects [17] and high-contrast regions [18]. Some methods 

incorporated object detection models like YOLOv3 [19] to track moving elements, while others used convolutional neural 

networks like VGG-16 network [20, 21] and Inception-ResNet-V2 [13] to extract visual features. Recent studies explored spatial 

audio [22, 23], as directional sounds influence the movement of users' viewports. Zhang et al. [11] introduced an audio-assisted 

model mapping sound intensity to spatial locations. Wu et al. [28] leveraged spherical convolution networks to refine panoramic 

audio-visual processing. These two latest research utilized the Transformer-based pipeline for multi-modal viewport prediction, 

but their excessive computational overhead and prediction accuracy remain to be optimized. This is because of their uniform 

processing and concatenation-based feature fusion treatment of three modalities. 

In summary, viewport prediction has evolved from trajectory-based models to multi-modal frameworks incorporating visual 

and audio elements. While accuracy has improved, challenges remain in balancing prediction effectiveness and computational 

efficiency. Our work proposes a modality-aware framework that accurately predicts the future viewport while maintaining 

efficiency for real-time applications. 

3. Methodology 

Our Modality Diversity-Aware (MDA) framework for panoramic viewport prediction comprises three primary phases:  multi-

modal feature encoder, lightweight feature refinement, and cross-modal attention fusion. As illustrated in Figure 2, each phase 

tackles a specific challenge associated with analyzing 360-degree data. First, trajectory, audio, and visual features are individually 

extracted via specialized encoders. Next, a lightweight feature refinement module leverages compact latent tokens to reduce 

parameter overhead while retaining the most salient cues of audio and visual modalities. Finally, the cross-modal attention module 

fuses these refined representations with trajectory data, enabling accurate and efficient viewport prediction. 

3.1. Visual encoder module  

Panoramic video frames exhibit distortions due to their spherical nature. To preserve spatial relationships, we apply a spherical 

convolution encoder network to the visual input 𝑋𝑣: 

ℎ𝑣 = 𝑆𝑝ℎ𝐶𝑜𝑛𝑣(𝑋𝑣) (1) 

where ℎ𝑣 is the extracted visual feature representation, with three layers of spherical convolution and a convolution kernel of 

size 3x3. Each layer of spherical convolution is followed by the action of the Rectified Linear Unit activation layer and a maximum 

pooling layer of size 2x2 with a step size of 2. This step enhances the most salient regions of the panoramic frame while reducing 

irrelevant background information. 

3.2. Audio encoder module 

According to the research in [25], the directional perception of sound sources affect the viewers' viewport position in the panoramic 

video. Following [10], we first generate audio energy maps (AEM) to localize prominent sound sources. Then a convolutional 

encoder extracts the audio input 𝑋𝑎 to obtain audio features ℎ𝑎: 

ℎ𝑎 = 𝐶𝑜𝑛𝑣𝐸𝑛𝑐(𝑋𝑎) (2) 

The encoder consists of two convolutional layers followed by batch normalization and ReLU activation. Each convolutional 

layer applies 2D convolutions with kernel sizes of 3x3 using a stride of 2. This process ensures that strong directional audio cues 

are retained, while irrelevant ambient cues are suppressed. 
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Figure 2. Overall structure of our proposed framework 

3.3. Trajectory encoder module 

The user's head movement is represented as a sequence of Euler angles capturing yaw, pitch, and roll across 𝐻 timestamps. The 

trajectory sequence 𝑋𝑡 is formulated as: 

𝑋𝑡 = {𝑥𝑡−𝐻+1, 𝑥𝑡−𝐻+2, … , 𝑥𝑡} (3) 

where 𝑥𝑖 denotes the three-dimensional rotation angles at time step 𝑖. These trajectory sequential dependencies necessitate a 

model capable of effectively capturing both short-term fluctuations and long-term patterns in head movement. To achieve this, we 

employ a Long Short-Term Memory (LSTM) network to process this sequence to extract the trajectory features ℎ𝑡: 

ℎ𝑡 = 𝐿𝑆𝑇𝑀(𝑋𝑡) (4) 

This embedding encodes both short-term fluctuations and long-term motion trends. 

3.4. Lightweight feature refinement module 

Although ℎ𝑣
 
 and ℎ𝑎

 
 encode useful scene information, they also contain irrelevant details. To reduce computational cost while 

retaining important features, we introduce a compact latent token compression mechanism. This key procedure decreases pairwise 

attention's computational complexity by introducing the tiny latent fusion unit ℎ𝑓𝑢𝑠𝑒
𝑙 = [ℎ1

𝑓
, ℎ2

𝑓
, … , ℎ𝐶

𝑓
] of length 𝐶 to the visual and 

audio embedding units. Attention flows of audio and visual modalities are restricted within the latent fusion unit for information 

sharing. We calculate the fusion unit descriptions in the following format:  

[ℎ𝑎
𝑙+1

] [ℎ𝑓𝑢𝑠𝑒
𝑙+1̂

] = 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟([ℎ𝑎
𝑙 ][ℎ𝑓𝑢𝑠𝑒

𝑙 ]) (5) 
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[ℎ𝑣
𝑙+1

] [ℎ𝑓𝑢𝑠𝑒
𝑙+1

] = 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 ([ℎ𝑣
𝑙 ] [ℎ𝑓𝑢𝑠𝑒

𝑙+1̂
]) (6) 

where 𝑙 denotes the layer of the Transformer model [24]. To avoid irrelevant interactions across modalities, we refine them 

sequentially. The stream of attention between two modalities are restricted inside one Transformer following [26]. Since audio 

signals often serve as early indicators of user attention shifts, the audio features are processed before the visual features. This 

ensures that each modality is independently filtered before fusion, preventing unnecessary propagation of background information 

and irrelevant textures. 

3.5. Cross-modal attention fusion module 

The cross-modal attention procedure establishes directly paired attention between modalities by utilizing information from the 

source one to enhance the target one.  

Since the lightweight feature refinement module has learned the audio-visual fused feature, we can now apply the cross-modal 

attention fusion to reinforce the trajectory feature ℎ𝑡 with the fused information ℎ𝑓𝑢𝑠𝑒
𝑙+1 , which can be represented as follows: 

ℎ𝑡
̂ = 𝐶𝑟𝑜𝑠𝑠 − 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄 = ℎ𝑡 , 𝐾, 𝑉 = ℎ𝑓𝑢𝑠𝑒

𝑙+1
)

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝐾

) 𝑉 (7)
 

where 𝑄 , 𝐾  and 𝑉  represent the query, key, and value matrices in the cross-attention mechanism and 𝑑𝐾  represents the 

dimension of the key embedding. By computing attention between query and key sequences, cross-attention facilitates the capture 

of contextual relationships and outputs the enhanced trajectory feature embedding ℎ�̂�. This ensures the improved comprehension 

of complex dependencies, contributing to accurate viewport prediction results. 

3.6. Prediction output layer 

Ultimately, we get the initial trajectory feature ℎ𝑡, enhanced trajectory feature embedding ℎ𝑡
̂

, and refined audio-visual embedding 

ℎ𝑓𝑢𝑠𝑒
𝑙+1

. These result features from each modality are then added together to obtain 𝐼 = ℎ𝑡 + ℎ𝑡
̂ + ℎ𝑓𝑢𝑠𝑒

𝑙+1
. The final viewport 

prediction is therefore obtained by a layer of fully connected network:  

�̂�  =  𝑊𝑜𝑢𝑡 𝐼 + 𝑏𝑜𝑢𝑡  (8) 

Where 𝑊𝑜𝑢𝑡 is the weight vector, 𝑏𝑜𝑢𝑡  is the bias.  

4. Experiment 

4.1. Dataset 

To evaluate the effectiveness of our proposed framework, we utilize the Xu_CVPR_18 dataset [13], a widely recognized 

benchmark in multi-modal viewport prediction. This dataset consists of 208 high-quality 360-degree videos, each with an average 

duration of 36 seconds. A total of at least 31 participants watched and interacted with each video, ensuring diverse user behaviors. 

The dataset encompasses a variety of content categories, including film clips, sports events, outdoor adventures, and live concerts, 

providing a comprehensive and diverse set of test scenarios for evaluating framework performance. By leveraging this dataset, we 

ensure that our experimental results are well-founded and reflective of real-world viewport prediction tasks. 

4.2. Implementation details  

The dimension of the LSTM layer for encoding trajectory modality is set to 512, the length 𝐶 of latent token is set to 4 and the 

attention heads are set to 4, with 2 Transformer layers in the lightweight feature refinement module. Motion features are extracted 

using the trajectory sequence of the previous five samples. We also use the spherical-convolution-based network to extract visual 

information from each video clip by extracting five frames at 0.2 second intervals. We utilize the Adam optimizer with a constant 

learning rate of 0.001 and mean square error (MSE) loss during the network training phase. The model is trained on an RTX 3090 

GPU for a total of 60 epochs, with a batch size of 64.  

Since the prediction of the FoV can be considered a classification problem, where pixels or tiles are classified in or out of 

future FoV, various metrics are considered for evaluation. We use the orthodromic distance [9] as the performance metrics 

following [27]. Given two points of three-dimensional coordinates in Euclidean space 𝑃1 = (𝑥1, 𝑦1, 𝑧1) and 𝑃2 = (𝑥2, 𝑦2, 𝑧2), we 
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first transform them into points 𝑃1′ = (𝜃1, 𝜑1) and 𝑃2′ = (𝜃2, 𝜑2) on the surface of the unit sphere, where 𝜃 is the longitude and 

𝜑 is the latitude of the point. The orthodromic distance OD, defined as the shortest path length between two points on a sphere, 

can subsequently be computed as: 

𝑂𝐷(𝑃1, 𝑃2) = 𝑎𝑟𝑐𝑐𝑜𝑠(𝑐𝑜𝑠(𝜑1) 𝑐𝑜𝑠(𝜑2) 𝑐𝑜𝑠(𝜃1 − 𝜃2) + 𝑠𝑖𝑛(𝜑1) 𝑠𝑖𝑛 (𝜑2)) (9) 

Another assessment metric for the viewport prediction model is the Intersection over Union (IoU). Once the panoramic frame 

is divided into tiles and the FoV is set, we can classify the tile whether within the viewport or not based on the angle difference 

between the viewpoint and the tile's central point. We let True Positive (TP) and True Total (TT) represent the intersection and the 

union of predicted and true viewport tiles respectively. The metric IoU can then be calculated as follows: 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑇
 (10) 

4.3. Comparison to state-of-the-art frameworks 

We evaluate our framework in comparison to several competitive frameworks, which include Pos-only, TRACK [9], Wu_AAAI20 

[28], and MFTR [11]. 

(1) Pos-Only (Single-modal, Trajectory-based): An LSTM-based encoder-decoder framework that solely utilizes user 

trajectory history for viewport prediction.  

(2) TRACK (Multi-modal, Trajectory-Visual-based): A framework employing three independent LSTM networks to process 

trajectory sequences, visual embeddings, and their fusion, capturing spatial-temporal dependencies. 

(3) Wu_AAAI20 (Multi-modal, Trajectory-Visual-Audio-based): A Transformer-based framework incorporating spherical 

CNNs for 360-degree feature extraction and a preference-aware viewport prediction mechanism. 

(4) MFTR (Multi-modal, Trajectory-Visual-Audio-based): A multi-modal fusion Transformer-based framework that models 

long-range dependencies across trajectory, visual, and audio modalities using Transformer encoders. 

For a fair comparison, all frameworks are evaluated under identical experimental settings, including dataset splits, training 

configurations, and hyperparameters. 

 

Figure 3. Prediction performance comparison with competitive frameworks across prediction steps 

The quantitative evaluation results are presented in Figure 3, measuring viewport prediction accuracy based on two key metrics: 

orthodromic distance (OD) and intersection over union (IoU). The horizontal axis of Figure 3 represents the predicted future time 

window (0 to 5 seconds), while the vertical axis indicates the average orthodromic distance between predicted and actual viewport 

locations. A lower orthodromic distance signifies better alignment with user gaze behavior, whereas a higher distance suggests 

decreased prediction accuracy. 

When analyzing short-term prediction performance (time window ≤1s), our proposed framework achieves the best results, 

with an orthodromic distance reduction of 0.12 compared to Wu_AAAI20. This improvement is attributed to our modality-aware 

fusion strategy, which effectively prioritizes trajectory signals while selectively integrating visual and audio cues. Meanwhile, 

Pos-Only and TRACK exhibit nearly identical performance, reinforcing the limitations of trajectory-only models in capturing 

contextual influences. As the prediction horizon extends to 5 seconds, all models experience a gradual decline in accuracy. 

However, our framework maintains a consistent lead. Notably, the single-modal framework (Pos-Only) exhibits the most 
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pronounced degradation, as it lacks external scene-awareness and relies purely on past movement patterns. MFTR, the most 

complex multi-modal model, performs comparably to our framework at longer horizons, but it incurs significantly higher 

computational costs. Our framework also demonstrates superior IoU scores, particularly in long-term predictions. This highlights 

the benefit of considering modality-specific information density variations—trajectory data dominates stable viewing phases, 

while visual and audio cues contribute more dynamically during abrupt scene changes. By addressing these modality interactions, 

our framework effectively balances precision and efficiency. 

Beyond predictive accuracy, model efficiency is crucial for real-time applications. Figure 4 presents a comparative analysis of 

parameter counts across multi-modal fusion models. Our proposed framework significantly reduces parameter complexity 

compared to MFTR, achieving a more compact architecture while preserving high accuracy. This efficiency gain is primarily due 

to our modality diversity-aware fusion strategy, which eliminates excessive computations while maintaining essential cross-modal 

interactions. Compared to Wu_AAAI20 and TRACK, which rely on multiple stacked recurrent networks for trajectory modeling, 

our framework benefits from a lightweight Transformer-based refinement module, reducing computational overhead without 

sacrificing performance. 

 

Figure 4. Model parameters comparison with competitive frameworks 

5. Conclusion 

In this paper, we introduced the Modality Diversity-Aware (MDA) framework, a lightweight yet effective solution for panoramic 

viewport prediction. Our framework addresses the limitations of existing multi-modal frameworks by reducing computational 

overhead while maintaining high prediction accuracy. Specifically, we designed two key components: a lightweight feature 

refinement module that leverages latent token aggregation to efficiently process audio-visual data, and a cross-modal attention 

fusion module that selectively integrates refined audio-visual cues with trajectory features. These innovations enable precise and 

computationally efficient viewport prediction, making our framework well-suited for real-time panoramic video streaming. 

Experimental evaluations on a benchmark 360-degree video dataset demonstrate that our MDA framework consistently 

outperforms state-of-the-art models in terms of viewport prediction accuracy, achieving lower orthodromic distances and higher 

IoU scores across different time horizons. Moreover, our framework reduces model parameter by up to 50% compared to existing 

multi-modal frameworks, ensuring a balance between efficiency and predictive performance. The results validate that our 

modality-aware fusion strategy effectively prioritizes trajectory signals while selectively integrating visual and audio cues, leading 

to accurate viewport predictions even in dynamic scenarios.  

While our framework provides an accurate and efficient viewport prediction mechanism, future work could explore adaptive 

modality weighting to dynamically adjust the contribution of each modality based on scene transitions and user behavior. Further 

improvements could also be made by optimizing the framework for real-time edge computing scenarios and expanding the fusion 

process to incorporate physiological signals to better capture user intent. By enhancing the understanding of multi-modal 

interactions in immersive environments, our research paves the way for more intelligent and computationally efficient panoramic 

video streaming solutions. 
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