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Abstract. In today's world, High-Performance Computing (HPC) is driving scientific research forward at an astonishing rate, but
behind every top HPC device lies a high-load power grid, which has sparked deep concern among environmentalists. This study
develops a mathematical model to evaluate the power consumption of global HPC equipment and quantify its environmental
impact, providing a basis for energy optimization and sustainable development. By systematically analyzing the global
environmental impact of HPC through a series of models focused on energy consumption and related emissions, we first created a
GPU survival function to estimate the global number of HPC devices in 2023. Using Monte Carlo simulation and Markov chain
models, we estimated the power consumption of individual HPC centers under both full load and average utilization conditions,
subsequently calculating the total annual power consumption of global HPC centers. Next, we developed models to estimate the
total carbon emissions from global HPC energy consumption, considering various energy production methods and energy mix
scenarios. Additionally, we created a gray prediction model to forecast the GPU market value in 2030, combining it with the GPU
survival function to predict the number of global HPC centers in 2030. We also developed an electricity price fluctuation model to
account for increased energy demand from other sectors and analyzed the environmental impact of global HPC centers in 2030
under different energy mix structures. Furthermore, we extended the model to assess the impact of increasing renewable energy
(specifically wind energy) to 100% in the energy mix, evaluating its potential to reduce carbon emissions. Finally, we conducted a
sensitivity analysis, incorporating seawater cooling for HPC centers and artificial intelligence to dynamically adjust GPU power
based on wind speed predictions.
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1. Introduction

1.1. Problem background

The demand for High-Performance Computing (HPC) has grown significantly across various fields, with the market size reaching
approximately $5.002 billion in 2023 and projected to expand at a Compound Annual Growth Rate (CAGR) of over 7% in the
coming years [1]. Despite the benefits HPC provides, it also poses notable environmental challenges. For example, the power
consumption of supercomputers has approached or surpassed 50 megawatts, with annual energy consumption increasing at a rate
of 20% to 40%. In 2020, the Information and Communication Technology (ICT) sector, which includes HPC, was responsible for
an estimated 1.8% to 2.8% of Global Greenhouse Gas (GHG) emissions, a level comparable to that of the aviation industry (see
Figure 1).
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Figure 1. Application scenarios of high-performance computing

Simultaneously, the substantial rise in energy consumption and carbon emissions from HPC systems, coupled with the high-
power demands of network architectures and water wastage in cooling systems, has raised significant environmental concerns. To
address this, our team employ a mathematical model to assess the total carbon emissions resulting from HPC energy consumption,
with the goal of formulating practical recommendations to mitigate its environmental impact.

1.2. Problem restate

The overarching goal of our team is to quantify the total carbon emissions resulting from HPC energy consumption and assess its
environmental impact, while developing a practical set of recommendations to mitigate this impact. Specifically, our objectives are
as follows.

1. Understand the problem: Model and estimate the global number of HPC devices and the energy consumption of individual
HPC units. Consider the range of total annual energy consumption in global HPC centers under full load and average utilization
rates [2].

2. Develop a model: Create a model to calculate the total carbon emissions and environmental impact of HPC energy
consumption, taking into account energy production methods and varying energy mixes.

3. Apply the model: Utilize the model to explore the impact of HPC growth, increased energy demand from other sectors, and
potential changes under different energy sources and combinations, with projections for 2030.

4. Expand the model: Extend the model to assess the effect of increasing renewable energy proportions in HPC energy
consumption on carbon emissions reduction. Additionally, evaluate other critical environmental factors, such as water use and
network architecture.

5. Share and advise: Share the model, conduct a sensitivity analysis, and draft a letter to the United Nations Advisory
Committee, recommending the incorporation of HPC’s environmental impact into the 2030 development goals, using our findings
and recommendations to support this proposal.

1.3. Our work

As shown in Figure 2, our work could be divided into 5 parts.
(1) The first part involves understanding the problem. We estimated the number of HPC devices worldwide in 2023 based on

the GPU market capitalization for that year. At this stage, we applied the GPU survival function, which predicts the expected
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lifespan of a GPU and calculates the probability that the GPU will not fail within a specific period. We then used Monte Carlo
simulations and Markov chains to estimate the power consumption of a single HPC center under full load, low load, and average
load conditions, accounting for both water for cooling and GPU operating power. This allowed us to calculate the total annual
power consumption of HPC centers globally.

(2) The second part focuses on model creation. We used carbon emission factors, energy structure data, and the total electricity
consumption calculated in the first framework to estimate the carbon emissions.

(3) The third part involves applying the model. First, we used a gray prediction model to forecast the market value of GPUs in
2030. The number of global HPC centers in

2030 was then determined by combining the predicted GPU market value with the GPU survival function from the first
framework. We also established an electricity price fluctuation model, where GPU power consumption is linked to electricity
prices. As demand from other sectors increases, electricity prices rise, which in turn reduces GPU efficiency.

(4) The fourth part expands the model by increasing the proportion of renewable energy (specifical wind energy) in the energy
mix to 100%, in order to assess its impact on reducing carbon emissions. Additionally, we considered critical environmental
factors such as water use and network architecture to evaluate the impact of HPC power consumption.

(5) Lastly, we conducted a sensitivity analysis on the model, incorporating seawater cooling for HPC centers and using
artificial intelligence to predict wind speeds for dynamically adjusting GPU power. We also considered other policy factors to
refine the model further.

Figure 2. The overview of our paper

Our paper consists of five sequential parts. first, we estimated global HPC device numbers in 2023, using GPU market data,
survival functions, and simulations to calculate power consumption. Second, we created a model to estimate carbon emissions
based on energy use. Third, we forecast the 2030 GPU market, predicted HPC center numbers, and linked power consumption to
electricity price fluctuations. Fourth, we expanded the model to assess the impact of 100% renewable energy and environmental
factors. Finally, we refined the model with sensitivity analysis, incorporating seawater cooling, AI wind speed predictions, and
policy factors.

2. Assumptions and justifications

Assumption 1: The power of GPUs within the same server is identical.
Justification: The same server is solving the same task, so the power consumption is basically the same.
Assumption 2: When the server is working, all electrical energy is converted into heat energy and absorbed by water.
Justification: According to the law of conservation of energy, the electrical energy consumed by the server is converted into

heat energy and absorbed by the cooling system's water. This ensures that the server's temperature remains within a safe range.
Assumption 3: The lifespan of a single GPU is assumed to follow a normal distribution with a mean of 3 and a standard

deviation of 1.5, with a maximum lifespan of 10 years.
Justification: This means that most GPUs will have a lifespan close to the mean of 3 years, but there will be some variation.

Additionally, a maximum lifespan of 10 years is set for each GPU.
Assumption 4: The transitions of different power consumption of the server are assumed to follow a Markov chain process,

where the system or state has no memory.
Justification: This means that the power consumption transitions of the server follow a Markov chain process, where the

system's current state transition depends only on the current state and not on the previous states. This property is also known as



2424	|	Advances	in	Engineering	Innovation	|	Vol.16	|	Issue	6

"Markovian" or "memorylessness."
Assumption 5: During the water-cooling process of the server, the temperature and flow rate of the water are assumed to be

constant.
Justification: When using Monte Carlo simulations and Markov chain modeling to estimate the power consumption of a single

HPC center, it is assumed that the temperature and flow rate of the water in the server's cooling process remain unchanged

3. Notations

Table 1, titled "Symbols and Units of Used Parameters (Partial)", provides a list of key parameters along with their corresponding
symbols and units. 

Table 1. Symbols and units of used parameters (partial)

Parameter Symbol Units
Energy w Walt

Electricity E kwh
GPU GPU kernel

Wind speed v m/s
Carbon emission C Twh

4. Global HPC equipment power calculation model

Basic Process Brief. The development of the global HPC equipment power calculation model involves three key components:
assessing the global number of HPC devices, calculating the power consumption of each device, and simulating changes in power
consumption over time. The model must account for factors such as the global distribution of HPC devices, the power
consumption of GPUs under varying load conditions, and the sources of power used. The following outlines the detailed steps:

4.1. Forecast of global HPC

4.1.1. GPU survival model

To estimate the number of global HPC devices, we begin with the fundamental computing unit of HPC—the GPU. By analyzing
the market value of GPUs, we can infer the total number of global HPC devices. Let    represent the market value of GPUs at
time   , and let    denote the unit price of a single GPU [3]. The number of GPUs,   , for a given year    can then be
expressed as:

However, GPUs have a finite service life, and newly added GPUs will remain in use in subsequent years. We assume that the
survival function of GPUs follows a normal distribution with a mean of 3 years and a standard deviation of 1.5 years, with
a maximum service life of 10 years. The survival function 

  can be expressed as follow, where    is the Cumulative Distribution Function (CDF) of the standard normal distribution,  
  is the mean,    is the standard deviation,    is the maximum limit for   .

where    is the mean and    is the standard deviation. Using this survival function, we can estimate the number of GPUs in
global HPC devices each year with the following equation, where    is the total amount of time:

4.1.2. Global HPC quantity

By plotting a time series of the number of GPUs each year, we can analyze the changes in the global HPC device population. This
chart illustrates the growth trend and patterns in the number of HPC devices worldwide, as shown in Figure 3.
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Figure 3. Global GPU market value chart

4.2. Power estimation based on Markov chains and monte carlo simulation

To estimate the annual power consumption of HPC devices worldwide, we first calculate the power consumption of a single HPC
device under three scenarios: the HPC equipment operates at high load throughout the year; the HPC equipment fluctuates
between high, medium, and low loads during the year, and the HPC equipment operates at low load throughout the year. These
scenarios allow us to estimate the dynamic range of electricity consumption. The table below presents the power consumption
ranges for high, medium, and low load conditions [4].

Figure 4. Markov chains of different capacity

Figure 4 illustrates a Markov chain model depicting the state transitions of a High-Performance Computing (HPC) system
under varying capacity levels. The system comprises three states: Low Capacity, Normal Capacity, and Full Capacity, each
representing different workload conditions. The arrows represent the possible transitions between these states, indicating how the
system can either shift to another state or remain in the same state. These transitions are governed by fixed probabilities, which
depend on workload fluctuations. This model provides insights into the system's behavior over time and can inform resource
management strategies to optimize performance.

4.2.1. High load power consumption calculation

The primary power sources for our HPC system are divided into two components: the working power of the HPC equipment itself
and the power required for water cooling. We assume that 100% of the electrical energy consumed by the HPC system is
converted into heat and absorbed by the water-cooling system. This is because the power required by the cooling tower is
equivalent to the working power of the HPC system. Assuming that the working power of HPC at time    is  , the energy
consumed by HPC in a period of one year (365 days, 24 hours a day) is as follows:

In high load situations, we assume that the power consumption of all GPUs is uniformly distributed between 350W and 375W.
Monte Carlo simulation, a technique used to model the probability of various outcomes in processes influenced by random
variables, is employed to calculate the power consumption of global HPC devices under high load. Using Python's built-in random

t P(t)

∑365
t=1 Pt*24 (4)
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function, we sample the daily GPU power consumption from the specified uniform distribution to determine the daily working
power  .

4.2.2. Low load power consumption calculation

In low load situations, we assume that the power consumption of all GPUs is uniformly distributed between 150W and 250W.
Using Monte Carlo simulation, we calculate the power consumption of global HPC devices under low load.

4.2.3. Average high load power consumption calculation

HPC devices do not remain in a constant state of high or low load; instead, they fluctuate dynamically between these states. This
behavior can be modeled using a Markov chain. In this Markov chain representation of HPC, there are three states: full load,
normal load, and low load, with transitions between these states. The state transition matrix 

  can be expressed as:

Algorithm 1:

Input: N, M, days, R = {Rlow, Rnormal, Rhigh}, T = [P(St+1|St)] Output: E total , Emax
for t 1 to days do

// Step 2.1: State transition for all GPUs
For i = 1 to N:S[i] = Transition(S[i], T) // Update state based on probabilistic transition matrix.

// Step 2.2: Assign power consumption based on state
For i = 1 to N:P[i] = Power(S[i] ，R) // Assign power consumption based on state

// Step 2.3: Calculate total daily energy consumption
E_day = ComputeEnergy(P, M) // Aggregate power across GPUs and scale by M.

// Step 2.4: Update total and maximum energy E_total = E_total + E_day
If E_day >E_max:
E_max = E_day

end

4.2.4. HPC power consumption calculation results

Figure 5. The total power for high, low and average power

The diagram illustrates the amount of energy use over the range of high power, low power and average power. This result is
used to evaluate and determine the amount of heat absorbed by the water-cooling system, as shown in Figure 5.

5. Global HPC equipment carbon emission estimation model and future prediction model

5.1. GPU market value prediction based on grey prediction model

5.1.1. Gray prediction principle

The gray prediction model GM (1, 1) is a forecasting method designed for systems with uncertain factors, particularly useful for
predicting data series with incomplete information [4]. The basic principle involves generating a regular data series, constructing a
differential equation model, and estimating the model parameters using the least squares method to predict system behavior. The
core of gray prediction is to apply a cumulative generation (1-AGO) process to the original data series, creating a new series that

 Pt 

P
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reveals a clear upward or downward trend, which is then used to build a first-order linear differential equation model for
forecasting.

In this paper, we use the enhanced GM (1, 1) model with other influencing factors to predict STT [5]. We define    as the
original data sequence of STT from 1980 to 2020:

And then we get the whitened equation:

where,    is the cumulative generating operation sequence of   . Then we use the least square method (OLS) to obtain
parameters    and    as：

Where

The respective time response sequence of the model is:

To test the model, we define the gray prediction subsequence as:

Residuals can be obtained:

Calculate the variance    of the original sequence    and the variance    of the residual  .

Finally, the test error ratio of    and    is calculated.

5.1.2. Analysis of gray prediction results

The result analysis of gray prediction primarily involves evaluating the accuracy of the model and obtaining the predicted values.
By comparing the predicted values with the actual values and calculating the residual and relative errors, the prediction accuracy
of the model can be assessed. The forecast results typically provide the number of HPC devices for different years, offering
insights into the future development trends of the HPC market. Figure 6 blow are the results from the gray prediction.
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Figure 6. Prediction of HPC devices using the gray prediction model

5.2. Carbon emission estimation of HPC equipment

5.2.1. Design different energy structures

When estimating the carbon emissions of HPC equipment, it is essential to consider various energy structures. The energy mix
design involves determining the proportion and use of different energy sources, such as coal, oil, natural gas, and non-fossil
energy. These energy sources have distinct carbon emission factors, which directly influence the total carbon emissions [6], as
shown in Figure 7.

Figure 7. Global primary energy consumption by source (2000-2023)

5.2.2. Impacts of carbon emissions from different energy structures

Different energy structures have a substantial impact on the carbon emissions of HPC equipment. For instance, coal produces
significantly higher carbon emissions as an energy source compared to natural gas and non-fossil energy sources. Therefore,
optimizing the energy mix and increasing the share of clean energy is crucial for reducing the carbon emissions of HPC
equipment, as shown in Figure 8.

Figure 8. Energy consumption

5.3. Future GPU power prediction

Based on the Markov chain prediction model, we can forecast future GPU power consumption. AMarkov chain is a stochastic
process in which the future state depends solely on the current state, not on past states. In GPU power prediction, the Markov
chain is used to simulate the transition probabilities between different power states, enabling the prediction of future power
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consumption. By combining this with the number of GPUs obtained from the previous gray prediction, we can further estimate the
total power consumption [7].

5.4. Electricity price fluctuation model

Electricity price fluctuations significantly impact the operating power of GPUs. Changes in electricity prices can alter the GPU's
operating state as it adjusts to shifts in electricity costs. The electricity price fluctuation model can predict these price trends and
quantify their effect on GPU power consumption using relevant formulas. For instance, an increase in electricity prices may
prompt GPUs to reduce workload in order to conserve energy, while a decrease in electricity prices may encourage
higher workload to capitalize on lower-cost power. Constructing the electricity price fluctuation model typically involves time
series analysis, such as the ARMA model, while considering factors like market supply and demand, policy changes, and other
relevant variables.

6. HPC equipment environmental factor assessment and 100% energy challenge

6.1. Water calculation

In High-Performance Computing (HPC) systems, water consumption primarily arises from the cooling system. As HPC equipment
generates substantial heat during operation, a cooling system is essential to maintain the optimal operating temperature. These
systems typically include water-cooled radiators and coolant circulation systems, both of which require water to absorb and
transfer heat. The water consumption can be estimated using the following formula:

where    is water consumption,    is the cooling system flow, and    is the operation time.
The flow rate of the cooling system refers to the volume of water passing through the system per unit of time, while the

operating time denotes the actual runtime of the HPC equipment. This calculation can serve as a reference for effective water
resource management in HPC systems.

6.2. Network structure power calculation

One common network architecture used in HPC systems is the Fat Tree topology. This architecture consists of three types of
switches: edge switches, aggregation switches, and core switches. The primary source of power for these switches comes from
their own power supplies, as well as the devices to which they are connected. Electricity consumption can be calculated using the
following formula:

where    is the number of edge switches,    is the power consumption of each edge switch;    is the number of
aggregation switches,    is the power consumption of each aggregation switch;    is the number of core switches,    is
the power consumption of each core switch.

Figure 9 visualizes the network topology diagram of Fat Tree network architecture for a more intuitive understanding.

Figure 9. Topology diagram of Fat Tree network architecture

The formula for calculating the number of switches depends on the specific network size and design requirements. For
example, each pod consists of    servers & 2 layers of    k-port switches, each edge switch connects to    servers &   

 W = F × T (16)

W F T

Total Power Consumption = Nedge × Pedge + Nagg × Pagg + Ncore × Pcore (17)

Nedge Pedge Nagg

Pagg Ncore Pcore

(k/2)2 k/2 k/2 k/2
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aggregation switches, each aggregation switch connects to    edge &    core switches,    core switches: each connects to
k pods

6.3. 100% energy challenges

Considering the challenges posed by 100% wind energy, we focus on the impact of the instability and unpredictability of wind
energy on the operation of HPC equipment [8]. The formula for calculating wind energy can be expressed as:

where    stands for wind energy,    stands for air density, A stands for wind area, and    stands for wind speed. To ensure the
proper operation of the HPC device's GPU during the state transition process described by the Markov chain, it is necessary to
evaluate the stability and reliability of wind energy using the time series diagram of local wind speed. The formula for the state
transition probability of the Markov chain is, where    represents the n-step transition probability from state    to state  :

Figure 10. Topology diagram of Fat Tree network architecture

As shown in Figure 10, the diagram illustrates the time series variations of local wind speed over different periods, used to
evaluate the stability and reliability of wind energy to ensure the normal operation of the HPC device's GPU.

In order to maintain the normal operation of the GPU, we need to set up enough wind equipment to ensure that the wind speed
is low enough to provide enough energy. Assuming that the maximum output power of the wind device is  , then according to
the wind speed and the efficiency of the wind device, we can determine the maximum wind device setting as:

Where    is the minimum energy required for the GPU to operate and    is the conversion efficiency of the wind device.
In this way, we can ensure that HPC equipment receives an adequate energy supply even at low wind speeds.

7. Establishment and countermeasures

7.1. Utilizing artificial intelligence for dynamic GPU power adjustment

A study by the National Renewable Energy Laboratory highlights the potential of AI and machine learning to improve energy
efficiency in renewable energy systems, such as wind farms. Similarly, applying AI to adjust GPU workloads based on wind
availability can reduce the need for additional wind turbines [9].

To implement this approach, our group selected the Long Short-Term Memory (LSTM) model for predicting wind speeds. The
LSTM model, a type of Recurrent Neural Network (RNN), is particularly well-suited for time-series forecasting due to its ability
to learn long-term dependencies in sequential data. Figure 11 is the basic architecture of the LSTM model.
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Figure 11. The basic architecture of the LSTM model

The input gate in LSTM regulates how much of the current input information is allowed to impact the present state. The
mathematical formulation for the input gate is:

where    is the input gate,    is the ReLU function,    is the weight matrix, [  ] is the concatenation of the previous
hidden state and the current input, and    is the bias.

The forget gate determines the degree to which the previous state is maintained.
The mathematical expression is:

where    is the forget gate.
The output gate determines how the current state influences the output at the next moment. The mathematical expression for

the output gate is:

where   t is the candidate memory unit state.

The hidden state is updated using the output gate and the current memory cell state, with the update formula being:

We initialize the learning rate of the STFN at 0.001, train the model over 50 epochs, and utilize the Adam optimizer for
network optimization. To adjust the learning rate, we apply the cosine annealing scheduler.

where    is the current learning rate,    and    are the minimum and maximum learning rates,    is the current
epoch, and    is the maximum epoch. We use the MSE loss function to train our model.

Wind turbines often face underutilization during periods of low wind speed, resulting in inefficiencies in energy production.
However, AI-driven algorithms can effectively align GPU workload demands with periods of high wind availability. For example,
when high wind speeds are forecasted, AI can schedule GPUs to operate at full capacity, optimizing energy utilization. Conversely,
during low wind speed periods, GPUs can function at reduced power levels, minimizing energy wastage. This approach not only
enhances the usage of renewable energy but also decreases reliance on traditional, carbon-intensive energy sources. Figure 12 is
the LSTM Wind Speed Forecasting Results.
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Figure 12. LSTM wind speed forecasting results

7.2. Use of seawater for cooling

(1) As our investments progress, we have determined that using deep-sea water for High-Performance Computing (HPC) cooling
will be the most effective strategy moving forward. Currently, the environmental impact of various cooling technologies—such as
water cooling, liquid cooling, and air cooling—remains a topic of intense debate. Water cooling, for instance, faces challenges
such as leakage risks and high water consumption. Coolant-based cooling systems require specialized, expensive coolants, which
pose a significant environmental pollution risk. Air cooling, while common, is less effective for high-performance systems,
generating high noise levels due to the powerful fans required [10].

In light of these challenges and considering future advancements in scientific research, we propose a solution: placing HPC
systems in deep-sea water regions. Using seawater for cooling offers several advantages, primarily due to its favorable physical
properties. The temperature of deep seawater typically ranges from 2°C to 4°C, significantly lower than the typical circulating
water temperatures of 10°C to 15°C found in traditional cooling systems. This substantial temperature difference allows seawater
to dissipate heat more effectively, reducing the energy required to maintain optimal system performance. Figure 13 below is a
simple diagram illustrating the principle of this cooling process:

Figure 13. Visualization of water cooling process for high-performance computing

Second, seawater has a slightly lower specific heat capacity, approximately 3850   , compared to freshwater, which
has a specific heat capacity of around 4182   . This difference allows seawater to absorb heat more rapidly, making it an
ideal cooling medium. Additionally, the reduced evaporation rate during heat absorption is a key advantage, as seawater requires
less energy to remove the same amount of heat. With a latent heat of vaporization of about 2260   , seawater minimizes water
loss while maximizing cooling efficiency, making it a resource- efficient and environmentally friendly option.

In fact, Microsoft began researching underwater data centers in 2013. In their trials, only six out of 855 servers failed,
compared to eight out of 135 servers on land. This demonstrates the effectiveness of underwater data centers in reducing failure
rates. With continued advancements, it is expected that issues related to HPC cooling and environmental impact will be
significantly improved in the future.

J/(kg ⋅ K)

J/(kg ⋅ K)

kJ/kg
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8. Model evaluation and further discussion

8.1. Strengths

This paper employs Monte Carlo simulation and gray prediction models for analysis. Monte Carlo simulation is a widely used
statistical model that relies on random sampling techniques. Due to its use of random sampling, it can effectively quantify
uncertainties and handle complex systems by considering multiple influencing factors. As a result, it is a highly flexible model.
The gray prediction model, another established statistical method, is characterized by its simple formula and straightforward
calculation. It is applicable to a broad range of data types and reduces the impact of random factors through the process of
cumulative summation.

8.2. Weaknesses

The model used in this paper also has certain limitations. Monte Carlo simulation is highly sensitive to the randomly selected data,
which can result in unstable solutions. On the other hand, the gray prediction model has a relatively rigid structure and tends to
exhibit lower accuracy in long-term predictions.

8.3. Further discussion

In this paper, both models exhibit unstable solutions. For this problem, the model can be applied multiple times to each data set,
and the average of the obtained solutions can be taken as the final result. This approach can help to stabilize the solution.

9. Conclusion

First, we estimated global GPU numbers through market value analysis, considering both new and legacy GPUs. Using GPU
survival functions, we estimated the total number of GPUs worldwide in 2024 to be   . By modeling GPU load states
using a Markov transition process and Monte Carlo simulations, we calculated the average global HPC power consumption in
2024 to be   , with maximum and minimum consumption at    and   . Combining
carbon emission factors, maximum CO2 emissions reach    with power generation comprising 40% coal, 30% natural
gas, 20% oil, and 10% renewable energy.

Using a gray prediction model, we projected 2030 GPU numbers to reach    units, with power consumption of  
 . Our power fluctuation model suggests a potential 16% reduction in consumption due to rising electricity prices.

Analysis of Szeged wind data showed that a single wind power unit produces maximum 23,230 kWh daily, requiring 47 units for
10,000 HPC nodes, though experiencing six zero-generation days annually.

Our water cooling tower model revealed annual water loss of    per HPC device. For a 10000-node HPC system
using Fat Tree architecture, annual network energy consumption reaches   .

We propose two optimizations: an AI-based wind speed prediction model using LSTM (  , outperforming random
forest's 0.2028), and a seawater cooling solution potentially reducing evaporation losses by    annually.
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