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Abstract. To address the problem in boundary tracing where there is no direct association between entities and boundary pixels—

that is, determining which entity a boundary belongs to—a novel run data-based boundary tracing algorithm is proposed. Unlike 

traditional tracing algorithms, this approach first extracts boundary pixels and then classifies them to ensure 100% extraction 

accuracy. A region labeling algorithm is introduced to establish a direct link between boundaries and objects. The concept of 

boundary run data is proposed to avoid errors in previous run data algorithms, particularly at corners. Furthermore, the proposed 

algorithm is parallelized using MPI to further improve its speed. Experiments conducted on the MPEG-7 CE standard dataset 

demonstrate that the proposed algorithm achieves 100% accuracy, offers significant speed improvements over traditional 

algorithms, and exhibits further performance gains after parallelization. 
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1. Introduction 

In geometry, a boundary refers to the set of points whose neighborhoods contain non-object points, without occupying any spatial 

extent. In images, a contour refers to the set of pixels within a target object whose 4- or 8-neighborhoods (assuming square pixels) 

contain object pixels; unlike points, pixels occupy space [1, 2]. Contours are one of the fundamental features in images, 

representing the basic shape of objects and storing important information about the boundary and the entity itself (such as perimeter 

and area). Therefore, contour tracing is a fundamental task in image processing and computer vision, and the accuracy and 

reliability of its results directly affect the understanding of the real world [3, 4]. The earliest known contour tracing techniques can 

be traced back to the 1960s [5], proposed by researchers such as Robert L. K. Tukey and Paul Viola. Although this research has a 

history of over 60 years, the number of available techniques remains small, and their evolution has been very slow. For example, 

the widely used and important findContours function in OpenCV relies on the 1990s radical sweep method and topological analysis 

based on Suzuki’s 1985 method [6, 7]. 

Traditional contour tracing algorithms can be broadly categorized into three types: pixel-based tracing algorithms, vertex-based 

tracing algorithms (proposed in 1982) [8], and run data-based tracing algorithms (proposed in 1997 [9] and improved in 1999 [10]). 

Vertex-based algorithms require storing and tracking vertices instead of pixels, increasing storage requirements by at least four 

times and consuming significant memory while offering similar iterative performance. Run data following still has unresolved 

issues at 8-connected junctions and requires further refinement. Additionally, these methods are complex to implement and 

integrate. Vertical run data tracing involves frequent allocation and deallocation of pointers, and direct scanning must consider 

background pixels, leading to low efficiency for complex boundaries. As a result, their development has stagnated. Pixel-based 

tracing algorithms, thanks to Suzuki’s method, are better at analyzing topological structures and easier to implement, making them 

more widely used and the main focus of researchers. Nevertheless, traditional techniques have several critical limitations. 

First, they cannot capture all contour pixels. Their strategy of simultaneously searching for and identifying contour pixels leads 

to missed pixels due to search limitations. Methods like Most Neighbor Tracing (MNT) and Relative Slope Analysis (RSA) fail 

to trace inner corner pixels and achieve only about 82% accuracy [11]. Even the more accurate Improved Sequential Boundary 

Following (ISBF) and Fast Contour Tracing Algorithm (FCTA) methods achieve close to 99.5% but still fall short of 100%. The 

proposed technique first identifies all contour pixels (while extracting enclosed object information, which previous methods could 

not achieve) and then classifies these pixels using run data (e.g., distinguishing inner and outer boundaries). Based on the definition 

of contour pixels and a predefined scanning strategy, this approach can locate 100% of all contour pixels. 
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Second, highly accurate traditional methods are slow and memory-intensive because they trace contours one at a time. To avoid 

misidentifying non-start pixels as start points, they must complete one tracing before starting the next, disrupting the scanning 

process and introducing costly small loops. They also require recording starting points and entry directions, consuming significant 

memory. Overlapping paths result in repeated pixel tracing, wasting computational resources. Algorithms like FCTA further 

increase computational load by evaluating pixel region patterns at each step. In contrast, the proposed method scans the entire 

image from top-left to bottom-right without being interrupted by individual tracing processes, ensuring high computational speed. 

It avoids frequent entry into individual tracing routines, eliminating the need to record starting points and entry directions, thus 

saving memory. By capturing all contour pixels first and performing classification later, it improves computational efficiency. 

Third, traditional methods cannot provide detailed, diverse representations of contour topology. Because they fail to capture 

all contour pixels, they cannot represent topological structures in detail. They only supply contour pixels without additional 

information, limiting their representational capacity and preventing them from determining which entity a given contour belongs 

to. The proposed technique increases the information content of contour pixels by adding new features and expanding pixel vectors, 

enabling more diverse and detailed representations of contour topology. 

Since 2016, the fundamental nature of contour tracing algorithms has not changed [12-14]. Most researchers have focused on 

parallelizing existing methods [12] or integrating them with neural networks. However, these approaches have not fundamentally 

solved the problem: accuracy remains limited, and speed continues to encounter bottlenecks.  

To address these issues, this paper proposes a new run data algorithm, further parallelized using MPI to improve its speed.  

The paper consists of three parts: the first defines basic concepts; the second describes the proposed contour tracing algorithm 

in detail and its application to contour topology representation; and the third validates the algorithm’s performance, efficiency, 

and practicality. 

2. Principles of the serial novel run data algorithm 

First, using the region labeling algorithm, the image is scanned for the first time to identify all boundary pixels, assign initial labels 

to each pixel, and record the cluster (connected region) associated with each sub-pixel area.  

For each pixel, its upper neighborhood is scanned (using an 8-neighborhood mode with a default scan from the top-left to the 

bottom-right), as shown in Figure 1. 

 

Figure 1. Pixel and its neighbors 

Relative to the current pixel, its upper neighborhood (the red region) has already been scanned and consists either of background 

pixels or entity pixels that have already been labeled. If any entity pixel exists in the red region, the label of the first such pixel 

encountered is assigned to the current pixel. If a background pixel is detected during the scan, the current pixel is marked as a 

boundary pixel. If all pixels in the upper 4-neighborhood are background pixels, a new label is created and assigned to the current 

pixel, and this label is added to the global label variable. If two or more different labels are found in the upper 4-neighborhood, all 

of these labels in the label set are unified to the smallest of them. A flowchart of this process is shown in Figure 2. 
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Figure 2. Stage1’s flowchart 

The following example, shown in Figure 3, illustrates this process. 
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Figure 3. Original image 

After Stage 1, all boundaries are extracted, and the image is segmented into four parts as shown in Figure 4. 

 

Figure 4. The result after stage1 

At this point, the global set of labels is obtained: 

 𝑙𝑎𝑏𝑒𝑙 =  {1, 1, 3, 1} (1) 

The purpose of maintaining this label set is to enable merging of subregions that belong to the same connected area. For 

example, regions 1, 2, and 4 are actually connected and should be treated as a single region, but they were initially divided into 

three subregions, so labeling is necessary for subsequent merging.  

In the figure, the light-colored areas represent the boundaries of regions with the same color (using the 4-neighborhood as an 

example). Here, the green region's boundary is divided into two parts: one part directly contacts the background (the outer contour), 

while the other part is caused by a white hole in the middle (the inner contour). In some applications [4], distinguishing these is 

unnecessary, but in others [3], such as identifying minerals surrounding rocks, it is essential to differentiate between inner and 

outer boundaries. Therefore, the next tasks are to merge pixels (especially boundary pixels) that belong to the same connected 

region and to distinguish between inner and outer boundaries based on user requirements.  

At this stage, depending on user needs—such as calculating the area—synchronous statistics can also be performed. 

Stage2: Using the label vector obtained in Stage 1, this step merges the boundaries of connected sub-pixel regions. During this 

process, the algorithm only merges information and boundaries—for example, summing areas, accumulating surrounding mineral 

content, or removing unwanted components—thus ensuring functionality while reducing computational load. 

Step1: 

Merge regions 1 and 2 (see Figure 5). 
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Figure 5. The result after merging 1 and 2 

 𝑙𝑎𝑏𝑒𝑙 =  {1, 1, 3, 1} (2) 

Step2: 

Merge regions 1 and 3 (see Figure 6 and 7). 

 

Figure 6. The result after merging 2 and 4 

 𝑙𝑎𝑏𝑒𝑙 =  {1, 1, 3, 1} → {1, 1, 3, 1} (3) 

 

Figure 7. End 
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 𝑙𝑎𝑏𝑒𝑙 = {1, 1, 3, 1} (4) 

A summary of the process in Step 2 is provided in the flowchart shown in Figure 8. 

 

Figure 8. Stage2’s flowchart 

Stage3: For each connected region boundary, this step distinguishes between outer and inner contours. By integrating the run 

data approach [10], the algorithm determines the boundary type of the current scan line using the boundary types from the previous 

line, following the decision process shown in the flowchart. This enables differentiation between inner and outer boundaries, as 

well as between multiple distinct inner boundaries.  

The flowchart for this process is shown in Figure 9. 
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Figure 9. Stage3’s flowchart 

Through these stages, all boundaries are successfully extracted. The result is shown in Figure 10, where the darker regions 

indicate inner boundaries. 
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Figure 10. The final result 

3. Experiments with the serial algorithm 

The following presents the results obtained using programs implemented in C++ and Python. 

Experiment 1: C++ implementation on a specific example. 

Original image (Figure 11, from the MPEG7-CE standard dataset) 

 

Figure 11. Original image 

The processing time for each stage is shown in Table 1. 

Table 1. Different time of the stages 

Stage Time (milliseconds) 

Stage1 19.2656 

Stage2 3.2973 

Stage3 0.6267 

 

It can be observed that Stage 1 consumes the most time. Subsequent parallelization efforts will focus on this module. 

The tracked boundaries are shown in Figure 12. 
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Figure 12. The result 

A magnified detail is shown in Figure 13. 

 

Figure 13. A part of the result 

Here, dark blue indicates outer boundaries, while light blue indicates inner boundaries. In this example, the large butterfly 

shape contains many holes not belonging to the main butterfly, resulting in situations where light blue regions are nested within 

dark blue regions. 

Experiment 2: Comparison with traditional algorithms. 

The comparison was conducted under the following hardware and software configuration (see Table 2). 

Table 2. Experiment environment 

Desktop 

CPU 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz   2.42 GHz 

Memory 8.00 GB 

HDD Seagate 1 TB Momentus ST1000LM024 

OS Microsoft Windows 11 

Development pycharm, community, 3.10 

 

The comparison is made against OpenCV (known as cv2 in Python). The results include tests with the latest official release as 

well as the 2024 first-half-year version (see Table 3). 
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Table 3. Comparison result on MPEG7-CE 

sample 
Time 

(proposed) (s) 
time(sui)(s) 

total 

number 

traced contour 

pixels(proposed) 

traced contour 

pixels(sui) 

% (sui/total 

number) 

% proposed/ 

total number 

apple-1 0.00498724 0.050465107 940 940 661 0.703191489 1. 

elephant-

12 
0.15091157 0.478239775 4,999 4,999 3,815 0.763152631 1. 

device6-

2 
0.135089159 0.209171057 5,015 5,015 3,527 0.70329013 1. 

face-1 0.010963917 0.075484037 984 984 719 0.730691057 1. 

spring-7 0.031405687 0.204383373 2,896 2,896 2,130 0.735497238 1. 

hammer-

1 
0.019537687 0.163118601 2,151 2,151 1,736 0.807066481 1. 

watch-8 0.022922754 0.068247318 1,254 1,254 940 0.749601276 1. 

lizzard-

11 
0.106181555 0.198886871 2,772 2,772 2,019 0.728354978 1. 

beetle-1 0.158737183 0.361655235 5,211 5,211 4,097 0.786221455 1. 

cattle-18 0.166889191 0.348280668 4,061 4,061 3,186 0.784535829 1. 

 

In terms of accuracy, the widely used OpenCV implementation achieves less than 80%, a figure also supported by [11] (82%). 

The latest boundary-tracing algorithm [11] claims to achieve 97% accuracy, which holds for simple images; however, our 

experiments show that for complex images, it reaches only around 90%. In contrast, our method completely extracts all boundaries 

without removing or introducing any spurious boundaries during processing, thus achieving 100% accuracy (as shown in the last 

column). 

The following figure shows a time comparison between our algorithm and OpenCV (see Figure 14). 

 

Figure 14. Comparison result between the two algorithm 

(Note: x-axis represents the number of boundary pixels; y-axis represents time in seconds) 

 

Compared to traditional algorithms, the proposed method offers 100% accuracy along with higher processing speed. 

4. A new MPI-based parallel run data algorithm 

From the above comparison of processing times across different stages, it is clear that Stage 1 is the most time-consuming. 

Therefore, parallelization will first be applied to Stage 1. The primary reason for Stage 1’s high computational cost lies in the fact 

that, in the serial implementation, pixel scanning is performed by a single processor [12, 15]. Inspired by the multiprocessor system 
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approach of parallel boundary-tracing algorithms [12], this method introduces multiple processors during the scanning process to 

improve speed. 

Unlike traditional tracing processes, here each processor is assigned both an initial scanning point and a specific scanning 

region. Thus, the entire image is divided into multiple scanning regions, with the number of regions determined by the number of 

CPU cores and the image size. After each processor completes scanning its designated region, specialized processing is performed 

on boundary pixels at region interfaces (since their upper four neighbors may not have been fully scanned yet). Additionally, the 

labels of subregions are reassigned and merged as necessary. 

The first step is image partitioning. To simplify boundary handling and ensure balanced computational workload, the image is 

evenly divided along rows, as shown in Figure 15 and 16. 

 

Figure 15. The original image 

 

Figure 16. The divided image 

Different colors indicate different scanning regions. The division is performed by rows, so the same object may be split across 

multiple regions. In the example above, the object is divided into four parts. Three boundary pixel runs are highlighted with arrows 

[10]. 

Next, special handling is required for the row immediately following a division line (the “second divided row”), because pixels 

in this row do not have all four upper neighbors labeled, making normal serial-style scanning impossible. 

Therefore, the scanning process for pixels in the second divided row is modified as shown in Figure 17. 
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Figure 17. Pixel in second divided row 

For these pixels, only the left neighbor has been scanned. Therefore, the algorithm uses the original labeling strategy for the 

left neighbor (determining boundary status and assigning labels), while for other neighbors it simply checks their values without 

modifying the cluster label.  

The resulting labeling is shown in Figure 18, where solid arrows indicate division lines and dashed arrows indicate the second 

divided rows: 

 

Figure 18. The result of second divided rows 

For all other rows within each region (excluding the division and second divided rows), scanning proceeds in the same manner 

as in the serial implementation. The result after scanning in this example is shown in Figure 19. 
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Figure 19. The result of divided region 

In the figure, the darker colored regions represent the identified interior pixels of the object, while the lighter colored regions 

(still darker than the background) represent the boundary pixels of the corresponding region. After scanning, the results from 

different regions are merged and the labels are reassigned, as shown in Figure 20. 

 

Figure 20. The result after reassigning 

Finally, specialized scanning is applied to the boundary pixel runs, as illustrated in Figure 21. 

 

Figure 21. The old scanning way 



14	|	Advances	in	Engineering	Innovation	|	Vol.16	|	Issue	7
 

In the serial implementation, for both boundary and non-boundary pixels, scanning proceeds clockwise: first the upper four 

neighbors, then the lower four. This is because the upper neighbors have already been scanned, so starting with them ensures 

correct labeling. However, in the parallel case, for boundary pixels, not only are the upper four neighbors scanned, but all lower 

neighbors except the left neighbor have also been processed. Therefore, the scanning order is modified as shown in Figure 22. 

 

Figure 22. The new scanning way 

Specifically, after scanning the upper four neighbors, the algorithm proceeds counterclockwise starting from the lower-left 

neighbor. For the example above, the resulting labeling is shown in Figure 23. 

 

Figure 23. The final result of para-stage1 

 

The above algorithm design translates into three main programming steps: first, parallel scanning of the original image; second, 

merging and relabeling of the boundary and region sets after aggregation; and finally, special handling for the division lines.  

The overall workflow is summarized in Figure 24-26. 
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Figure 24. Para-stage1’s flowchart (1) 
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Figure 25. Para-stage1’s flowchart (2) 
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Figure 26. Para-stage1’s flowchart (3) 
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5. Parallel algorithm experiments 

The following experiments are divided into two parts: first, verifying the accuracy of this approach, and second, comparing its 

speed. 

Experiment 1: Parallel Contour Extraction on a Specific Example 

The original image is shown in Figure 27. 

 

Figure 27. The original image 

The image properties are shown in Figure 28. 

 

Figure 28. Attribute of the image 

The extracted contour pixels are shown in Figure 29. 

 

Figure 29. The contour pixels extracted from the image 

From the results, it is evident that the extracted boundaries match the true contour pixels exactly—neither more nor less. 
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Experiment 2: The experimental environment is summarized in Table 4, and the results comparing the parallel and serial 

algorithms are given in Table 5. 

Table 4. Experiment 2: The experimental environment 

Desktop 

CPU 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz   2.42 GHz 

Memory 8.00 GB 

HDD Seagate 1 TB Momentus ST1000LM024 

OS Microsoft Windows 11 

Development pycharm, community, 3.10 

Core number 4 

Table 5. Comparison in time rate 

sample time(ordinary)(ms) time(para-)(ms) 
total 

number 

traced contour 

pixels(ordinary) 

% (ordinary/para 

time) 

apple-1 1.7218 1.0514 940 940 1.6376260224462622 

elephant-12 6.0032 2.8643 4,999 4,999 2.0958698460356806 

device6-2 6.7833 2.6197 5,015 5,015 2.5893422911020347 

face-1 1.8585 1.0481 984 984 1.773208663295487 

spring-7 4.6751 2.3019 2,896 2,896 2.030974412441896 

hammer-1 6.0893 3.1708 2,151 2,151 1.9204301753500694 

butterfly-1 15.6075 5.2300 11,304 11,304 2.9842256214149137 

lizzard-11 2.8806 1.5916 2,772 2,772 1.809876853480774 

beetle-1 5.4075 2.6692 5,211 5,211 2.0258879064888355 

cattle-18 5.9078 2.6968 4,061 4,061 2.1906704242064667 

 

Figure 30. Contour pixel’s number and time rate 

From the results in Figure 30, it can be seen that the parallel algorithm is faster than the serial algorithm. Moreover, the speedup 

increases as the number of boundary pixels grows. Its theoretical upper limit is 4, as approximated by the formulas (5) and (6) 

given in [15]. 

 𝑊 = 𝑊𝑠 + 𝑊𝑝 (5) 

 𝑆 =
𝑊

𝑊𝑆+𝑊𝑃/𝑃
 (6) 

6. Conclusion 

To achieve 100% extraction of object boundary pixels and to establish a direct link between boundaries and their corresponding 

objects, this paper proposes a new boundary-tracing algorithm by combining traditional boundary-tracing methods with connected-
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component labeling techniques. Experiments conducted on the MPEG7-CE standard dataset demonstrate that the proposed method 

achieves a 100% extraction rate, producing a set of boundary pixels directly associated with the objects. Moreover, compared with 

existing methods of similar functionality, it achieves a significant speed improvement (at least 15%). In addition, this paper 

introduces an MPI-based parallel implementation of the proposed algorithm. Compared to the serial version, the parallel 

implementation consistently achieves speedups of at least 1.64× and up to 2.98×. This further improves efficiency, making the 

method more suitable for accurate large-scale image boundary extraction and tracing. Future work will explore modeling the 

containment relationships between different objects and their boundaries, as well as extending the boundary-tracing approach to 

three-dimensional or even n-dimensional images. 
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