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Abstract. Large-Scale Language Models (LLMs) have initiated transformative changes in Traditional Chinese Medicine (TCM), 

yet existing LLM-based diagnostic approaches face challenges such as prolonged training cycles and high implementation costs 

due to reliance on medical expertise. To address this, we propose a systematic framework integrating multimodal data and LLM 

technologies. First, we analyze bottlenecks in traditional diagnosis (e.g., subjectivity) and modernization challenges. The 

framework leverages open-source foundation models (e.g., Baichuan2, LLaMA) pre-trained on "symptom–syndrome–medication" 

associations, fine-tuned with clinical data to simulate diagnostic workflows. Key components include: (1) a Data Input Layer 

capturing tongue image features (via YOLOv5s6/U-Net), speech spectra, BERT-encoded inquiry texts, and pulse waveforms; (2) 

a Feature Fusion Layer constructing syndrome differentiation vectors through multimodal feature concatenation; and (3) a 

Prediction & Feedback Layer generating diagnostic probabilities with reinforcement learning based on clinical efficacy. Finally, 

we discuss critical issues, including risks of physician replacement, professional competence degradation, and liability attribution 

in diagnostic errors. This framework aims to enhance TCM diagnostic efficiency while ensuring clinical reliability. 

Keywords: TCM Four diagnostic methods, large-scale language models, multimodal fusion, clinical diagnostic framework, 

reinforcement learning 

1. Introduction 

It can be seen from the literature that Large Language Models (LLMs) can assist doctors in diagnosis and treatment by learning 

from large volumes of clinical data and Traditional Chinese medicine (TCM) knowledge. The TCM-FTP model, for example, uses 

a pre-trained LLM and is fine-tuned with the DigestDS dataset. It can effectively predict TCM prescriptions and dosages, achieving 

an F1-score of 0.8031 and a normalized mean square error of 0.0604 in dosage prediction, thereby providing a valuable reference 

for physicians when prescribing medications [1]. This approach facilitates the integration of TCM theory and clinical practice with 

modern technology and promotes the modernization of TCM. By constructing TCM knowledge graphs and developing domain-

specific models, the efficiency and accuracy of TCM diagnosis and treatment can be improved, allowing TCM to better meet the 

needs of contemporary society [2]. Furthermore, large-scale models can integrate and analyze a vast amount of TCM literature 

and empirical data, uncovering the potential value of TCM knowledge and promoting innovation in TCM theory and practice. 

Through the study of ancient TCM classics and clinical experience, these models can identify new drug combinations and treatment 

methods, providing new directions for TCM innovation. 
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2. A “Four Diagnostic Methods” framework 

 

Figure 1. A “Four Diagnostic Methods” framework assisting doctors in traditional Chinese medicine 

Amid the rapid advancement of modern medicine, the modernization and internationalization of Traditional Chinese Medicine 

(TCM) have become inevitable trends. The application of large-scale models offers an effective means for TCM to integrate with 

contemporary technologies, thereby enhancing its scientific rigor and standardization. 

In this context, we propose a “Four Diagnostic Methods” framework designed to assist physicians in TCM, as illustrated in 

Figure 1. The components and operational details of the framework are outlined below. 

2.1. Observation diagnosis 

As the first of the Four Diagnostic Methods in Traditional Chinese Medicine (TCM), observation diagnosis is characterized by 

strong subjectivity and a high dependence on clinical experience, which has hindered its standardization and broader application. 

The integration of big data and artificial intelligence technologies offers a new pathway toward the objectification and intelligent 

development of observation-based diagnostics. We examine the current applications of big data in various subfields of observation 

diagnosis, including tongue diagnosis, complexion analysis, and eye examination. Key enabling technologies such as standardized 

data collection, multimodal data fusion, and dynamic feature analysis are also explored in depth. Based on this analysis, we propose 

several strategies to advance observation diagnosis: the construction of a comprehensive TCM observation diagnosis database, the 

optimization of deep learning models, and the enhancement of clinical validation efforts. These measures aim to drive the evolution 

of observation diagnosis toward greater precision and quantification. 

2.1.1. Mining tongue and facial features for assisted diagnosis 

By leveraging big data and deep learning, it is possible to extract features from a large number of tongue and facial images, 

providing an objective basis for disease diagnosis. For example, by analyzing features such as the color, shape, and coating of the 

tongue, and comparing the tongues of patients with different diseases using big data, doctors can be assisted in diagnosing illnesses. 

A research team has developed an intelligent tongue recognition system based on deep learning, which can quickly and accurately 

identify pathological features in tongue and facial diagnosis. The system applies the following technologies: YOLOv5s6 is used 

for regional segmentation of tongue images, such as identifying the boundary of the tongue body. U-Net further optimizes the 
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detailed segmentation of tongue images, focusing on local features such as tongue coating and tooth marks. MobileNetV3 is 

employed for feature classification to identify pathological features, including tooth marks, ecchymosis, and fissures [3]. 

2.1.2. The diagnostic information dimension has been expanded 

Big data contains a rich and diverse range of information. It not only includes data on tongue appearance and facial features but 

also encompasses multi-source information such as patients' medical histories, symptoms, and examination results. Integrating this 

information with data from observation diagnosis can provide a more comprehensive perspective for clinical assessment. Data 

integration is increasingly emerging as a key approach in medical diagnosis. We propose a “tongue image—pulse condition—

symptom” association framework by analyzing tongue images, pulse data, and electronic medical records. Similarly, Li et al. 

developed an improved U-Net model that uses tongue image segmentation technology to achieve an accuracy rate exceeding  

93.33% in identifying features such as tooth marks and cracks, assisting physicians in diagnosing syndromes such as spleen 

deficiency and blood stasis [4]. By combining patients’ genetic information and lifestyle data with inspection diagnosis results, 

the risk of diseases can be assessed more accurately. Certain facial features may correlate with specific genetic conditions, and 

integrating this information with family medical history can improve diagnostic accuracy and reliability. This approach is valuable 

for the early detection and intervention of diseases. 

2.2. Auscultation and olfaction 

2.2.1. Enhancing the accuracy and objectivity of auscultation and olfaction diagnosis 

Traditional auscultation and olfaction diagnosis primarily rely on physicians’ subjective perception, which poses inherent 

limitations. Big data technologies enable the collection and analysis of large volumes of sound and odor data to develop more 

accurate diagnostic models. Modern sound collection and analysis devices have been applied to the study of voice diagnosis and 

related diseases. Machine learning techniques allow for in-depth analysis of differences between pathological and normal sound 

patterns. For example, research on voice analysis related to five-zang organ diseases, as well as time-domain and frequency-

domain detection of respiratory sounds in healthy individuals and patients infected with the novel coronavirus, has demonstrated 

promising accuracy. Moreover, big data can integrate multi-source information, providing a richer and more comprehensive basis 

for auscultation and olfaction diagnosis [5]. 

2.2.2. Expanding the diagnostic scope and depth of auscultation and olfaction 

Big data technology can identify additional sound and odor features associated with diseases, thereby broadening the diagnostic 

scope of auscultation and olfaction. For example, electronic nose technology can detect the specific characteristics of odor 

molecules. Spectral technologies, leveraging artificial intelligence and other methods to identify and differentiate Volatile Organic 

Compounds (VOCs), have been applied in the diagnosis of respiratory diseases, breast cancer screening, and the assessment of 

TCM syndrome characteristics in type 2 diabetes, among other applications [5]. 

2.3. The innovation and breakthrough of “inquiry” diagnosis 

2.3.1. Intelligent information extraction and analysis 

Large language models, combined with natural language processing technologies, enable more efficient and accurate extraction 

of key information from patients’ descriptions. Inquiry diagnosis models based on deep learning—such as the Chinese medicine 

inquiry-assisted diagnosis algorithm that integrates Bidirectional Encoder Representations from Transformers (BERT) and graph 

convolutional neural networks—can simulate the diagnostic reasoning process of physicians. These models accurately extract 

symptoms, medical history, and other relevant information from patient statements. Compared with traditional inquiry methods, 

they significantly enhance the efficiency and accuracy of information extraction [6]. 

2.3.2. Innovative diagnosis and treatment models 

Intelligent inquiry platforms developed with the support of large language models enable remote consultations and real-time 

diagnoses. Currently, technology-driven facial complexion classification can be applied to assist diagnosis. Similarly, intelligent 

inquiry platforms can integrate image recognition and other technologies to provide more comprehensive diagnostic capabilities 

[7]. 
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2.4. Palpation 

2.4.1. Assisting in disease prediction and diagnosis 

By integrating diverse diagnostic information and patients’ personal data, big data can provide a more comprehensive foundation 

for disease prediction and diagnosis. In pulse diagnosis, the application of digital intelligence technologies to mine and analyze 

Traditional Chinese Medicine clinical data facilitates the identification of potential disease patterns and risk factors. Through the 

comprehensive analysis of pulse data from a large patient cohort, combined with their medical histories, symptoms, examination 

results, and other relevant information, big data enables the construction of disease prediction models. By analyzing temporal 

trends in patients’ pulse conditions alongside other factors, it becomes possible to predict disease onset, progression, and prognosis. 

This approach supports early intervention and treatment, thereby improving the efficiency and accuracy of disease diagnosis [5]. 

2.4.2. Promoting the inheritance and development of pulse diagnosis in traditional Chinese medicine 

Big data technology facilitates the organization and preservation of extensive clinical experience and data related to pulse diagnosis 

in Traditional Chinese Medicine, thereby supporting the inheritance of pulse diagnosis theory. Through digital processing and 

analysis of pulse diagnosis data from historical texts and clinical cases, valuable insights and patterns can be uncovered, providing 

rich resources for the teaching and research of pulse diagnosis in Traditional Chinese Medicine. Moreover, big data can drive the 

integration of pulse diagnosis with modern medicine. For example, by applying multidimensional data in disease research and 

combining modern medical findings with big data analytical methods, the theory of pulse diagnosis in Traditional Chinese 

Medicine can be further validated and refined. This approach helps to explore the scientific relationship between pulse condition 

changes and the physiological and pathological alterations in the human body, thereby promoting the modernization of pulse 

diagnosis in Traditional Chinese Medicine [8]. 

2.5. Construction of BD-TCM model framework 

Multi-source data, including Traditional Chinese Medicine (TCM) ancient books, textbooks, clinical cases, Chinese 

pharmacopoeias, and public data resources, should be collected. At the same time, standardized information can be obtained from 

databases such as TCMBank and ETCM v2.0, covering traditional Chinese medicines, ingredients, targets, diseases, and other 

content, enriching the data dimensions [9]. Annotate the collected data. For example, mark the "four diagnostic methods" 

information, symptoms, disease types, etc., in TCM diagnosis data. Remove incorrect and duplicate data to ensure data quality. 

For ambiguous or incomplete data, it can be improved through expert review or data supplementation to make the data more 

suitable for model training requirements [10]. Select excellent open-source foundation models such as Baichuan2 and LLaMA. 

These models have certain performance in the general field and can be adapted to TCM tasks through subsequent training [11]. 

Through the previous analysis, the significance of the model lies in providing a predictive service for the four diagnostic 

methods of Traditional Chinese Medicine (TCM). We elaborate on the construction of this framework from the following aspects. 

2.5.1. Application of mathematical formulas 

The loss function used during the continuous pre-training stage is presented in Formula (1). 

 𝐿 = −∑ ∑ 𝑙𝑜𝑔[𝑃(𝑋𝑖,𝑡+1|𝑋𝑖,1..𝑡 , 𝜃)]
𝑇
𝑡=1

𝑁
𝑖=1  (1) 

Explanations of all variables in Formula (1) are provided in Table 1. 

Table 1. Analysis of Variables Involved in Formula (1) 

Variable Explanations in detail 

𝑁 Total number of sequences in the pre-training dataset. 

𝑇 Number of tokens in each sequence 𝑋𝑖 (i.e., sequence length). 

𝑥𝑖,𝑡 The 𝑡-th token in the 𝑖-th sequence. 

𝜃 Model parameters. 

𝑃(𝑋𝑖,𝑡+1|𝑋𝑖,1..𝑡 , 𝜃) 
The probability that the model predicts the (𝑡+1)-th token given the first 𝑡 

tokens. 

 

Figure 2 presents a visualization of Formula (1) generated using Python code. 
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Figure 2. Visualization of formula (1) 

Formula (1) represents the standard cross-entropy loss function used in autoregressive language models. By minimizing this 

loss, the model learns to predict the probability of the next token, thereby capturing semantic associations and knowledge systems 

within the Traditional Chinese Medicine (TCM) corpus. This facilitates foundational learning of TCM theories, syndrome 

differentiation methods, and related concepts. 

TCM terms such as “qi stagnation and blood stasis” require contextual chains that integrate symptoms (e.g., stabbing pain, 

purple-dark tongue), treatment principles (e.g., promoting blood circulation to remove stasis), and formulas (e.g., Xuefu Zhuyu 

Decoction). The loss function compels the model to learn these complex, multi-layered associations effectively by predicting the 

next word. For example, from “dizziness + aggravation on movement” the model can associate with “qi deficiency,” and further 

link to herbs like “Astragalus membranaceus” and “Codonopsis pilosula” [12]. 

2.5.2. Loss function in the supervised fine-tuning stage 

 𝑳 = −∑ ∑ 𝒍𝒐𝒈[𝑷(𝒚𝒊,𝒕+𝟏|𝑿𝒊, 𝒚𝒊,𝟏..𝒕, 𝜽)]
𝑻𝒊
𝒕=𝟏

𝑵
𝒊=𝟏  (2) 

Explanations of all variables in Formula (2) are provided in Table 2. 

Table 2. Analysis of Variables Involved in Formula (2) 

Variable Explanations in detail 

𝑁 Total number of samples in the fine - tuning dataset. 

𝑇𝑖 Number of tokens in the response 𝑌𝑖 of the 𝑖-th sample. 

𝑋𝑖 The input prompt of the 𝑖-th sample (such as a consultation question). 

𝜃 Model parameters. 

𝑦𝑖,𝑡 The 𝑡-th token in the response sequence of the 𝑖-th sample.   

𝑷(𝒚𝒊,𝒕+𝟏|𝑿𝒊, 𝒚𝒊,𝟏..𝒕, 𝜽) 
The probability that the model predicts the (𝑡 + 1)-th response token given the 

input 𝑋𝑖 and the first 𝑡 generated response tokens. 

 

Figure 3 presents a visualization of Formula (2) generated using Python code. 
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Figure 3. Visualization of formula (2) 

Formula (2) is applied during the supervised fine-tuning phase, aiming to enable the model to generate responses consistent 

with professional TCM logic—such as consultation dialogues and syndrome differentiation analyses—based on given input 

prompts. Unlike the pre-training phase, the fine-tuning input includes explicit instructions , and the loss calculation is performed 

solely on the generation of the response . This design enhances the model’s instruction-following capabilities and its applicability 

in clinical TCM scenarios. 

For example, as shown in Table 10, through seven rounds of dialogue, the model progressively identifies the syndrome type 

of “qi and blood deficiency combined with spleen and kidney yang deficiency.” Each response is generated based on the preceding 

dialogue content, reflecting a logical chain of “consultation— syndrome differentiation—prescription” [12]. 

2.5.3. Process design 

The process can be divided into two main stages. The first stage involves the construction of the core framework, including the 

Data Input Layer, Feature Fusion Layer, Prediction Layer, and Feedback Layer. The second stage consists of pre-training and fine-

tuning the model. 

An overview of this process is illustrated in Figure 4. 

(𝑃𝑟𝑒−𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)

𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙 𝑇𝐶𝑀 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑀𝑜𝑑𝑒𝑙𝑖𝑛𝑔

𝐿𝑜𝑎𝑑 𝑃𝑟𝑒−𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠
→                       

(𝐹𝑖𝑛𝑒−𝑡𝑢𝑛𝑖𝑛𝑔)

𝐶𝑙𝑖𝑛𝑖𝑐𝑎𝑙 𝑇𝑎𝑠𝑘 −𝑜𝑟𝑖𝑒𝑛𝑡𝑒𝑑 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛
  

Figure 4. Process Design Diagram 

(1) Data Input Layer 

For observation diagnosis, the input includes tongue image feature vectors obtained through tongue body segmentation using 

YOLOv5s6 and tongue coating feature extraction via U-Net, as well as facial complexion RGB values. In auscultation and 

olfaction diagnosis, inputs consist of speech spectrum features (e.g., cough frequency, time-domain waveform of breath sounds) 

and odor molecular concentration data (e.g., detection values from VOC sensors). For inquiry diagnosis, natural language text 

from patient chief complaints and medical history is encoded into semantic vectors using BERT. Finally, in palpation diagnosis, 

pulse pressure waveform features are extracted, including frequency components measured at the Cun, Guan, and Chi pulse 

positions. 

(2) Feature Fusion Layer 

Detailed Approach: Construct TCM Syndrome Differentiation Vectors. First, concatenate the four diagnostic features into a 

comprehensive vector 𝑋= [Observation diagnosis features, auscultation features, inquiry diagnosis features, palpation diagnosis 

features]. Extract high-level semantic features 𝐻 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑥) through the encoder of a pre-trained model to capture the 

association between “pale tongue with white coating + thin and weak pulse + fatigue" and "qi-blood deficiency”. 
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(3) Prediction Layer 

Generate Diagnostic Results: Map [features] to the probability distribution of syndrome types 𝑃(𝑆𝑦𝑛𝑑𝑟𝑜𝑚𝑒 𝑡𝑦𝑝𝑒𝑠|𝑋) through 

a fully connected layer. 

(4) Feedback Layer 

If the confidence level of a prediction falls below a predetermined threshold (e.g., <70%), the model automatically generates 

supplementary inquiry questions (e.g., “Do you experience palpitations?”). After incorporating the updated data from the Four 

Diagnostic Methods, the model performs a re-prediction. Through a Reinforcement Learning (RL) mechanism, model parameters 

are subsequently adjusted based on clinical efficacy feedback (such as patient symptom improvement following medication), 

thereby enhancing long-term prediction accuracy. 

(5) Pre-training Stage 

The model is trained on extensive TCM corpora, including ancient texts and medical records, to learn fundamental associations 

among “symptoms-syndrome types-medications” and to develop generalized knowledge representations of TCM. For instance, it 

captures patterns such as “pale tongue with white coating + thin and weak pulse → qi-blood deficiency,” as described in 

Diagnostics of Traditional Chinese Medicine. 

(6) Fine-tuning Stage 

Building upon the pre-trained model, annotated clinical task data—such as consultation dialogues and syndrome differentiation 

cases—are employed to optimize the model. Explicit instructions  are incorporated to guide the model in generating responses 

that conform to diagnostic procedures. For example, given the prompt, “The patient complains of dizziness and fatigue, which 

worsens with movement,” the model produces a consultation flow including questions like, “May I ask if there is a sallow 

complexion? How is the appetite? What about sleep quality?” Ultimately, it outputs the syndrome differentiation result: “Qi 

deficiency syndrome, treated by replenishing qi and blood with Guipi Tang (Decoction for Spleen and Heart Nourishment).” 

3. Discussion 

Although Large Language Models (LLMs) currently exhibit limitations compared to human doctors—particularly in diagnostic 

accuracy, clinical reasoning, managing complex cases, ethical decision-making, and real-time responsiveness—they nonetheless 

hold substantial potential to assist medical practice. LLMs can provide valuable knowledge support and effectively handle routine 

tasks. Looking ahead, these models are poised to serve as auxiliary tools that collaborate synergistically with physicians, enhancing 

overall healthcare delivery. 

3.1. The issue of “replacing” doctors by LLMs 

First, large language models are accurate in providing "diagnosis and treatment recommendations." Specifically, in some medical 

scenarios, large language models like GPT-01 can exhibit high diagnostic accuracy. In diagnosing acute diseases, its diagnostic 

accuracy for ST-Elevation Myocardial Infarction (STEMI) can exceed 95% in certain cases. It can also provide treatment 

recommendations based on clinical guidelines and performs remarkably well in chronic disease management. The 01 model, as 

mentioned, also demonstrates its advantages in diagnostic tasks when tested on multiple medical datasets. There is a significant 

increase in diagnostic accuracy in clinical benchmark tests such as DxBench and NEJMQA [13]. 

Secondly, large language models lack the capacity for ethical judgment and emotional understanding. Medical decision-making 

encompasses not only clinical knowledge but also ethical considerations and emotional sensitivity. In interactions with patients 

and in the formulation of treatment plans, physicians must respect patient autonomy, honor their preferences, and address their 

emotional needs by providing compassionate, humanistic care. While large language models may demonstrate some sensitivity to 

ethical issues, they are currently unable to navigate the complex emotions and nuanced circumstances that arise in real-world 

medical practice. Particularly in situations such as end-of-life care, the communication and decision-making processes between 

physicians, patients, and their families involve profound emotional exchange and empathy—elements that cannot presently be 

replicated by artificial intelligence. 

Large language models can function effectively as assistive tools to enhance physicians’ work efficiency. In the future, the 

optimal application of large language models lies in their collaboration with doctors, capitalizing on the complementary strengths 

of both. Physicians can leverage the rapid data-processing capabilities and extensive knowledge base of large language models to 

generate more diverse diagnostic hypotheses and treatment options, thereby enriching clinical decision-making. 

3.2. Risk of professional competence degradation of doctors 

Large language models have certain limitations in medical applications. Research has found that large language models perform 

inconsistently when faced with semantically varied questions, have difficulty identifying false presuppositions, and exhibit 

limitations in their medical assessment capabilities, with their answers potentially being incorrect [14]. Large language models 

also face challenges such as fairness, privacy protection, and reliability. They may produce biases, leak privacy, and perform 

poorly in complex situations. Moreover, large language models lack clinical experience and the ability to directly observe patients, 
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and thus cannot conduct comprehensive diagnosis and treatment in the same way as doctors [15]. When using large language 

models, doctors can leverage the reference information they provide to further verify their own judgments, thereby improving 

diagnostic accuracy. At the same time, large language models can assist doctors in medical education and training, enhancing their 

professional knowledge and skills. However, if doctors rely too heavily on large language models, it may lead to a weakening of 

their clinical skills and critical thinking abilities. Over-reliance on ChatGPT, for example, may affect the development of clinical 

reasoning skills and contextual understanding. Nonetheless, as long as doctors correctly view large language models and use them 

as auxiliary tools rather than replacements for their own professional judgment, these problems can be avoided [16]. 

3.3. Issue of liability attribution 

Big data comes from a wide range of sources, has a complex structure, and its quality varies greatly. Biases in training data can 

cause large language models to produce biased output results [17]. In the field of traditional Chinese medicine, if the data used for 

training contains incorrect information or sample biases, it may lead to errors in diagnoses and treatment recommendations. 

A more specific example is the “model hallucination phenomenon” [18]. During the process of assisting in traditional Chinese 

medicine diagnosis, if the model provides incorrect diagnostic advice or treatment plans, it is difficult to determine where the 

responsibility lies. Model developers may attribute the error to data issues, while data providers may shift the blame to the model 

algorithm. From the user's perspective, if traditional Chinese medicine doctors rely too heavily on model recommendations and 

implement treatments without careful judgment, they also bear certain responsibilities. In actual medical disputes, all parties often 

shift blame onto each other, making the determination of responsibility extremely complex. 

4. Conclusion 

This study addresses the longstanding challenge in Traditional Chinese medicine (TCM) wherein the “Four Diagnostic Methods” 

heavily rely on physicians’ professional expertise, resulting in prolonged training periods and limited human resources. To mitigate 

this issue, we propose a Large Language Model (LLM)-based framework aimed at enhancing diagnostic prediction capabilities. 

The framework is theoretically grounded in mathematically defined loss functions for both the pre-training and supervised fine-

tuning stages. A preliminary predictive model was constructed and implemented using Python, incorporating auxiliary techniques 

such as cluster analysis, principal component analysis, and factor analysis to support model performance. Finally, we discuss the 

ethical considerations associated with the deployment of such models, including the potential for replacing human doctors, the 

risk of professional competence degradation, and the complex issue of liability attribution. 
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