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Abstract. Aiming at the problems of traditional path planning algorithms, such as high computational complexity, low search 

efficiency, and poor smoothness of planned paths due to non-compliance with kinematic constraints, this paper proposes a path 

planning method for plant protection Unmanned Aerial Vehicles (UAVs) based on the fusion of dynamic weight functions and 

Bézier curves. Firstly, the overall framework of the path planning algorithm is constructed based on the A* algorithm, and a weight 

function dynamically adjusted with the path is introduced to improve the heuristic function of the A* algorithm, which effectively 

reduces the number of search nodes and improves the overall search efficiency. Subsequently, the second-order Bézier curve is 

fused with the improved A* algorithm to reduce the number of turning points in the path planning process of the A* algorithm 

and improve the smoothness of the path. Finally, the effectiveness of the algorithm is verified based on Python and MATLAB 

platforms. The research results show that compared with the traditional A* algorithm, the improved A* algorithm fused with the 

dynamic weight function and Bézier curve can significantly improve the search efficiency and path smoothness; moreover, 

although the search efficiency of the search algorithm using dynamic weight coefficients is similar to that of the traditional 

algorithm, its path planning quality is significantly improved. 
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1. Introduction 

The infestation of pests such as fruit borers severely affects the growth of Rosa roxburghii, leading to a significant decline in its 

yield [1]. Traditional pest control methods that rely on manual spraying or mechanical equipment are not only labor-intensive and 

inefficient, but also result in substantial pesticide waste. Moreover, these approaches expose operators to the risk of pesticide 

poisoning, making them inadequate for large-scale cultivation [2]. Plant protection Unmanned Aerial Vehicles (UAVs) [3], with 

their advantages in agility, intelligence, and low carbon emissions, overcome the limitations of terrain and manual labor. They 

enable fast and precise operations, thereby greatly enhancing the efficiency and safety of agricultural pest control. 

In the practical application of plant protection UAVs, determining an efficient and rapid path planning method is crucial to 

ensuring high-performance operation. Currently, mainstream path planning algorithms can be categorized into global path planning 

and local path planning. Local path planning refers to methods that utilize onboard sensors to detect environmental information in 

real time and generate a feasible path when only partial information about obstacles is available. Liu et al. [4] proposed a UAV 

Dynamic Path Planning Algorithm (UAV-DPPA-DWA) based on the integration of the dynamic window approach. By improving 

the elliptical tangent graph algorithm and adopting an adaptive obstacle avoidance strategy, their method significantly enhanced 

the UAV’s obstacle avoidance capability and task efficiency in complex dynamic environments. Zhang et al. [5] combined a 

Genetic Algorithm (GA) with an improved Rapidly-Exploring Random Tree (RRT) algorithm to successfully generate high-quality, 

collision-free paths for multi-objective planning in complex man-made forest areas. Yang et al. [6] integrated the multi-objective 

path planning algorithm MI-RRT* with an enhanced dynamic window approach, substantially improving robotic inspection 

efficiency in intelligent workshop environments, while also reducing operation time and path length. However, local path planning 

algorithms are highly dependent on real-time sensory data, making them prone to falling into local optima. Moreover, due to the 

lack of a holistic understanding of the global environment, they often fail to achieve globally optimal path planning. 

Compared with local path planning algorithms, global path planning algorithms generate globally optimal paths based on 

comprehensive global map information. This approach avoids detours or redundancies caused by incomplete local information 

and effectively improves the accuracy and efficiency of path planning. Wang et al. [7] significantly reduced path search time and 
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computational resource consumption in complex environments by combining Delaunay triangulation with the A* algorithm. Lu 

et al. [8] enhanced the performance of UAV three-dimensional path planning by improving the pheromone update rule in the ant 

colony algorithm and introducing a directional factor. Cao et al. [9] proposed a hierarchical multi-granularity three-dimensional 

UAV path planning method based on the A* algorithm, which improved search efficiency by optimizing the obstacle matrix and 

the open list of adjacent nodes. Allus et al. [10] developed an innovative multi-objective path planning sequencing algorithm that 

employs a “one distance-two angles” paradigm to optimize the visiting sequence of targets, thereby reducing computational 

complexity. Despite the significant advances in global path planning algorithms for path optimization, two core challenges remain. 

First, these algorithms are computationally intensive; when dealing with large-scale maps, the need to traverse a vast number of 

search points causes a surge in computation, greatly increasing planning time. Second, the smoothness of the planned paths is 

often inadequate. Current approaches typically generate paths by connecting discrete waypoints, neglecting the kinematic 

constraints of UAVs. This results in sharp-angle turns that fail to meet the smooth trajectory requirements of actual UAV operations 

in plant protection, thereby severely limiting the efficient control and maneuverability of such UAVs. 

To address the problems of traditional path planning algorithms—namely high computational complexity, low search 

efficiency, and poor path smoothness due to non-compliance with kinematic constraints—this paper proposes a path planning 

method for plant protection UAVs based on the integration of dynamic weight functions and Bézier curves. First, an overall 

framework for the path planning algorithm is constructed based on the A* algorithm, and a weight function that dynamically 

adjusts along the path is introduced to improve the heuristic function of the A* algorithm, effectively reducing the number of 

search nodes and enhancing overall search efficiency. Then, second-order Bézier curves are integrated into the improved A* 

algorithm to reduce the number of turning points in the planning process and improve path smoothness. Finally, the effectiveness 

of the proposed algorithm is validated on Python and MATLAB platforms. 

2. Algorithmic mechanism 

2.1. Overall technical framework 

This paper proposes a path planning method for plant protection UAVs based on the fusion of dynamic weight functions and 

Bézier curves. The overall technical framework is illustrated in Figure 1. First, parameter initialization is performed, including the 

start point, end point, as well as the open list and close list. Next, a dynamic weight coefficient 𝑤(𝑛) is introduced to adjust the 

ratio between the actual cost and the estimated cost, thereby balancing the trade-off between search speed and path quality. The 

estimated cost ℎ(𝑛) is calculated to determine the corresponding value of the dynamic weight coefficient 𝑤(𝑛), which is then 

used to modify the traditional A* algorithm. Finally, second-order Bézier curves are applied to smooth the turning points of the 

path generated by the improved A* algorithm, effectively enhancing the smoothness of the planned path. 

 

Figure 1. Overall technical framework 
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2.2. Principle of the A* algorithm 

The A* algorithm is a heuristic search algorithm that improves search efficiency by introducing a heuristic function based on 

Dijkstra’s algorithm. First, the search area is divided into square grids, with the center of each grid cell defined as a node. Once a 

path is found, the agent moves from the center of one grid cell to the center of the next until reaching the destination. Next, two 

lists must be defined: an open list and a close list. The open list is used to store grid cells that are to be examined—these are 

potential candidates for the path, though not all of them will be included in the final path. Initially, the open list contains only one 

element, the starting point A. The close list stores grid cells that no longer need to be considered—these are cells that have been 

confirmed as part of the path. Then, a cost function needs to be defined. 

𝐹(𝑁) = 𝐺(𝑁) + 𝐻(𝑁) (1) 

Where 𝐹(𝑁) is the cost function of node 𝑁, 𝐺(𝑁) is the movement cost from the start point to node 𝑁, accumulated along 

the generated path to that grid, and 𝐻(𝑁) is the estimated cost from node 𝑁 to the designated target point, i.e., the endpoint. 

𝐺(𝑁) = ∑ 𝐶(𝑢𝑖−1, 𝑢𝑖)

𝑛

𝑖=1
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In the above formula, 𝐹(𝑁) is the cost function of node 𝑁, 𝐺(𝑁) is the movement cost from the starting point to node 𝑁 

along the generated path to that grid cell, and 𝐻(𝑁) is the estimated cost from node 𝑁 to the specified target point, i.e., the 

endpoint; 𝐶 is the actual cost from the (𝑖 − 1)𝑡ℎ  node to the 𝑖𝑡ℎ  node. The heuristic function 𝐻(𝑁) generally refers to a 

distance metric, which can be either the Euclidean distance or the Manhattan distance. These two distance calculation methods 

correspond to the straight-line distance between two points and the sum of the horizontal and vertical distances, respectively. In 

this experiment, the Euclidean distance method is adopted to calculate the heuristic function, namely H(N)=√(xg-xn)
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where (𝑥𝑛, 𝑦𝑛,) are the coordinates of node 𝑁, and (𝑥𝑔, 𝑦𝑔) are the coordinates of the target point. The path generated by the A* 

algorithm output consists of multiple discrete points stored in the close list. Let the starting point be 𝑃0 and the target point be 𝑃𝑛; 

then the generated path can be represented as 

𝑟𝑜𝑢𝑡𝑒 = (𝑃0, 𝑃1, 𝑃2, … , 𝑃𝑛) (4) 

The total cost of the path is 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = ∑ 𝑑(𝑃𝑖−1, 𝑃𝑖)

𝑛

𝑖=1

(5) 

Where 𝑑(𝑃𝑖−1,𝑃𝑖) is the distance between the previous node and the current node. 

2.3. Improvement of the heuristic function 

In path planning algorithms, the A* algorithm is widely used because it balances the actual path cost and the heuristic estimate. 

However, in the traditional A* algorithm, the cost function 𝐹(𝑁) = 𝐺(𝑁) + 𝐻(𝑁) assigns equal weight to the actual cost 𝐺(𝑁) 

and the estimated cost 𝐻(𝑁), with a fixed ratio of 1:1. This often leads to low search efficiency. To address this, this paper 

proposes an improved method based on the dynamic adjustment of the weight coefficient. By introducing a dynamic weight 

coefficient 𝑤(𝑛) to regulate the ratio between the actual cost and the estimated cost, the performance of the A* algorithm is 

optimized [11]. The cost function is modified as follows 

𝐹(𝑁) = 𝐺(𝑁) + 𝑤(𝑛) ∗ 𝐻(𝑁) (6) 

The value of the weight coefficient 𝑤(𝑛) is adjusted based on the estimated cost H(N) of the current node. The dynamic 

weighting strategy proposed in this paper essentially balances the trade-off between search speed and path quality during the 

pathfinding process. When the weight coefficient 𝑤(𝑛) is relatively large, the algorithm behaves more aggressively, quickly 

covering a larger search space, which is suitable for the early stages of the search. Conversely, as the algorithm approaches the 

target, reducing 𝑤(𝑛) makes the search more cautious, prioritizing paths with lower costs. This flexible weight adjustment 

mechanism effectively reduces the number of search nodes and improves overall search efficiency. The specific adjustment 

strategy is as follows 
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(1) Rapid Search Phase: When 𝐻(𝑁) > 18, set 𝑤(𝑛) = 3. At this stage, the A* algorithm is in the initial phase of the search 

and far from the target point. By increasing the weight of the estimated cost, the algorithm tends to expand quickly toward the 

target area, thereby improving search speed. 

(2) Fine Search Phase: When 𝐻(𝑁) < 18, adjust the weight coefficient to 𝑤(𝑛) = 0.8. At this point, the algorithm is close 

to the target area and begins to emphasize path optimality. Reducing the weight of the estimated cost causes the algorithm to 

consider the actual path cost more, thus optimizing the search results. 

2.4. Bézier curve smoothing 

Bézier curves, developed from Bernstein polynomials, feature a simple control structure that allows for smooth processing of 

curves according to corresponding strategies. Therefore, this paper employs second-order Bézier curves to smooth the turning 

points of the path generated by the improved A* algorithm, effectively enhancing the smoothness of the flight trajectory. The 

parametric equation for a point on a Bézier curve [12] is: 

𝑃(𝑡) = ∑ 𝑃𝑖𝐵𝑖,𝑛(𝑡)    

𝑛

𝑖=1

(7) 

Where P(t) is the motion control point on the Bézier curve; 𝑃𝑖 is the position of the 𝑖𝑡ℎ point; 𝐵𝑖 is the 𝑛𝑡ℎ-order Bernstein 

polynomial; and 𝑛 is the internal control parameter of the curve. The Bernstein polynomial 𝐵𝑖,𝑛(𝑡) satisfies: 

𝐵𝑖,𝑛(𝑡) = 𝑐𝑛
𝑖 𝑡𝑖(1 − 𝑡)𝑛−1 =

𝑛!

(𝑛 − 𝑖)! 𝑖!
𝑡𝑖(1 − 𝑡)𝑛−𝑖 (8) 

𝑖 = 0,1, ⋯ , 𝑛 (9) 

Where 𝑐𝑚
𝑖  is the binomial coefficient for the quadratic term, and 𝑚 is the order of the Bézier curve. Traditional path planning 

methods connect given control points sequentially to form a polygon, whereas the Bézier curve algorithm infinitely and smoothly 

approximates this polygon. The schematic illustration of this principle is shown in Figure 2. 

 

Figure 2. Schematic diagram of the principle of quadratic Bézier curve 

Define 𝑃0, 𝑃1 and 𝑃2 as three control points, where the parameter 𝑡 takes values in the range [0,1], that is: 

𝑃1,0(𝑡) = (1 − 𝑡)𝑃0 + 𝑡𝑃1 (10) 

𝑃1,2(𝑡) = (1 − 𝑡)𝑃1 + 𝑡𝑃2 (11) 

𝑃1,0(𝑡) and 𝑃1,2(𝑡) are the first-order Bézier points on the line segments 𝑃1𝑃0 and 𝑃1𝑃2, respectively. The expression for 

the second-order Bézier curve is: 

𝑃(𝑡) = (1 − 𝑡)2𝑃0 + 2𝑡(𝑡 − 1)𝑃1 + 𝑡2𝑃2 (12) 

In the formula, 𝑃0 is the starting point of the second-order Bézier curve, 𝑃1 is the control point, and 𝑃2 is the endpoint of the 

second-order Bézier curve. 
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3. Experimental validation 

3.1. Algorithm performance comparison experiment 

The experiments were conducted in the Python 3.13 environment. The initial map was set to 70 × 70 units, with a grid size of 2.0 

units. To account for the UAV’s size, the robot radius was set to 1.0. The traditional A* algorithm, the A* algorithm integrated 

only with the dynamic weight function, the A* algorithm integrated only with the Bézier curve method, and the A* algorithm 

integrating both the Bézier curve method and dynamic weight function were run on the map. The same start and end points were 

used under identical map sizes and obstacle sparsity to observe the effects of different algorithm improvements on path planning. 

The start point was set at (−5, −5) and the end point at (55, 55). The simulation results are shown in Figure 3, and the performance 

comparison is presented in Table 1: 

 

Figure 3. Comparison of the effects of four different path planning algorithms 

Where (a) represents the path generated by the traditional A* algorithm, (b) the path generated by the A* algorithm integrated 

only with the dynamic weight function, (c) the path generated by the A* algorithm integrated only with the Bézier curve method, 

and (d) the path generated by the A* algorithm integrating both the dynamic weight function and Bézier curve. By statistically 

analyzing the data from the experimental paths. 

Table 1. Comparison of the Performance of Different Algorithms 

algorithm search time (s) path length (m) number of search nodes number of turns 

A* algorithm 0.85 125.6 482 18 

A* algorithm incorporating dynamic 

weights 
0.42 132.3 295 22 

A algorithm integrated with Bézier 

curves* 
0.79 118.9 482 5 

A algorithm integrating dynamic 

weight functions and Bézier curves* 
0.40 125.1 295 8 

 

As shown in Figure 3 and Table 1, the traditional A* algorithm traverses the greatest number of search nodes (represented by 

blue crosses in the figure), totaling 482 nodes, and has the longest search time at 0.85 seconds. In contrast, the A* algorithm 

integrated with the dynamic weight function reduces the number of search nodes by 38.8% compared to the traditional A* 
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algorithm, significantly improving search efficiency. The path planned by the traditional A* algorithm contains 18 turns, whereas 

after integrating the Bézier curve method, the number of turns decreases to 5, a reduction of 72.2%, markedly enhancing path 

smoothness. The proposed method, which fuses both the dynamic weight function and Bézier curve with the A* algorithm, reduces 

the number of search nodes from 482 to 295—a 38.8% decrease—and decreases the number of turns from 18 to 8, a 55.6% 

reduction, compared to the traditional A* algorithm. These results demonstrate that the improved path planning algorithm proposed 

in this paper significantly enhances both search efficiency and path smoothness. 

3.2. Analysis of the impact of dynamic weight 

To analyze the effect of different values of the dynamic weight function on path planning performance, the heuristic function’s 

weight coefficient was set to 0.2, 0.5, 1.0, 3.0, and dynamically adjusted weight, respectively. The map size and the start and end 

points were kept the same as in the previous experiment. The comparative results are shown in Figure 4, and the performance 

comparison of different weighting schemes is presented in Table 2. 

 

Figure 4. Paths planned with different weight schemes 
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Path quality was evaluated using a comprehensive 10-point scoring system encompassing four core dimensions: Basic 

Efficiency (3 points): Focuses on path directness, measured by the deviation of the path length from the theoretical shortest path 

and the redundancy ratio between the total path length and the straight-line distance from start to end. Smoothness (2.5 points): 

Emphasizes motion stability, assessed based on whether the path’s maximum curvature complies with the robot’s tolerance and 

the frequency of turns (direction changes ≥ 15°). Safety (3 points): Centers on collision avoidance, primarily examining the 

minimum safe distance between the path and obstacles relative to the robot’s radius; in dynamic environments, additional 

evaluation considers the spatiotemporal overlap with moving obstacle trajectories. Feasibility (1 point): Verifies whether the path 

aligns with the robot’s motion capabilities, including whether the distances between adjacent points and turning angles fall within 

mechanical constraints. The total score is the sum of the four dimensions, with a maximum of 10 points. Scores between 9 and 10 

are rated excellent, 7 to 8 good, 5 to 6 acceptable, and below 5 unacceptable. This system comprehensively reflects the overall 

performance of the path in terms of efficiency, smoothness, safety, and executability. 

Table 2. Comparative Analysis of Performance Across Different Weight Schemes 

Weight scheme path length(m) search time (s) number of search nodes Path quality score 

w=0.2 158.6 2.85 820 8.5 

w=0.5 142.3 1.92 590 9.0 

W=1.0 135.7 1.28 450 9.2 

W=3.0 128.4 0.65 280 7.5 

Dynamic weight 132.5 0.78 320 9.1 

 

Analysis of Figure 4 and Table 3 shows that the path length, search time, and number of search nodes in path planning all 

exhibit a negative correlation with the weight coefficient. Specifically, as the weight coefficient increases, the path length gradually 

decreases, search time shortens, and the number of search nodes reduces. For example, when the weight coefficient 𝑤 = 3.0, the 

path length is minimized (128.4 m), the search time is the shortest (0.65 s), and the number of search nodes is the lowest (280). 

Compared to the traditional A* algorithm with 𝑤 = 1.0, this represents a 5.4% reduction in path length, a 49.2% decrease in 

search time, and a 65.9% reduction in search nodes. Unfortunately, as the weight coefficient increases, the overall path quality 

score declines from 8.5 to 7.5, indicating a significant drop in quality. 

For the dynamic weight coefficient, the searched path length is 132.5 m, the search time is 0.78 s, and the number of search 

nodes is 320. Compared to the traditional A* algorithm with 𝑤 = 1.0, this represents a 2.3% reduction in path length, a 39.1% 

decrease in search time, and a 28.9% decrease in search nodes. Although the dynamic weight coefficient results in slightly higher 

values in path length, search time, and number of search nodes compared to the case with 𝑤 = 3.0, the path quality score achieved 

is 9.1—significantly higher than the 7.5 score at 𝑤 = 3.0 and only 0.1 lower than that at 𝑤 = 1.0. This demonstrates that the 

dynamic weight coefficient substantially improves the quality of path planning. 

3.3. Analysis of Bézier curve smoothing effect 

To analyze the improvement in path smoothness achieved by the Bézier curve algorithm, this paper constructs a three-dimensional 

spatial environment featuring undulating terrain that better reflects the topographical changes encountered during UAV flight. The 

start point is set at (11, 11, 1.5), and the end point at (1, 1, 0.6). As shown in Figure 5, the blue path represents the route planned 

by the traditional A* algorithm, while the red path corresponds to the path planned by the A* algorithm integrated with the Bézier 

curve method. Using path length, number of path nodes, and number of turning points as evaluation metrics, the performance 

comparison results are presented in Table 3. 
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(a) (b) 

Figure 5. The improvement effect of the Bézier curve algorithm on the smoothness of planned paths 

Table 3. Performance comparison before and after smoothing processing in 3D environments 

algorithm path length(m) number of search nodes number of turns 

A* algorithm 152.34 28 12 

A algorithm integrated with Bézier curves* 148.56 25 5 

 

As shown in Figure 5 and Table 3, the proposed A* optimization algorithm incorporating Bézier curve smoothing can be 

effectively implemented in a three-dimensional environment. Additionally, for the same start and end points, the path length 

planned by the A* algorithm with Bézier curve integration decreased from 152.34 m to 148.56 m, a reduction of 10.7%. The 

number of nodes decreased from 28 to 25. Most notably, the number of turning points was reduced from 12 to 5, a 58.3% decrease, 

indicating a significant improvement in trajectory smoothness. 

4. Conclusion 

This paper addresses the issues of high computational complexity, low search efficiency, and poor path smoothness caused by 

traditional path planning algorithms that do not comply with kinematic constraints. A path planning method for plant protection 

UAVs based on the fusion of dynamic weight functions and Bézier curves is proposed, and the effectiveness of the algorithm is 

verified on Python and MATLAB platforms. The main conclusions are as follows: 

1) By introducing a dynamically adjusted weight function into the heuristic function of the A* algorithm, the number of search 

nodes can be effectively reduced, thereby improving overall search efficiency. Integrating the second-order Bézier curve with the 

improved A* algorithm reduces the number of turning points during path planning, significantly enhancing path smoothness. 

2) After fusing the dynamic weight function and Bézier curve algorithms with the A* algorithm, compared to the traditional 

A* algorithm, the number of search nodes decreased from 482 to 295, a reduction of 38.8%; the number of path turns reduced 

from 18 to 8, a decrease of 55.6%. 

3) Compared with the search performance at a weight coefficient of 𝑤 = 3.0, although the dynamic weight coefficient results 

in slight increases in path length, search time, and number of search nodes, the path quality score achieved using the dynamic 

weight coefficient is 9.1—significantly higher than the 7.5 score at 𝑤 = 3.0 and only 0.1 lower than that at 𝑤 = 1.0. Thus, the path 

planning quality is significantly improved by adopting the dynamic weight coefficient. 
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