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Abstract. In order to address the issues of predefined adjacency matrices inadequately representing information in road networks, 

insufficiently capturing spatial dependencies of traffic networks, and the potential problem of excessive smoothing or neglecting 

initial node information as the layers of graph convolutional neural networks increase, thus affecting traffic prediction performance, 

this paper proposes a prediction model based on Adaptive Multi-channel Graph Convolutional Neural Networks (AMGCN). The 

model utilizes an adaptive adjacency matrix to automatically learn implicit graph structures from data, introduces a mixed skip 

propagation graph convolutional neural network model, which retains the original node states and selectively acquires outputs of 

convolutional layers, thus avoiding the loss of node initial states and comprehensively capturing spatial correlations of traffic flow. 

Finally, the output is fed into Long Short-Term Memory networks to capture temporal correlations. Comparative experiments on 

two real datasets validate the effectiveness of the proposed model. 
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1. Introduction 

China is currently in a phase of high-quality economic development, with a rapid increase in the number of private cars. While a 

large number of private cars provide convenience for daily travel, they also bring enormous pressure to the transportation system. 

The congestion problem on urban roads is becoming increasingly severe, hindering normal travel and affecting the operational 

efficiency of cities, which in turn restricts social and economic development. Traffic flow prediction is one of the important means 

to address traffic congestion. 

Traffic flow prediction can help people better plan travel routes and times, thereby saving time and economic costs. 

Transportation departments can understand the likelihood of congestion occurrence, quickly formulate optimal solutions, take 

timely measures such as adjusting traffic signal timing and dispatching traffic police for traffic guidance, thereby reducing the 

degree of road congestion and achieving more intelligent traffic management. Providing convenient and safe travel environment 

for citizens promotes the sustainable development of cities. 

Early studies focused on temporal prediction, where traditional machine learning algorithms such as K-nearest neighbors [1] 

and SVR algorithms were widely used in the field of traffic prediction [2]. They have simple structures, are easy to understand, 

and implement. However, traditional machine learning methods have poor adaptability and often fail to fully capture the complex 

relationships in the data. 

With the rapid development of artificial intelligence technology, more and more scholars are using deep learning methods [3-

4]. Due to its excellent memory capability, recurrent neural networks (RNNs) [5] can learn long and short-term dependencies 

between sequence segments. However, during the computation process, problems such as gradient vanishing and exploding often 

occur. Using Long Short-Term Memory networks (LSTM) [6] for traffic flow prediction can address the problem of gradient 

vanishing or exploding that RNNs encounter when simulating long-term dependencies. 

However, traffic flow in real life is influenced by both spatial and temporal factors. Spatial correlation is commonly present in 

traffic flow. Convolutional neural networks (CNNs) have shown significant effectiveness in dynamically extracting features from 

traffic data [7]. Since CNNs cannot effectively analyze non-Euclidean structured data and cannot efficiently explore the deep 

topological structures of graphs, introducing graph convolutional neural networks (GCNs) to handle graph-structured data in traffic 

prediction [8] can more accurately capture spatial dependencies in traffic data. The T-GCN [9] model utilizes GCN to capture 

spatial dependencies and GRU to capture temporal dependencies, modeling the spatiotemporal dependencies of traffic data. In 
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fact, observations made at adjacent locations and times are not independent but dynamically correlated with each other. STGCN 

[10] adopts graph convolution to model spatial relationships in data and uses causal convolution to model temporal relationships. 

AGCRN [11] utilizes a node adaptive parameter learning module and a data adaptive graph generation module, combined with 

GRU networks, to achieve information transmission and updating. ASTGCN [12] proposes a novel spatiotemporal attention 

mechanism to capture spatiotemporal correlations, composed of spatial attention mechanism and temporal attention mechanism. 

A one-dimensional convolution is adopted at the temporal level, while GCN is adopted at the spatial level. 

However, the above methods also have some issues. In representing the topological structure of traffic networks, fixed 

adjacency matrices are typically used, ignoring the spatial dynamic characteristics of traffic flow. Traditional graph convolutional 

neural networks tend to overly smooth during the convolution operation with increasing convolution layer depth. At this point, the 

aggregation radius of each node will reach a given threshold, and GCN may ignore the initial state of certain nodes. Traditional 

GCNs take the result of the last convolutional layer as output, and aggregating information from neighboring nodes only adds 

irrelevant information to each node, failing to effectively capture spatial correlations in traffic flow data. 

Therefore, this paper proposes a model framework based on Adaptive Multi-channel Graph Convolutional Neural Networks 

for traffic flow prediction, which fully captures the spatiotemporal correlations in traffic flow data. By utilizing the method of 

adaptively learning adjacency matrices, embedding representations of nodes, and combining traffic flow data, the model adaptively 

learns adjacency matrices to capture dynamic relationships between nodes in complex traffic network structures. In the spatial 

dimension, a mixed skip propagation graph convolutional network model is employed, allowing it to retain the original node states 

and selectively obtain outputs of convolutional layers, thus avoiding the loss of node initial states and comprehensively capturing 

the spatial correlations of traffic flow. 

2. Problem definition 

Roads are abstracted as nodes, and the connection relationships between roads are abstracted as directed edges, forming a “node-

edge” graph. The traffic road network is defined as a directed graph: 

 𝐺 = (𝑉, 𝐸)   (1) 

Where, G represents the directed graph of the traffic road network; V is the set of road nodes; E is the set of directed edges. 

The task of traffic flow prediction is to use historical traffic flow time data to predict future traffic flow data, which can be 

represented as: 

 [𝑋𝑡+1, . . . , 𝑋𝑡+𝑇] = 𝑓(𝐺; (𝑋𝑡−𝑛, . . . , 𝑋𝑡−1, 𝑋𝑡)) = (𝑉, 𝐸)  (2) 

3. AMGCN model 

In order to comprehensively explore and fully utilize the various spatiotemporal dependencies existing in the traffic network, this 

paper proposes a traffic flow prediction method based on Adaptive Multi-channel Graph Convolutional Neural Networks 

(AMGCN), integrating various attributes of traffic flow data for traffic flow prediction. The model utilizes an adaptive graph 

structure learning module to obtain graph structure information, which is then input into the graph convolution module to capture 

spatial dependencies. The temporal correlations of traffic flow data are captured through Long Short-Term Memory (LSTM) neural 

networks, resulting in the final output of the model. The structure of the model is illustrated in Figure 1. 

 

Figure 1. Structure of the AMGCN model 

3.1. Adaptive graph learning module 

The Adaptive Graph Learning Module dynamically learns graph structure information, enabling the model to adapt to the dynamic 

changes in traffic flow data and represent the directed relationships between nodes. Adaptive matrices are constructed through 
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node embedding, where E1ϵRN×d represents the original node embedding, E2ϵRN×d represents the target node embedding, and 

the dimension of each node embedding is d. Then, similar to defining the graph through node similarity, the spatial dependency 

between each pair of nodes can be obtained by the inner product of embedding vectors E1 and E2
T: 

 �̂� = 𝐼𝑁 + 𝐷
−
1

2𝐴𝐷−
1

2 = 𝐼𝑁 + 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑅𝐸𝐿𝑈(𝐸1 ∙ 𝐸2
𝑇))  (3) 

Directly generating D−
1

2AD−
1

2 instead of generating the adjacency matrix and calculating the Laplacian matrix helps avoid 

unnecessary resource wastage. 

3.2. Spatial dimension graph convolution module 

Traffic flow data exhibits complex spatial correlations. In order to analyze and extract the dynamic spatial characteristics of traffic 

flow, this paper proposes a Multi-Graph Convolutional Neural Network (MGCN) composed of mixed skip propagation layers. 

The purpose of the multi-graph module is to capture spatial dependencies in the traffic road network by integrating information 

from nodes and their neighboring nodes. The architecture of the mixed skip propagation layer is illustrated in Figure 2. 

 

Figure 2. Structure of the MGCN 

The MGCN mainly consists of two steps: information propagation and information selection. 

First is information propagation. During this process, the information of each layer of nodes is collected from their neighboring 

nodes. Nodes update their own information based on the collected information, while filtering out irrelevant information to retain 

effective features, thereby reducing model complexity and improving computational efficiency. The computation for the l-th 

convolutional layer is as follows: 

 𝐻(𝑙) = 𝜇𝐻(1) + (1 − 𝜇)�̂�𝐻(𝑙−1) (4) 

where 𝜇 is a hyperparameter controlling the proportion of original node states, 𝐻(𝑙−1) represents the output of the 𝑙 − 1-th 

layer, 𝐻(𝑙) represents the output of the 𝑙-th layer, and �̂� is the adaptive adjacency matrix. 

After obtaining the outputs of all l convolutional layers, information aggregation is performed to retain the effective information 

generated at each skip. The definition of the information selection step is as follows: 

 𝐻𝑜𝑢𝑡 = ∑ 𝐻(𝑙)𝑊(𝑙)𝐿
𝑙=0  (5) 

Where 𝑙 is the number of layers of graph convolution, 𝑊 represents the learnable parameter matrix, which serves as the 

feature selector. 

3.3. LSTM module on the temporal dimension 

Traffic flow exhibits temporal correlations, showing dynamic characteristics. Long Short-Term Memory (LSTM) neural networks 

avoid the problem of gradient explosion in recurrent neural networks and capture time dependencies by inputting traffic flow data 

with spatial features obtained from the graph convolution module into LSTM. The LSTM structure used in this paper is shown in 

Figure 3. 
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Figure 3. LSTM structure 

The computation is as follows: 

 

{
 
 
 
 

 
 
 
 𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, ℎ𝑡

(𝑙+1)
] + 𝑏𝑓)

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, ℎ𝑡
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(𝑙+1)
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𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶�̃�

𝑜𝑡 = 𝜎(𝑊0 ∙ [ℎ𝑡−1, ℎ𝑡
(𝑙+1)

] + 𝑏0

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡)

 (6) 

Where: 𝑖𝑡  represents the input gate, 𝑓𝑡  represents the forget gate, 𝑜𝑡  represents the output gate. ℎ𝑡
(𝑙+1)

 is the input at the 

current time, ℎ𝑡−1 is the state at the previous time step. The Sigmoid activation function is used to control the flow of information, 

selectively passing information. Its calculation results in a number between 0 and 1, achieving the selection and transmission of 

information in LSTM. The Sigmoid function is computed as follows: 

 𝜎(𝑥) =
1

1+𝑒−𝑥
 (7) 

3.4. Experimental setup and result analysis 

3.4.1. Dataset introduction and data preprocessing 

The dataset used in this section is collected by the Caltrans Performance Measurement System of the California Interstate Highway 

Network. This chapter predicts traffic flow data for the next hour using data from the past hour, where 12 data points constitute 

one time step. The dataset is split into training, validation, and testing sets in a ratio of 6:2:2, with the training set accounting for 

60%, the validation set for 20%, and the testing set for 20%. 

The detailed information of the dataset is shown in Table 1. 

Table 1. Dataset Information 

Dataset PeMS04 PeMS08 

Detector Quantity 307 107 

Time Range 2018/01/01-2018/02/28 2016/07/01-2016/08/31 

Training Set 
Proportion 60% 60% 

Quantity 9,878 9,497 

Validation Set 
Proportion 20% 20% 

Quantity 29,933 3,166 

Testing Set 
Proportion 20% 20% 

Quantity 2,993 3,166 
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Perform z-score operation to normalize the data, aiming to enhance the convergence speed of the model: 

 𝑋 ’ =
𝑋−𝜇

𝜎
 (8) 

Where X is the input data, μ is the mean of the data, and σ is the standard deviation. 

To measure and evaluate the performance of different methods, three metrics are adopted: Mean Absolute Error (MAE), Mean 

Absolute Percentage Error (MAPE), and Root Mean Square Error (RMSE). Smaller values of these metrics indicate closer 

proximity between predicted and actual values, reflecting better predictive performance of the model. Conversely, larger values 

indicate poorer performance and greater deviation from the true samples. 

(1) Mean Absolute Error (MAE): 

 𝑀𝐴𝐸 =
1

𝑛
∑ |𝑌𝑖 − 𝑌𝑖|
𝑛
𝑖=1  (9) 

(2) Root Mean Square Error (RMSE): 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑌𝑖 − �̂�𝑖)

2𝑛
𝑖=1  (10) 

(3) Mean Absolute Percentage Error (MAPE): 

 𝑀𝐴𝑃𝐸 =
100%

𝑛
∑ |

𝑌𝑖−�̂�𝑖

𝑌𝑖
|𝑛

𝑖=1  (11) 

3.4.2. Benchmark models 

The benchmark models used in this study are as follows: 

VAR [13]: Vector Autoregressive model, which treats time series as a linear function to capture the time dependency of traffic 

flow data.  

SVR [15]: Support Vector Regression model, which uses different kernel functions for regression and is suitable for predicting 

nonlinear relationship data. 

LSTM [6]: Long Short-Term Memory network, consisting of three gates (forget gate, input gate, and output gate) used to 

capture time dependencies and widely applied in time series analysis. 

DCRNN [15]: Diffusion Convolutional Recurrent Neural Network, which uses diffusion graph convolution layers to express 

topology and capture spatial dependencies, and utilizes RNN to encode temporal information. 

STGCN [10]: Spatio-Temporal Graph Convolutional Networks, which uses spatial graph convolutional networks to capture 

spatial dependencies and one-dimensional convolution operation to extract temporal features. 

Graph WaveNet [16]: This model introduces adaptive graphs to capture hidden spatial dependencies and utilizes dilated 

convolutions to capture temporal dependencies. 

ASTGCN [12]: Spatial-Temporal Graph Convolutional Networks, which uses attention mechanisms to capture dynamic spatio-

temporal relationships, where spatio-temporal convolutions are used to capture spatial patterns and temporal features. 

AMGCN (ours): Adaptive Multi-channel Graph Convolutional Neural Networks model, which constructs the traffic network 

structure using adaptive adjacency matrices, captures spatial dependencies using MGCN, and captures temporal dependencies 

using LSTM. 

3.4.3. Comparative analysis 

Comparative analysis between the benchmark models and the proposed AMGCN model is conducted. The experimental results 

are shown in Table 2, indicating that the model proposed in this chapter performs well and outperforms the benchmark models on 

both datasets. 

Table 2. Experimental Results 

Dataset 
PeMS04 

MAE RMSE MAPE 

VAR 23.75 34.66 21.37 

SVM 28.71 42.57 22.42 

LSTM 24.93 38.32 21.05 

DCRNN 24.92 37.38 20.37 

STGCN 24.05 36.44 16.87 
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Table 2. Continued 

Dataset 
PeMS04 

MAE RMSE MAPE 

Graph WaveNet 25.45 37.70 20.19 

ASTGCN 20.14 32.76 15.1 

AMGCN 19.74 31.05 14.52 

VAR 21.16 33.68 15.42 

SVM 21.04 33.24 14.46 

LSTM 19.86 30.84 14.8 

DCRNN 17.86 27.83 11.45 

STGCN 18.92 28.61 13.11 

Graph WaveNet 19.83 30.12 13.25 

ASTGCN 16.83 25.47 12.54 

AMGCN 15.42 23.9 10.62 

VAR, SVM, and LSTM are models used for time series prediction. However, traffic flow is a typical spatio-temporal data, and 

using these three methods for prediction cannot capture the spatial correlations between node data, leading to inaccurate predictions 

and large errors. DCRNN, STGCN, ASTGCN, Graph WaveNet, and the proposed AMGCN model all incorporate the 

representation of graph structure information and extract spatial features, resulting in higher prediction accuracy. 

Comparative analysis reveals that the model proposed in this chapter outperforms other spatio-temporal models in terms of 

MAPE, MAE, and RMSE metrics. Traditional time series analysis methods exhibit large errors and low accuracy. The VAR model 

has the highest metrics, indicating low prediction accuracy. Based on linear assumptions, the VAR model’s simplistic structure 

cannot handle the non-linear relationships inherent in complex traffic flow data, making accurate modeling difficult. The LSTM 

model, based on deep learning methods, exhibits good performance in capturing long-term dependencies in time series. It 

effectively models complex data through its internal structure, relying on historical data for prediction and capturing time features. 

Therefore, its metrics are lower than VAR. However, both methods overlook the spatial correlations present in traffic flow data. 

ASTGCN incorporates an attention mechanism while capturing temporal features by computing the influence weights between 

nodes to construct a dynamic traffic road map, thereby enhancing the model's predictive performance while considering the spatial 

correlations of traffic flow data. However, in the traffic road structure, there exist dynamic and complex relationships between 

nodes, and ASTGCN's prediction method does not exploit potential graph structural information. On the other hand, AMGCN 

learns hidden information between nodes through an adaptive graph structure learning module, automatically updating via gradient 

descent to capture dynamic node relationships, resulting in improved prediction results. As the traffic road graph structure changes 

with traffic road structures and traffic environments, AMGCN not only considers ordinary spatial distance dependencies but also 

constructs a new graph structure to better capture the spatial correlations of traffic flow and achieve better prediction results 

through the processes of information propagation and filtering. 

4. Conclusion 

This paper explores the learning mechanism of spatio-temporal correlations in traffic flow and proposes a prediction model based 

on a hybrid graph convolutional neural network to capture the spatio-temporal correlations of traffic flow, which is applied to 

traffic flow prediction tasks, demonstrating good performance. The AMGCN model utilizes adaptive adjacency matrices to model 

spatial road structures, combines MGCN and LSTM models to capture spatio-temporal correlations, and effectively predicts traffic 

flow at different road sections and time intervals, capturing the dynamic characteristics of traffic flow changes. Through training 

on the PeMS04 and PeMS08 datasets and conducting comparative experiments, the results indicate that AMGCN fully integrates 

the advantages of its components, effectively improving the accuracy of traffic flow prediction on road networks, demonstrating 

good predictive performance. In future work, collecting traffic flow data under different weather conditions, as well as data on 

accidents and traffic control sudden factors, to model the impact of external factors on traffic flow data, could lead to more accurate 

predictions. 
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