Advances in Engineering Innovation (2024) Volume 8 EWA Publishing
Published online: 28 June 2024 DOI: 10.54254/2977-3903/8/2024074

Creating a Parkour Game

Chen Yuanhao

Arizona State University, Tempe AZ85281, USA

1810310168@qg.com

Abstract. This article primarily discusses how to use PWM, interrupt signals, and timers to create a parkour game. We also need
two relatively independent PWMs to produce sounds: one for playing background music in a loop, and the other for playing
collision, level completion, and prompt sounds at the end of the game.

Keywords: PWM, parkour game, CONTROL _ISR, TopDesign

1. Prelab Work

In the preparation work, we need to connect the circuits according to the figure below and ensure they are correct.

The following are all the materials needed:

Materials Quantity
PSoC 5LP 1
LCD Screen 1
Resistor (10kQ+5%) 3
Capacitor (50V/100uF) 1
Transistor (2N2222A-D) 1
Transistor (2N3906) 1
Speaker (8Q-1W) 1
Bread Board 3

Wires Several

Button 2

Copyright: © 2024 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons
Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). https://aei.ewapublishing.org



20 | Advances in Engineering Innovation | Vol 8 | 28 June 2024

2. Game

Description: This section focuses on how to use PWM, interrupt signals, and timers to create a parkour game. By pressing the
button, the movement of the characters is controlled until they clear the level.

Requirement: Press the control button to move the character up and down, and then refresh the position when a new interrupt
signal is given. Set a map with some obstacles in the system. When a character touches an obstacle, they lose one of their lives.
When all three lives are lost, the game ends and the screen displays "Game Over". When the level is cleared successfully, the
screen displays "Level Up!” and the map speed increases. Background music needs to be played in a loop during the entire game,
and independent sounds are needed when crossing levels or hitting obstacles. The shapes of the character and obstacles should be
defined by us.

Procedure: First, we need to identify the parts required for this experiment. Two buttons are needed to control the movement
of the characters, so we need two "Input Pins". To keep the map moving to the left, we need a timer that runs throughout the game,
constantly receiving interrupt signals and refreshing the screen. We also need two relatively independent PWMs to produce sounds:
one for playing background music in a loop, and the other for playing collision, level completion, and prompt sounds at the end of
the game.

Refresh_Timer PWM1
Timer PWM
[+ capture el tcH1
interruptt—{=]REFRESH_ISR O }——kill pwmt——{s] PWM1_OUT
imer_clock [JUL—{> clock
TeE Jresel PWM1_CLK[JUL—>clock
II}I 16-bit (Fixed) "Wz reset interrupti£]
PWM 16-bit (Fixed)
BWM Control LCD

Pins Character LCD!

ter=l
CO}—kinl pwm|-—7] PWM_OUT

irg

PWM_CLK[Jl}—{>clock
Mz 3{reset interrupt|=
16-bit (Fixed)

[#7]CONTROL_ISR

Let's start with TopDesign. First, we design a refresh timer that runs throughout the game. To make the map move to the left
more slowly, we adjusted the clock pulse of the timer to a lower 1kHz. Connect a logic low level to the reset interface and an
interrupt signal named "REFRESH _ISR" to the interrupt interface. Then, right-click the configuration, change the resolution to
16-bit, change the implementation to a fixed function, and check "On TC" in Interrupts.

Configure 'Refresh_Timer' ? X

Name: |Refreshj'imer

- " Configure | Built-in 4 b
Resolution: (O 8-Bit @ 16-Bit 24-Bit 32-Bit
Implementation: (®) Fixed Function () unE
Feriod: 1000 ¥ Wax Period = 1s

Trigger Mode:  Hone

Riming)Edze v
Capture Mode:
Enable Mode: Software Only N
Run Mode: Continuous v
Interrupts On TC [[] 0n Capture
On FIFO Full

As shown above, we have already set the timer. The next step is to design two PWMs for playing music. These two PWMs
have the same parameters except for the names and the music they play. So, we create two PWMs, one called PWM, which is used
to play the prompt tone, and the other named PWM1, which is used to play the background music in a loop. We connect a logic 0
to both PWM kill ports and a "Digital Output Pin" to the interrupt port, which are renamed PWM_OUT and PWMI1_OUT. The
clock pulses of both are adjusted to 1MHz. In the configuration, change both configurations to: Fixed Function and 16-bit.



Advances in Engineering Innovation | Vol 8 | 28 June 2024 | 21

Configure PWM1" ? X

Hane: [P

_/ Configure | Advanced | Builtn | q4p
serod | 25 " "

Inplementation: (®) Fixed Function () UDB

Resolution: () 8-Bit ® 16-Bit
PUM Mode: One Output ~
Period: 255 2| Max  Peniod = 256us
O Value 1; 127 B
O Type 1: [Less |
Desd Band:  Disabled M :

Then, we add two buttons to control the movement of the characters. We add a "digital input pin" and change the number of
pins to 2 because we need one button to control upward movement and the other to control downward movement. Cancel the HW
connection and change the driving mode to "High Impedance". Rename the button to Control, add an interrupt to it, rename it to
CONTROL ISR, and connect it to the IRQ port. Finally, we added an LCD and designed several icons to represent people and
obstacles, completing all the previous designs.

Configure *Control' ? X

ontrol

ntro
Mapping | Reset | Builtin | 4p

/ Phs}
Numberofpins: 2 || % &1 + & | & &
[8llpins] General | Input | Outout |
R (Coneiel Type Drive mode Initial drive st
R e [ Analog [Mieh inpedance diev| [w @~
[ Digital input Min. supply veolt
[ connection
[ vigital output [ Hot swap
H¥ connection
Output enable e 8
[ Bidirectional
;] [ External terminal
Configure 'LCD'
Hame:
/" General | Buitin |
Parameters Custom Character Editor
LCD Custom Character Set
O None

O Vertical Bargraph
O Horizontal Bargraph
@® User Defined

(] (M) ] B
(=] (] (4] (o]

= Include ASCII to Number
Custom 0

Finally, we connect the control buttons to P3[5:4], the LCD to P2[6:0], PWMI1 for playing background music to P1[6], and
PWM for playing prompt tones to P1{7].

Name / Port Pin Lock




22 | Advances in Engineering Innovation | Vol 8 | 28 June 2024

Next is the most important part: organizing ideas and writing code. First, we believe that, except for the background music
which is played in a loop, everything else is controlled by the corresponding interrupt signal. Therefore, the code for playing
background music should be placed in the loop program of the main function. The main program only needs to turn on the LCD,
timer, refresh interrupt signal, and Control interrupt signal. In the main program, it is also necessary to define a variable flag that
can be recognized in any interrupt signal and initialize it to 0.

#include "project.h"
wvolatile int flag:

int main(void)
{
CyGlobalIntEnable; /* Enable global interrupts. */
Refresh Timer Start():
CONTRCL_ISR_Start():
REFRESH ISR Start():
LCD Start():

flag=0;

/* Place your initialization/startup code here (e.g. MyInst Startc()) */

For the background music played in a loop, we first activate PWM 1, and then write the frequency, compare, and duration of
the tones to be played in sequence. The music I used here is "Never Gonna Give You Up".

26 for(::)

27 {

28 //Loop play the background Music 53 CyDelay(250) ;

29 PWM1 Starc(): 54 PWM1 WritePeriod(1911):;
30 PWM1_WritePeriod(1911); S5 PRM1_WriteCompare (956)
31 PWM1_WriteCompare (956) ; 56 CyDelay(1000);

32 CyDelay(1000); 57 PWM1 WritePeriod(1703);
33 PWM1 WritePeriod(1703): 58 PWM1 WriteCompare (852);
34 PWM1 WriteCompare (852); 59 CyDelay(1000);

35 CyDelay(1000) 60 PWM1 WritePeriod(2551);
36 PWM1 WritePeriod(2551); 61 PWM1 WriteCompare (1276);
37 PWM1 WriteCompare (1276); 62 CyDelay(1750);

38 CyDelay (500) ; 63 PWM1_WritePeriod(2551);
39 PWMl_W:il:ePeriod(l703) . 64 PWM1 WriteCompare (1276):
40 PWM1_WriteCompare (852); 65 CyDéIay(l25) :

- R e 66 PWM1_WritePeriod(2551):
42 PWMl_W!%CéPE!lOd(lSl") ; 67 PWM1 WriteCompare (127€);:
43 EWMl_erteCompare (759): 68 CyDeIay (125) ;

:Z ;zgil:i(;izgz::;od(J.ﬂS) 3 69 PWM1_WritePeriod(2273);
46 PWMl-WxiteCOmpaxt (638) ; 70 PWM1 WriteCompare (1137):;
47 CyDeIay (125) ; 71 CyDelay(125);

48 PWM1 WritePeriod(1432):; 72 PWM1 WritePeriod(1911);
49 PWM1_WriteCompare (716); 730 FWMl WriteCompare (95€);
50 CyDelay(125): 74§ CyDelay(125):;

51 PWMl_W:icePe:iod(lSl'l) C 75

52 PWM1 WriteCompare (759); 76 }

The following is the logic diagram of the main function:

I

| CyGloballuEnable, |
]

¥




Advances in Engineering Innovation | Vol 8 | 28 June 2024 | 23

Then comes the code in REFRESH_ISR, which has many functions. First, we need header files including "Refresh Timer.h",
"LCD.h", "PWM.h", and "PWM1.h", indicating that this interrupt signal controls the timer, LCD, and two PWMs. We need to set
the map. For example, here I set the length of the map to 20 frames, so I define an integer variable position=20. Let the frequency
and compare of the initial map moving speed be F and C, and assign them initial values of 600 and 1000. Then, define a decision
variable on for detecting whether a character hits an obstacle, initially set to 0. There is also a life value, life=3. Finally, an instant
variable flag is defined, which controls and keeps the position of the characters.

e "Ref:esh_‘rime: -h"

cl

#include
#include
#include

"ILCD.R"
"PWM.h"
"PWMl.nh"

int
int
int

int

position=20;
c=1000;
£=€00;
life=3;

int on=0;

volatile int flag;

extern

First, we should speed up every cycle of the map. We defined the variable ¢ before, and use c as the cycle of each run. Then,
design the map. We clearly describe the position of obstacles on the map in the form of coordinates, using our homemade symbols.
For example, if there is an obstacle at (0,3), our coordinate should be (0, position-17). With the step-by-step reception of interrupt
signals, these obstacles need to be translated to the left in turn. So here, we let the position decrease by one in turn. When the game
is cleared, that is, when the position moves to 0 on the left, we need to start over and speed up. Therefore, add the judgment
condition: when position==0, clear the screen, PWM plays the level completion prompt tone, and display "Level Up!”, reset the
position to 20, and reduce the frequency and compare, to increase the speed.

if (position==0) //If passed the map, 1
{
LCD ClearDisplay():
PWM_Starc():
PWM WritePeriod(758);
FWM_WriteCompare (380);
LCD_Position(0,4):
LCD PrintString("LEVEL U
LCD Position(l,3):
LCD_PrintString ("5
LCD Position(l,12)
LCD_PutChar (LCD_CUSTCM 2);
position=20;
£=£/2;

c=c-f;

224
25

Next, it is necessary to detect whether a character has hit an obstacle. The current position of the character, represented by flag,
will collide if it overlaps with the coordinates of any obstacle when it is detected that the character is in the position of (flag,0). If
there is no overlap, there is no collision, and the game continues to run normally. In case of a collision, clear the screen and display
"Whoops!”, reduce the life count by 1 and display the remaining life count, and set the variable on=1 to indicate a collision, and
then continue the game.

osition==14) | | (position==10} | | (position==€) | | (position==5) || (position==0)) {//check the person hit an obstacle
(flag==1)1{

life--;

LCD ClearDisplay():

LCD sition(0,5);

LCD PrintString ("WHOOPS"):

LCD Position(l,5);

LCD PutChar (LCD_CUSTCM_3):

LCD Position(l,7):;

LCD PrintString("x"):;

_._:_:;:i.ﬁ:;::(llfe); ffLife-1
n=1
sition==16) | | (position==12) | | (position==8) | | (position==2)) {
(£lag==0) {
life-—;
LCD_ClearDisplay():
LCD Position(0,4):
LCD_PrintString ("WHOOPS");
LCD Position(l,5):
LCD_PutChar (LCD_CUSTOM_3) ;

LCD_Position(l,7):
LCD PrintString("x"):
251 LCD PrintNumber (life);

252 on=1;




24 | Advances in Engineering Innovation | Vol 8 | 28 June 2024

When the character collides with obstacles, PWM needs to produce a prompt tone, controlled by the variable on. When on==1,
PWM turns on and plays a specific prompt tone, then resets on to its initial value. When there is no collision, PWM should be

turned off.
256;| if (on==1)//If the person hit the obstacle, play a music
257 {
258 PWM_Starc();
259 PWM_WritePeriod(3822);
260 PWM_WriteCompare (1912);
261 on=0;
262 }
263;| else //If the person did't hit the obstacle, nothing happen
264 {
265 PWM_Stop():
266 ¥

Then there is the code for detecting life. When life reaches 0, the game ends, the screen displays "Game Over", all parameters
return to their initial values, PWM plays a prompt tone, and life is re-assigned to 3. At the end of the entire code, it is necessary to
detect the current state of the timer, to maintain the original state and respond when each interrupt signal occurs.

268;| if (life==0)//If the person has no more life, game over,try again, all parameters set to i
269 {

270 LCD ClearDisplay():

271 LCD_Position(0,3);

272 LCD PrintString ("GAM

273 PWM_Start()://Play a

274 PWM WritePeriod(191l):

275 PWM_WriteCompare (956);

276 PWM_WritePeriod(2551);

277 PWM WriteCompare (l1276);

278 PWM WritePeriod(3822):

279 PWH_erceCompareclEolz} H

280 c=1000;

281 £=600;

282 position=20;

283 life=3;

284 }

285

286 Refresh Timer ReadStatusRegister():;
2871 #END

The following is the logic diagram of REFRESH ISR:

#ifdefREFRESH_IS

PWM_Stare(); | | PWM_Stop();

LCD_ClearDisplay(); i

Refresh_Timer_Rea

Finally, there is the code for the control button. This part is relatively simple, requiring the header file "Control.h" first, because
it controls the interrupt signal of the control button. Then the previously defined variable flag is introduced, because the control



Advances in Engineering Innovation | Vol 8 | 28 June 2024 | 25

button changes the value of flag, to achieve the function of changing the position of characters.

"#5TART CONTRCL_ISR_intc® */
#include™Control.h"
extern volatile int flag;

#END" */

When we press the left button, the character moves up, so flag=0, because flag represents the position of the line where the
character is located. Similarly, when the right button is pressed, the character moves down. At the end of the interrupt signal, we

need to clear the current interrupt to maintain the previous state.

161 CY_ISR(CONTROL_ISR_Interrupt)

162 {

1634 #ifdef CONTROL_ISR_INTERRUPT_ INTERRUPT_CALLBACK

164 CONTROL_ISR Interrupt_ InterruptCallback():

165 #endif /* CONTROL_ISR INTERRUPT_INTERRUPT CALLBACK */
166

167 /* Place your Interrupt e /

168 /* *#START CONTROL_ISR In /

169 if (Control Read()==1)// s to change the position of person
170 {

171 flag=0; //Change the position of person

172 - }

173 else if (Control Read()==2)

174} {

175! flag=1;

176! }

177 Control ClearInterrupt():

178} /* “#END" */

179i-1}

The following is the logic diagram of CONTROL ISR:

[

| 1fdefCONTROL_IS . |

| Control_ClearInterru . |

'

The final experimental results are as follows:




26 | Advances in Engineering Innovation | Vol 8 | 28 June 2024

3. Summary

In this experiment, the application of speakers, position detection, and control signals is comprehensively investigated. Adding
random functions and various props to the game would make it more complete, although more complicated.

References

[1] Semtech Corporation. (2016). Chirp Signal Processor: European, EP2975814A1. Retrieved January 20, 2016, from
https://patents.google.com/patent/EP2975814A1/en

[2] Ephrat, A., & Peleg, S. (2017). Vid2speech: Speech reconstruction from silent video. In 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (pp. 5095-5099). IEEE.

[3] Strap Technologics. (2021, December 4). Retrieved from https://strap.tech/



Advances in Engineering Innovation | Vol 8 | 28 June 2024 | 27

Appendix: Complete Code

Part 1:

REFRESH_ISR.c

[* "#START REFRESH_ISR_intc™ */

#include "Refresh_Timer.h"
#include "LCD.h"

#include "PWM.h"
#include "PWM1.h"

int position=20;

int c=1000;

int f=600;

int life=3;

int on=0;

extern volatile int flag;

[* #END" */

CY_ISR(REFRESH_ISR_Interrupt)

{

#ifdef REFRESH_ISR_INTERRUPT_INTERRUPT_CALLBACK

REFRESH_ISR_Interrupt_InterruptCallback();

#endif /* REFRESH_ISR_INTERRUPT_INTERRUPT_CALLBACK */

[*  Place your Interrupt code here. */
[* “#START REFRESH_ISR_Interrupt™ */
Refresh_Timer_WritePeriod(c);

LCD_ClearDisplay();// Define the position of person
LCD_Position(0,position-17);// Design the game map

LCD_PutChar(LCD_CUSTOM_1);
LCD_Position(1,position-15);
LCD_PutChar(LCD_CUSTOM_1);
LCD_Position(1,position-14);
LCD_PrintString(" ");
LCD_Position(0,position-13);
LCD_PutChar(LCD_CUSTOM_1);
LCD_Position(1,position-11);
LCD_PutChar(LCD_CUSTOM_1);
LCD_Position(1,position-10);
LCD_PrintString(" ");
LCD_Position(0,position-9);
LCD_PutChar(LCD_CUSTOM_1);
LCD_Position(1,position-7);
LCD_PutChar(LCD_CUSTOM_1);
LCD_Position(1,position-6);
LCD_PutChar(LCD_CUSTOM_1);
LCD_Position(1,position-5);
LCD_PrintString(" ");
LCD_Position(0,position-3);
LCD_PutChar(LCD_CUSTOM _1);
LCD_Position(1,position-1);
LCD_PutChar(LCD_CUSTOM_1);
LCD_Position(1,position);
LCD_PrintString(" ");
LCD_Position(flag,0);
LCD_PutChar(LCD_CUSTOM_0);
position--;

/ILet the map go left each time



28 | Advances in Engineering Innovation | Vol 8 | 28 June 2024

if(position==0) //If passed the map, level up, let it be more quickly

LCD_ClearDisplay();
PWM_Start();

PWM_ WritePeriod(758);

PWM_ WriteCompare(380);
LCD_Position(0,4);
LCD_PrintString("LEVEL UP!");
LCD_Position(1,3);
LCD_PrintString("SPEED UP");
LCD_Position(1,12);
LCD_PutChar(LCD_CUSTOM_2);
position=20;

f=f/2;

c=c-f;

}

if ((position==14)||(position==10)||(position==6)||(position==5)||(position==0)){//check the person hit an obstacle
if (flag==1){
life--;
LCD_ClearDisplay();
LCD_Position(0,5);
LCD_PrintString("WHOOPS");
LCD_Position(1,5);
LCD_PutChar(LCD_CUSTOM_3);
LCD_Position(1,7);
LCD_PrintString("x");
LCD_PrintNumber(life); //Life-1
on=1,
¥
}
if ((position==16)||(position==12)||(position==8)||(position==2)){
if (flag==0){
life--;
LCD_ClearDisplay();
LCD_Position(0,4);
LCD_PrintString("WHOOPS");
LCD_Position(1,5);
LCD_PutChar(LCD_CUSTOM_3);
LCD_Position(1,7);
LCD_PrintString("x");
LCD_PrintNumber(life);
on=1,

}

if (on==1)//1f the person hit the obstacle, play a music
PWM_ Start();
PWM_WritePeriod(3822);
PWM_WriteCompare(1912);
on=0;

else //1f the person did't hit the obstacle, nothing happen

PWM_Stop();

if (life==0)//If the person has no more life, game over,try again, all parameters set to initial



Advances in Engineering Innovation | Vol 8 | 28 June 2024 | 29

LCD_ClearDisplay();
LCD_Position(0,3);
LCD_PrintString("GAME OVER!");
PWM_Start();//Play a music
PWM_WritePeriod(1911);
PWM_WriteCompare(956);
PWM_ WritePeriod(2551);
PWM_WriteCompare(1276);
PWM_ WritePeriod(3822);
PWM_WriteCompare(1912);
¢=1000;

f=600;

position=20;

life=3;

}

Refresh_Timer_ReadStatusRegister();
[* "#END" */
}

CONTROL_ISR.cC
[* "#START CONTROL_ISR intc™ */

#include"Control.h"
extern volatile int flag;

[* HEND" */
CY_ISR(CONTROL_ISR_Interrupt)
{
#ifdef CONTROL_ISR_INTERRUPT_INTERRUPT_CALLBACK
CONTROL_ISR_Interrupt_InterruptCallback();
#endif /* CONTROL_ISR_INTERRUPT_INTERRUPT_CALLBACK */
[*  Place your Interrupt code here. */
[* “#START CONTROL_ISR_Interrupt™ */
if (Control_Read()==1)// Use pins to change the position of person
flag=0; //Change the position of person
}
else if (Control_Read()==2)
{
flag=1,;
}
Control_Clearlnterrupt();
[* "#END" */
}
Main.c

#include "project.h"
volatile int flag;

int main(void)
{
CyGlobalintEnable; /* Enable global interrupts. */
Refresh_Timer_Start();
CONTROL_ISR_Start();
REFRESH_ISR_Start();
LCD_Start();



30 | Advances in Engineering Innovation | Vol 8 | 28 June 2024

flag=0;
/* Place your initialization/startup code here (e.g. Myinst_Start()) */

for(;;)

{
/[Loop play the background Music
PWM1_Start();
PWM1_WritePeriod(1911);
PWM1_ WriteCompare(956);
CyDelay(1000);
PWM1_WritePeriod(1703);
PWM1_WriteCompare(852);
CyDelay(1000);
PWM1_WritePeriod(2551);
PWM1_WriteCompare(1276);
CyDelay(500);
PWM1_WritePeriod(1703);
PWM1_WriteCompare(852);
CyDelay(1000);
PWM1_WritePeriod(1517);
PWM1_WriteCompare(759);
CyDelay(1000);
PWM1_WritePeriod(1275);
PWM1_WriteCompare(638);
CyDelay(125);
PWM1_WritePeriod(1432);
PWM1_WriteCompare(716);
CyDelay(125);
PWM1_WritePeriod(1517);
PWM1_WriteCompare(759);
CyDelay(250);
PWM1_WritePeriod(1911);
PWM1_WriteCompare(956);
CyDelay(1000);
PWM1_WritePeriod(1703);
PWM1_WriteCompare(852);
CyDelay(1000);
PWM1_WritePeriod(2551);
PWM1_ WriteCompare(1276);
CyDelay(1750);
PWM1_WritePeriod(2551);
PWM1_WriteCompare(1276);
CyDelay(125);
PWM1_WritePeriod(2551);
PWM1_WriteCompare(1276);
CyDelay(125);
PWM1_WritePeriod(2273);
PWM1_ WriteCompare(1137);
CyDelay(125);
PWM1_WritePeriod(1911);
PWM1_WriteCompare(956);
CyDelay(125);

/* [] END OF FILE */



