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Abstract. To improve the accuracy of photovoltaic power prediction, a combined prediction model integrating multiple algorithms 

is proposed. First, key factors are selected, and the Gaussian Mixture Model (GMM) is used to cluster and generate historical days 

with high correlation to the forecast day. Then, a photovoltaic power prediction model based on Variational Mode Decomposition 

(VMD) and an improved Grey Wolf Optimizer Kernel Extreme Learning Machine (MSI-GWO-KELM) is constructed. Finally, 

actual data from a photovoltaic power station in Australia is used as a case study. The results show that the VMD-MSI-GWO-

KELM model is suitable for different weather conditions and offers better prediction accuracy than other models. 
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1. Introduction 

As environmental pollution and global warming issues become increasingly severe, energy problems have become more prominent. 

The effective utilization of clean energy, such as solar energy, has become more important. Photovoltaic (PV) power generation, 

as one of the main methods of utilizing solar energy, had an installed capacity of 102.48 GW by the end of June 2024, with a broad 

development prospect [1]. However, photovoltaic power generation is characterized by strong intermittency and significant 

fluctuation, and it is affected by various environmental factors such as humidity, temperature, and radiation. This can bring adverse 

effects to the planning, scheduling, and operation of the power grid, such as decreased grid stability and increased scheduling 

difficulty. Therefore, improving the accuracy of photovoltaic power prediction plays a crucial role in optimizing the operation and 

maintenance of photovoltaic power stations and enhancing the reliability of grid operation [2]. 

In order to achieve more accurate predictions, most research focuses on artificial intelligence techniques, often using combined 

models of neural networks and Kernel Extreme Learning Machines (KELM) for forecasting [3]. For example, Feng Jianming et 

al. optimized neural network parameters based on the Osprey Optimization Algorithm [4], and Yao Qincai et al. proposed a model 

based on the integration of an improved fully adaptive noise ensemble empirical mode decomposition to optimize neural network 

prediction models [5]. Meng Yikang et al. proposed a combination prediction model of photovoltaic output using principal 

component analysis and long short-term memory neural networks [6], but neural network algorithms have long computation times 

and low efficiency. Fang Zhaoxiong et al. proposed a prediction model based on the Mantid Algorithm to optimize KELM [7], 

while Liu Qibo et al. proposed a hybrid prediction model combining a clustered self-organizing map network with optimized 

KELM [8]. Shang Liqun et al. optimized KELM using an improved squirrel search algorithm [9]. KELM has faster training speed 

and better generalization ability, and has been widely used. 

Based on the above, to achieve high-accuracy photovoltaic power prediction, this paper proposes a combined photovoltaic 

power prediction model based on VMD-MSI-GWO-KELM. By applying the theory of similar days and clustering with the 

Gaussian Mixture Model (GMM), the model divides meteorological days accurately according to various meteorological factors, 

and selects historical day data with a high match to the weather factors of the forecast day as training samples to reduce errors. 

The Variational Mode Decomposition (VMD) algorithm and the improved Grey Wolf Optimizer (MSI-GWO) [10, 11] are used 

to optimize KELM for constructing the photovoltaic power prediction model. The results of testing show that the proposed method 

is suitable for accurately identifying weather types, achieving high prediction accuracy and robustness. 
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2. Selection of similar days 

2.1. Factors affecting photovoltaic power generation 

Photovoltaic power is mainly affected by various meteorological factors such as temperature, humidity, and radiation. The 

meteorological factors that have a greater impact on photovoltaic power generation should be selected first. This can be done 

through correlation analysis of the variables. The Spearman correlation coefficient ranks the data and assigns an average rank for 

identical values. This coefficient measures the correlation between two variables, and its calculation formula is as follows: 

 𝜌 =
∑ (𝑋𝑖−�̄�)(𝑌𝑖−�̄�)
𝑁
𝑖=1

√∑ (𝑋𝑖−�̄�)
2𝑁

𝑖=1 ∑ (𝑌𝑖−�̄�)
2𝑁

𝑖=1

 (1) 

Where 𝑁represents the total number of observed samples, 𝑋𝑖､𝑌𝑖 denote the rank values of the data.�̄�､�̄�refer to the mean ranks 

of the data. 

The meteorological factors analyzed in this study include: temperature, humidity, total radiation, scattering, wind speed, rainfall, 

photovoltaic system efficiency, and horizontal radiation. The Spearman correlation coefficients are listed in Table 1. 

Table 1. Correlation Coefficients 

Wind 

Speed 

Temperature Horizontal 

Radiation 

Wind 

Direction 

Maximum 

Wind Speed 

Atmospheric 

Pressure 

Sunlight 

Intensity 

0.1456 0.4352 0.4256 -0.1581 0.2209 -0.2153 0.4072 

 

Since the correlation between wind speed and wind direction is weak, but the correlation between temperature, radiation, 

maximum wind speed, atmospheric pressure, and sunlight intensity scattering is strong, these five major features are included in 

the photovoltaic power prediction model. 

2.2. Selection of similar days using the Gaussian Mixture Model (GMM) 

Photovoltaic power has a strong correlation with meteorological factors. The similarity of meteorological data implies that 

photovoltaic power output will also be highly similar. During prediction, meteorological factors and power sequences of similar 

days are used as input for the experimental model. The GMM models the data using a linear combination of multiple Gaussian 

distributions, effectively capturing the multi-peak characteristics of the data. This method is used to cluster photovoltaic and 

meteorological data, and for obtaining more similar historical days, the mean and standard deviation are used as feature indicators. 

The five meteorological factors with strong correlations are transformed into daily feature indicators to improve the matching and 

accuracy of the results. Suppose the number of clusters is 𝐾, the steps of GMM are as follows: 

Step 1: Initialize the parameters, including the mean 𝜇0, covariance∑0 and weight 𝜔0. 

Step 2: Calculate the probability that each sample point 𝑍𝑖 belongs to the k-th distribution. 

 𝛾𝑘(𝑍𝑖) =
𝜔𝑘𝑁(𝑍𝑖𝜇𝑘,∑𝑘)

∑ 𝜔𝑘
𝐾
𝑘=1 𝑁(𝑍𝑖𝜇𝑘,∑𝑘)

 (2) 

Where 𝑁(𝑍𝑖𝜇𝑘, ∑𝑘) is the Gaussian density function, and 𝜇𝑘､∑𝑘､𝜔𝑘  are the mean, covariance, and weight for the k-th 

distribution, respectively. 

Step 3: Calculate the parameters for each distribution and update them. 

 𝜇𝑘 =
∑ 𝛾𝑘(𝑍𝑖)
𝑁
𝑖=1 (𝑍𝑖−𝜇𝑘)(𝑍𝑖−𝜇𝑘)

𝑇

∑ 𝛾𝑘(𝑍𝑖)
𝑁
𝑖=1

 (3) 

 𝜔𝑘 =
1

𝑁
∑ 𝛾𝑘(𝑍𝑖)
𝑁
𝑖=1  (4) 

Step 4 repeats Steps 2 and 3 until convergence to obtain the final clusters. 

3. Principles of the prediction model 

3.1. Variational mode decomposition 

Variational Mode Decomposition (VMD) is an adaptive signal decomposition algorithm that decomposes the original signal into 

a set of intrinsic mode functions (IMFs) with specific central frequencies and limited bandwidth. This approach captures different 
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frequency components and trends in photovoltaic (PV) data, providing rich feature information for forecasting. The VMD process 

consists of the following steps: 

Step 1: Apply the Hilbert transform to analyze each independent component of the signal𝑢𝑘(𝑡). After obtaining the single-

sided spectrum, introduce an exponential term to adjust the central frequency 𝜔𝑘and modulate each component’s spectrum to the 

baseband. 

Step 2: Estimate the baseband bandwidth of each mode function𝑢𝑘(𝑡) by computing the L2 norm of the demodulated signal 

gradient, thereby constructing a variational model with constraints: 

 {
𝑚𝑖𝑛

{𝑢𝑘},{𝜔𝑘}
{∑ 𝜕𝑡|| [(𝛿(𝑡) +

𝑗

𝜋𝑡
) ∗ 𝑢𝑘(𝑡)]𝑘 𝑒−𝑗𝜔𝑘𝑡||2

2}

𝑠. 𝑡. ∑ 𝑢𝑘 = 𝑓𝑘

} (5) 

Where {𝑢𝑘}and {𝜔𝑘}represent the mode set and the central frequency set, respectively; 𝜕𝑡denotes the partial derivative 

concerning 𝑡; ∗represents the convolution operator; 𝛿(𝑡) is the unit impulse function; and 𝑗is the imaginary unit. 

Step 3: Introduce the Lagrange multiplier𝜆(𝑡) and quadratic penalty factor 𝛼, to convert the constrained problem into an 

unconstrained problem, obtaining the augmented Lagrangian objective function: 

𝐿({𝑢𝑘}, {𝜔𝑘}, 𝜆(𝑡)) = 𝛼∑ ||𝜕𝑡 [(𝛿(𝑡) +
𝑗

𝜋𝑡
) ∗ 𝑢𝑘(𝑡)]𝑘 𝑒−𝑗𝜔𝑘𝑡||2

2 + ||𝑓(𝑡) − ∑ 𝑢𝑘(𝑡)𝑘 ||2
2+< 𝜆(𝑡), 𝑓(𝑡) − ∑ 𝑢𝑘(𝑡)𝑘 > (6) 

Where 𝛼ensures signal reconstruction integrity, ||𝑓(𝑡) − ∑ 𝑢𝑘(𝑡)𝑘 ||2
2 is the quadratic penalty,<⋅,⋅> denotes the inner product 

operator. 

Step 4: Solve the equation using the Alternating Direction Method of Multipliers (ADMM)(10),to iteratively update 𝑢𝑘
𝑛+1､

𝜔𝑘
𝑛+1,After VMD processing, the modal time series components of the PV power data 𝐾 are obtained. 

3.2. Kernel Extreme Learning Machine (KELM)  

KELM is an improved algorithm based on Extreme Learning Machine (ELM) that replaces random mapping with kernel mapping. 

By introducing kernel functions, it transforms complex low-dimensional problems into high-dimensional inner product operations 

[10], enhancing network stability and generalization ability, thus improving prediction accuracy in regression problems. The 

KELM process is as follows: 

Step 1: Given 𝑁different samples(𝑥𝑖 , 𝑡𝑖),𝑖 = 1,2,⋯ ,𝑁,where the number of hidden nodes is 𝐿, and the activation function is 

𝑔(𝑥), the output variable is 𝐻, and its formula is as follows:  

 𝐻𝛽 = 𝑇 (7) 

 𝐻 = (
𝑔(𝜔1𝑥1 + 𝑏1) ⋯ 𝑔(𝜔𝑀𝑥1 + 𝑏𝑀)

⋮ ⋯ ⋮
𝑔(𝜔1𝑥𝑁 + 𝑏1) ⋯ 𝑔(𝜔𝑀𝑥𝑁 + 𝑏𝑀

)

𝑁×𝑀

 (8) 

Where 𝛽 represents the weight matrix of the output layer, 𝑇 denotes the target output matrix, 𝜔𝑖 and 𝑏𝑖refer to the weights and 

biases of the hidden layer nodes, respectively.  

Step 2: Using the Moore-Penrose generalized inverse and introducing a regularization coefficient𝐶,the least-squares solution 

is obtained: 

 𝛽 = 𝐻𝑇(𝐻𝐻𝑇 +
𝐼

𝐶
)−1𝑇 (9) 

Where 𝐼is the identity matrix. 

Step 3: Introduce a kernel function to replace the random mapping in ELM, defining the kernel function matrix as 𝛺 =
𝐻𝐻𝑇,𝛺(𝑖,𝑗) = ℎ(𝑥𝑖)ℎ(𝑥𝑗) = 𝐾(𝑥𝑖 , 𝑥𝑗) Common kernel functions include polynomial kernels and linear kernels. Since the Gaussian 

kernel function demonstrates good adaptability, this study adopts the Gaussian kernel: 

 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝( −
||𝑥𝑖−𝑥𝑗||

2

𝑔2
) (10) 

Step 4: Obtain the standard network output value of KELM 𝑦(𝑥): 

 𝑦(𝑥) = ℎ(𝑥)𝛽 = [
𝐾(𝑥, 𝑥1)
⋮
𝐾(𝑥, 𝑥𝑀)

] (𝛺 +
𝐼

𝐶
)−1𝑇 (11) 

Where kernel parameters𝑔balance empirical risk and confidence intervals, while the regularization coefficient 𝐶controls the 

proportion of training error, both of which significantly impact KELM’s generalization ability and prediction accuracy. 
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3.3. Improved Grey Wolf Optimization algorithm (MSI-GWO) 

The Grey Wolf Optimization (GWO) algorithm is a meta-heuristic algorithm inspired by the hunting behavior of grey wolves and 

is effective for solving nonlinear optimization problems. The wolf pack is divided into four hierarchical levels: 𝑎 (leader and best 

solution); 𝛽 (second-best solution assisting 𝑎);  𝛿 (third-best solution following𝑎 and 𝛽); 𝜔 (subordinate wolves following the top 

three). This study adopts an improved GWO (MSI-GWO) to optimize the kernel parameters and regularization coefficient in 

KELM [12, 13]. 

Given a grey wolf population of 𝑁, the hunting behavior of GWO is described as follows:｡ 

(1) Encircling behavior: When a grey wolf detects prey, the pack surrounds it: 

 𝐷 = |𝐶 ⋅ 𝑋𝑝(𝑡) − 𝑋(𝑡)| (12) 

 𝑋(𝑡 + 1) = 𝑋𝑝(𝑡) − 𝐴 ⋅ 𝐷 (13) 

Where 𝑡is the current iteration, 𝐷 represents the distance between the wolf and prey, 𝐴､𝐶are coefficient vectors, and𝑋and 

𝑋𝑝denote the position vectors of the prey and wolf, respectively. 

 {
𝐴 = 2𝑎(𝑟1 − 1)
𝐶 = 2𝑟2

 (14) 

 𝑎 = 2 − 2 ⋅
𝑡

𝑡𝑚𝑎𝑥
 (15) 

Where 𝑟1､𝑟2are random vectors, 𝑎 represents the convergence factor, 𝑡𝑚𝑎𝑥denotes the maximum number of iterations. 

(2) Hunting Behavior: After the grey wolves encircle the prey, the positions 𝛼､𝛽､𝛿—denoted as the optimal search positions 

𝑋𝛼､𝑋𝛽､𝑋𝛿—are used to continuously approach the prey. 

 {

𝐷𝛼 = |𝐶1 ⋅ 𝑋𝛼(𝑡) − 𝑋(𝑡)|
𝐷𝛽 = |𝐶2 ⋅ 𝑋𝛽(𝑡) − 𝑋(𝑡)|

𝐷𝛿 = |𝐶3 ⋅ 𝑋𝛿(𝑡) − 𝑋(𝑡)|

 (16) 

 {

𝑋1(𝑡 + 1) = 𝑋𝛼(𝑡) − 𝐴1𝐷𝛼
𝑋2(𝑡 + 1) = 𝑋𝛽(𝑡) − 𝐴1𝐷𝛽
𝑋3(𝑡 + 1) = 𝑋𝛿(𝑡) − 𝐴1𝐷𝛿

 (17) 

 𝑋(𝑡 + 1) =
𝑋1(𝑡+1)+𝑋2(𝑡+1)+𝑋3(𝑡+1)

3
 (18) 

Where 𝑋1､𝑋2､𝑋3represent the new positions of the wolves 𝜔. 

MSI-GWO improves GWO through nonlinear parameter adjustment, dynamic weight updates, and wavelet perturbation for 

optimal solutions, enhancing population diversity and improving convergence speed and optimization accuracy. 

(1) Dynamic weight-based position updating improvement: 

 

{
 
 

 
 𝑋1 (𝑡 + 1) =

|𝑋𝛼|

|𝑋𝛼|+|𝑋𝛽|+|𝑋𝛿|

𝑋2 (𝑡 + 1) =
|𝑋𝛽|

|𝑋𝛼|+|𝑋𝛽|+|𝑋𝛿|

𝑋3 (𝑡 + 1) =
|𝑋𝛿|

|𝑋𝛼|+|𝑋𝛽|+|𝑋𝛿|

 (19) 

 𝑋(𝑡 + 1) =
𝑋1 (𝑡+1)+𝑋2 (𝑡+1)+𝑋3 (𝑡+1)

3
 (20) 

The Morlet wavelet is applied to𝑋𝛼for optimal solution perturbation, generating a new grey wolf individual𝑋𝛼 . The fitness 

value of 𝑋𝛼 is then calculated. If it is smaller than the fitness value of 𝑋𝛼, then 𝑋𝛼  replace 𝑋𝛼and joins the population. 

 𝑋𝛼 = 𝜎𝑋𝛼 + 𝑟(𝑙 + 𝑢 + 𝜎𝑋𝛼) (21) 

Where 𝑢､𝑙 represent the upper and lower limits of 𝑋𝛼; 𝑟is a random number in the range [0,1]; 𝜎denotes the wavelet sequence. 

(3) Nonlinear parameter adjustment improves the convergence rate: 

 𝑎 = 𝑎𝑖𝑛𝑖𝑡𝑖𝑎𝑙(1 − 𝑙𝑔( 1 + (
𝑡

𝑇
)2)/ 𝑙𝑔 2) (22) 
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Where 𝑎𝑖𝑛𝑖𝑡𝑖𝑎𝑙is the initial value of𝑎. 

The algorithm performs well in global search problems and exhibits strong convergence. Therefore, the MSI-GWO algorithm 

is selected in this study to optimize the kernel parameter 𝑔and regularization coefficient 𝐶 introduced in KELM. 

3.4. Short-term photovoltaic power prediction model 

The prediction process based on VMD-MSIGWO-KELM is as follows: 

Step 1: Preprocess the raw data, correcting outliers, including PV power and meteorological data. 

Step 2: Analyze correlations among five meteorological factors using Spearman’s coefficient and select feature vectors. 

Step 3: Use Gaussian Mixture Model (GMM) clustering to identify similar days and classify weather conditions (sunny, cloudy, 

rainy), splitting data into training and testing sets. 

Step 4: Decompose similar-day samples into multiple frequency sub-series using VMD and establish separate KELM models. 

Step 5: Optimize KELM parameters using MSI-GWO. 

Step 6: Reconstruct the predicted sub-series to obtain the final PV power prediction results. 

4. Case study 

4.1. Evaluation metrics 

To quantitatively assess the prediction accuracy of different models, this study adopts three evaluation metrics: Root Mean Square 

Error (RMSE), Mean Absolute Error (MAE), and the coefficient of determination 𝑅2 which provide a comprehensive assessment 

of the predictive performance of different models. The specific formulas are as follows: 

 𝑋RMSE = √
∑ (𝑦𝑖−𝑦𝑖

0)𝑛
𝑖=1

2

𝑛
 (23) 

 𝑋MAE =
∑ |

𝑦𝑖−𝑦𝑖
0

𝑦𝑖
|𝑛

𝑖=1

𝑛
 (24) 

 𝑅2 = 1 −
∑ (𝑦𝑖−𝑦𝑖

0)𝑛
𝑖

2

∑ (𝑦𝑖−�̄�)
2𝑛

𝑖

 (25) 

Where 𝑦𝑖represents the actual value, 𝑦𝑖
0represents the predicted value, and�̄�denotes the mean of the actual values. 

4.2. Data sources and processing 

To validate the accuracy and effectiveness of the proposed model and method, this study conducts simulation experiments using 

real-world PV power data from Australia in 2021. Since PV generation primarily occurs during daylight hours, while nighttime 

irradiance is nearly zero, the dataset includes historical meteorological parameters and PV output from 06:40 to 19:40, with a time 

interval of 5 minutes, resulting in a total of 10,970 data points. Any anomalies in the data were corrected using interpolation. 

The Spearman correlation coefficient was first used to identify key meteorological factors affecting PV generation. Next, a 

Gaussian Mixture Model (GMM) was applied to cluster the preprocessed PV and meteorological data, ultimately categorizing the 

dataset into three distinct weather conditions: Sunny days: 42 instances; Cloudy days: 25 instances; Rainy days: 25 instances. 

From each weather category, three days were randomly selected as test days to validate the prediction model, while the remaining 

time series data formed the similar-day sample library. 

The VMD method was then applied to smooth the similar-day samples corresponding to different weather types. The 

parameters were set as follows: Penalty parameter (𝛼)=200, Initial central frequency (𝜔0)=1, Convergence tolerance (𝜏)=1×10-7. 

After multiple simulations, five mode decompositions (𝑘 =5) were selected to obtain regular and non-overlapping sub-series. These 

sub-series were used as training data for model development. For example, the decomposition results for cloudy-day PV power 

are shown in Figure 1. The original sequence exhibits an obvious trend, where IMF1 is the dominant component, characterized by 

low frequency and smooth curves, effectively capturing the overall PV generation trend. The remaining components represent 

localized features of PV power variations. 
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Figure 1. IMF Sub-sequences 

4.3. Prediction results analysis 

To further validate the accuracy and effectiveness of the proposed VMD-MSI-GWO-KELM prediction model, comparative 

experiments were conducted with: Single prediction model: KELM; Hybrid prediction models: VMD-KELM and VMD-

newGWO-KELM. For the non-optimized KELM model, the kernel parameter 𝑔and regularization coefficient𝐶were set to 1000 

and 100, respectively. The GWO, MSI-GWO, and BWO algorithms were configured with a population size𝑁of 20 and a maximum 

of 100 iterations 𝑇𝑚𝑎𝑥.To enhance prediction efficiency and minimize interference from different feature magnitudes, all historical 

sample data were normalized to ensure consistent input features. The model was trained using PV power output and the five most 

relevant meteorological factors, predicting PV power under three different weather conditions: sunny, cloudy, and rainy (Figure 

2-4). The output was the time-series PV power generation for the target test day. 

The RMSE, MAE, XMAPE, and 𝑅2evaluation metrics for different models under different weather conditions are presented 

in Table 2, while Figure 3 illustrates the fitting curve for cloudy weather. All four prediction models effectively forecast PV power 

generation. However, the hybrid models outperform the single prediction model (KELM), demonstrating the advantages of VMD-

based feature extraction and optimization algorithms. Among the hybrid models, the proposed VMD-MSI-GWO-KELM model 

achieves the highest prediction accuracy, further improving forecasting precision compared to other models. 

Table 2. Evaluation Metrics for Various Prediction Models 

Weather Prediction Model RMSE MAE 𝑅2 

Sunny 

KELM 0.066 0.046 92.8% 

VMD-KELM 0.069 0.049 92.3% 

VMD-newGWO-KELM 0.065 0.046 93.2% 

VMD-MSIGWO-KELM 0.056 0.038 95.1% 

Cloudy 

KELM 0.050 0.030 96.3% 

VMD-KELM 0.055 0.033 95.6% 

VMD-newGWO-KELM 0.047 0.027 96.5% 

VMD-MSIGWO-KELM 0.045 0.027 97.1% 

Rainy 

KELM 0.097 0.064 79.3% 

VMD-KELM 0.102 0.069 77.3% 

VMD-newGWO-KELM 0.105 0.071 77.4% 

VMD-MSIGWO-KELM 0.092 0.058 81.8% 
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Figure 2. Comparison of Models for Sunny Weather 

 

Figure 3. Comparison of Models for Rainy Weather 

 

Figure 4. Comparison of Models for Cloudy Weather 
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5. Conclusion 

This paper proposes a combined photovoltaic power prediction model, GMM-MSI-GWO-KELM, and verifies the effectiveness 

of this method through actual measured data. 

1)The factors affecting photovoltaic power generation are selected, and similar days are chosen based on the GMM clustering 

results, further improving the similarity between the similar days and the forecast day. 

2)A photovoltaic power prediction model based on VMD-MSI-GWO-KELM is constructed, and the parameters of KELM are 

optimized using a multi-strategy improved Grey Wolf Optimizer (MSI-GWO), improving both the iteration speed and prediction 

accuracy. 

The effectiveness and accuracy of the proposed combined prediction model are verified through case studies. This prediction 

system demonstrates excellent performance under various weather conditions, providing a reliable technical guarantee for the 

accurate prediction of photovoltaic power generation and the smooth operation and scheduling optimization of grid-connected 

systems. 
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