
Advances	in	Engineering	Innovation	Vol.16	Issue	6 EWA	Publishing
Available	Online:	10	June	2025 DOI:	10.54254/2977-3903/2025.24025

Copyright: © 2025 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons 

Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). https://aei.ewadirect.com 

User clustering-based GAN-LSTM model for viewport prediction 

in 360-degree video streaming 

Yi Liang 

Guilin University of Electronic Technology, Guilin, China  

liangyiguet@163.com 

Abstract. Accurate viewport prediction is crucial for enhancing user experience in 360-degree video streaming. However, due to 

significant behavioral differences among user groups, traditional single LSTM models tend to fall into local optima and fail to 

achieve precise predictions. To address this, this paper proposes a hybrid prediction model based on user clustering. First, a 

Density-Based Clustering Algorithm (DBSCAN) is used to group users with similar behavioral patterns. Then, a hybrid prediction 

model combining Generative Adversarial Networks (GANs) and Long Short-Term Memory networks (LSTMs) is designed to 

effectively mitigate data imbalance and overfitting through collaborative training. Experiments conducted on three real-world 

datasets from YouTube demonstrate that this approach significantly outperforms existing methods based on user trajectories or 

video saliency in terms of prediction accuracy and stability. 

Keywords: 360-degree video streaming, viewport prediction, LSTM 

1. Introduction 

360-degree videos present content in a panoramic format, offering viewers an immersive watching experience . To reduce the 

bandwidth required for streaming such videos, predicting users’ future viewports becomes essential . The core challenge in 

viewport prediction lies in identifying users’ attention distribution and behavioral patterns. Several commonly used viewport 

prediction approaches have emerged. 

Recent studies  have focused on extracting and integrating features from both visual saliency and user trajectories, considering 

both factors simultaneously. Visual saliency incorporates low-level visual features (e.g., color, brightness, contrast), high-level 

semantic features (e.g., object recognition, contextual relationships), as well as motion and depth information. These combined 

features allow saliency detection models to capture characteristics aligned with human visual perception . Trajectory-based 

methods analyze users’ gaze patterns while watching similar videos to predict gaze movement directions in new videos . Some 

research has shown  that users’ visual attention is often influenced by their past behavior. Historical data helps build more accurate 

attention models—for instance, repetitive behavior modeling reveals that users may repeatedly focus on specific features. Although 

combining these two factors leads to a more comprehensive model, it also increases the amount of training data required. Models 

trained on data from the entire user population may fail to predict viewports for certain users accurately, especially when their 

viewing patterns differ from the majority. This highlights room for improvement in the current models. 

Some emerging models  have attempted to segment users into groups and train separate models for different user types. These 

models incorporate user-specific factors into feature vectors to improve alignment with individual users. However, current group-

based prediction methods often divide users uniformly without truly analyzing user characteristics. This merely increases the 

number of sub-models without enabling data support across similar users, limiting the accuracy of predictions for niche user groups. 

Additionally, data volume inevitably decreases for each group after classification, potentially leading to limited feature learning, 

underfitting, and unstable model training. To address these issues, data augmentation techniques must be employed to compensate 

for the reduced sample size in each group and ensure sufficient data for neural network training. 

This paper analyzes and clusters multi-user data, proposing a clustering-based viewport prediction method. Our approach 

comprises three components: saliency extraction, user clustering, and cluster-based viewport prediction. First, a pyramid attention 

mechanism in a convolutional neural network is used to analyze image features in video frames and generate saliency maps, which 

are then transformed into feature values and incorporated into the model’s training. Next, a Density-Based Clustering Algorithm 

(DBSCAN) groups similar user trajectories, enabling group-wise analysis and training. To address data scarcity post-clustering, 



6666	|	Advances	in	Engineering	Innovation	|	Vol.16	|	Issue	6

we apply Generative Adversarial Networks (GANs) with high-quality generative capabilities to augment the data, enhancing the 

model’s understanding of data distribution and improving generalization and robustness. Finally, for each data group obtained , a 

cluster-based prediction model is built. Based on the number of clusters nnn, nnn Long Short-Term Memory (LSTM) networks 

are trained on each user group’s data. The resulting models are integrated using a weighted fusion approach. A loss function 

provides feedback to adjust the weight coefficients. When the target user changes, the loss function changes accordingly, 

dynamically influencing the weights and achieving adaptive viewport prediction. Compared with other prediction methods, our 

main contributions are as follows: 

We design a clustering network that groups users with similar trajectories. To enhance the richness of data within each cluster 

and ensure the reliability of LSTM training, GANs are used to augment the data, thereby improving the model’s generalization.  

We develop a clustering-based viewport prediction framework that fully considers user-related information. Starting from user 

groups, the model jointly trains video content features and user tracking data to improve prediction accuracy. Multiple LSTM-

based models are integrated using a weight-based fusion mechanism, where sub-models with lower loss values are assigned higher 

weights to enable dynamic adjustment. 

The rest of this paper is organized as follows: Section 2 reviews related work. Section 3 details the system design. Section 4 

presents performance evaluation. Section 5 concludes the paper. 

2. Related work 

Viewport prediction for 360-degree video streaming primarily focuses on analyzing users’ attention distribution and behavioral 

patterns. Chen et al.  proposed a viewport-aware real-time streaming framework for 360-degree videos to optimize end-to-end 

video delivery, thereby enhancing user experience. However, their method requires significant computational resources. Nguyen 

et al.  developed a head motion prediction algorithm to accurately forecast a user’s future head orientation. This method captures 

users’ specific attention for augmenting critical visual features, but it falls short in supporting long-term prediction, which is 

essential for effective video buffering. Xu et al.  performed multi-feature extraction on images and applied graph neural networks 

(GNNs) for feature fusion. While this approach improves feature processing and utilization, it also demands considerable resources 

for feature integration. Reference  introduced a saliency model for video that incorporates attention mechanisms within a CNN-

LSTM architecture to enable fast end-to-end saliency learning. Although CNN-LSTM is one of the most advanced methods for 

saliency prediction in 2D videos, its effectiveness diminishes when applied to 360-degree video content. Xu et al.  applied deep 

reinforcement learning to viewport prediction, using users’ gaze trajectories as input, but this method lacks comprehensive 

integration of visual saliency. Chopra et al.  proposed a fast and efficient online field-of-view (FoV) prediction model, PARIMA, 

which uses past FoV data and key object trajectories as proxies for video content. Li et al.  employed spherical convolution to 

reduce projection distortion in 360-degree video, effectively minimizing distortions. However, the complexity of spherical 

convolution makes it less practical than projection-based methods. Li et al.  designed a long-term prediction model that leverages 

a user’s past FoV center trajectory along with other users’ future FoV positions to forecast the target user’s future viewport. While 

this approach supports long-term prediction, it lacks the precision required for accurate viewport estimation. Dong et al.  utilized 

historical gaze trajectories from other users to predict the target user's viewport, thereby reducing computational cost. Although 

this model considers gaze location correlations among users, it does not implement systematic user clustering. Tu et al.  focused 

on industrial control networks, designing a video prediction, tiling, and bitrate allocation scheme specific to such environments. 

However, its application scenarios are limited, and it does not effectively leverage historical gaze information from other users. 

Reference  proposed a viewport prediction approach centered on individual users, using their own trajectories and the historical 

behaviors of similar users. 

In general, existing 360-degree viewport prediction methods for the overall user base leverage two main types of information: 

(1) features derived from video content itself, such as saliency and spatial characteristics; and (2) historical user behavior data used 

to train time-series models. However, these models often overlook individual differences between users and between videos. Using 

a single unified model fails to meet the needs of users with distinctive behavioral patterns. 

3. System overview 

In this section, we provide an overview of the 360-degree video streaming system based on viewport prediction. As illustrated in 

Figure 1, the client initiates video requests through a request generator to the server. Once video playback begins, the client records 

the user's viewport trajectory data, typically represented as a sequence of viewport centers over time. 

To enable viewport prediction on the client side, the server receives the gaze trajectory from the client and combines it with 

stored offline video content and historical user data. This information is then passed into the viewport prediction module. After 

feature extraction, the data enters a clustering module to perform user clustering. Subsequently, it flows into a neural network 

combining Generative Adversarial Networks (GANs) and Long Short-Term Memory (LSTM) networks to generate the final 

prediction. Based on available bandwidth, the server adjusts the image quality accordingly. Upon receiving a request response, the 

server transmits the texture tiles to the client, which decodes and reconstructs the user’s viewport region. 



Advances	in	Engineering	Innovation	|	Vol.16	|	Issue	6	|	6767

 

Figure 1. 360-degree video streaming system model 

3.1. User clustering 

Our observations indicate that users tend to produce highly similar viewing trajectories when watching the same video, making 

user clustering based on trajectory data both feasible and effective. The user clustering problem can be formulated as follows: for 

each video in the dataset, participants generate a time-ordered trajectory set. A trajectory for user i is defined as 𝑇𝑖 =
{𝑃1, 𝑃2, … , 𝑃𝑁} , where N is the number of frames. Now consider two trajectories 𝑇𝑖  and 𝑇𝑗  corresponding to users i and j 

(belonging to different users). The distance between their viewport centers at frame t(𝑡 ∈ 𝑁) (defined as the distance between their 

trajectory points at that frame) is given by: 𝑑(𝑖, 𝑗) = |𝑃𝑖,𝑡 − 𝑃𝑗,𝑡|. Similarly, the overall distance between two trajectories can be 

represented using the Euclidean distance. This leads to the construction of a two-dimensional symmetric distance matrix, where 

each element 𝑑𝑖𝑗  represents the distance between trajectory i and trajectory j. For a dataset containing N user trajectories, the 

resulting distance matrix has dimensions N×N. The Euclidean distance between any two trajectories 𝑇𝑖  and 𝑇𝑗 is computed using 

the following formula: d(Ti, Tj) = √∑ (Ti,k − Tj,k)2m
k=1  , where 𝑇𝑖,𝑘 and 𝑇𝑗,𝑘 represent the values of trajectories 𝑇𝑖  and 𝑇𝑗 in the 

k-th dimension, and m denotes the dimensionality of the trajectory vectors. By calculating the pairwise Euclidean distances 

between all trajectories, we construct a symmetric distance matrix D, where each element 𝐷 represents the distance between 

trajectory 𝑇𝑖  and 𝑇𝑗. To build this matrix, we first initialize a zero matrix of size N×N, then iterate through all trajectory pairs and 

compute their Euclidean distances 𝐷[𝑖, 𝑗] = 𝑑(𝑇𝑖 , 𝑇𝑗). Since the distance matrix is symmetric, we ensure that: 𝐷[𝑖, 𝑗] = 𝐷[𝑗, 𝑖]. 

Pseudocode 1: User Clustering Using DBSCAN 

Input: Dataset D (with initialized points), eps, MinPts 

Output: Clusters and noise points 

 

// Main clustering process 

for each unvisited point P in D: 

    if P.visited == FALSE: 

        P.visited = TRUE 

        NeighborPts = regionQuery(P, eps) 

         

        if sizeof(NeighborPts) < MinPts: 

            P.clusterId = NOISE 

        else: 

            ClusterId = ClusterId + 1 

            expandCluster(P, NeighborPts, ClusterId) 

 

Function expandCluster(P, NeighborPts, ClusterId): 

    P.clusterId = ClusterId 

     



6868	|	Advances	in	Engineering	Innovation	|	Vol.16	|	Issue	6

    for each point P' in NeighborPts: 

        if P'.visited == FALSE: 

            P'.visited = TRUE 

            NeighborPts' = regionQuery(P', eps) 

             

            if sizeof(NeighborPts') >= MinPts: 

                NeighborPts = NeighborPts ∪ NeighborPts' 

         

        if P'.clusterId == UNCLASSIFIED or NOISE: 

            P'.clusterId = ClusterId 

 

Function regionQuery(P, eps): 

    return {P' ∈ D | distance(P, P') ≤ eps} 

 

After obtaining the distance matrix, we apply the DBSCAN (Density-Based Spatial Clustering of Applications with Noise) 

algorithm to perform user clustering using the precomputed distance matrix. The process is illustrated in Pseudocode 1, and 

proceeds as follows: Starting from a point in the dataset, we examine its neighborhood. If the number of points within this 

neighborhood is greater than or equal to a predefined threshold minpts, the point is designated as a core point. The core point, 

along with all other points in its neighborhood, forms a cluster. We then examine the neighborhoods of these neighboring points. 

If any of them are also core points, the cluster is further expanded. This process is repeated until all reachable points have been 

processed. If a point is neither a core point nor within the neighborhood of any core point (i.e., not a border point), it is labeled as 

noise. To ensure the clustering is reasonable, we examine the proportion of noise points after clustering—typically expected to be 

between 1% and 5%. A key advantage of DBSCAN is that it does not require the number of clusters to be specified in advance. It 

can automatically detect the number of clusters and is capable of identifying clusters of arbitrary shape. Compared with other 

clustering methods, DBSCAN’s standout advantage is its robustness to noise. It effectively excludes noise points without affecting 

the quality of the clustering results. 

3.2. GAN-LSTM combined neural network 

Combined Neural Network Architecture. Figure 2 illustrates the overall architecture of the GAN-LSTM method. The model takes 

two types of input: Feature vectors extracted from video saliency, typically obtained using the YOLO algorithm; we apply a 

transfer learning approach to extract these features. User trajectory data {𝑃𝑛}, which is first clustered as described in the previous 

section. Each user group’s trajectory data {𝑃𝑛} is fed into a separate GAN, which augments the data before passing it into an 

LSTM network for model training. The outputs from these LSTM models are then fused in a feature fusion network that integrates 

the content-based feature vectors and trajectory predictions. 

LSTM...

Future Focus 

DBSCAN GAN

 

Figure 2. Overall architecture of the GAN-LSTM framework example with three clusters: DBSCAN clusters users into three 

groups, GANs augment the data, and three LSTM sub-networks predict future viewports 

GAN Architecture. Following user clustering, each group contains fewer trajectory samples. In real-world scenarios, limited 

user data can hinder model training and reduce viewport prediction accuracy. The core components of a GAN are the Generator 

and the Discriminator. Through adversarial training, the generator learns to produce realistic samples, while the discriminator 

learns to distinguish real from fake data. As shown in Figure 3, we set the generator’s input as a noise vector of length 10.  The 

hidden layer has 128 neurons and uses the ReLU activation function. The output dimension is also 10, matching the data format. 

The discriminator input layer also has 10 dimensions to accept either real or generated samples. Its hidden layer contains 128 

neurons and uses the LeakyReLU activation function to prevent dead neurons. The output layer uses the Sigmoid function to 

perform binary classification, indicating whether the input data is real. After training both the generator and discriminator, the 

GAN can generate synthetic samples that resemble the original dataset, thereby augmenting training data and improving model 

generalization—especially valuable when data is scarce. We apply this GAN-based augmentation to all user clusters to balance 

the sample sizes across groups and enhance model robustness. 



Advances	in	Engineering	Innovation	|	Vol.16	|	Issue	6	|	6969

Noise input
10

Linear

10  128
ReLU Activation

Linear

128 10
Tanh Activation

Generated Data
10

Input Data
10

Linear

10 128
LeakyReLU 
Activation

Linear

128 10
Sigmoid ActivationReal or Fake

 

Figure 3. GAN network structure numbers indicate network dimensionality 

LSTM Architecture. In the GAN-LSTM framework, the LSTM component is used to model and train user trajectory data—

treated as a time series—for predicting the user’s future gaze position. The trajectory data is represented as 𝑃𝑡, where the input 

format consists of the user's 2D coordinates. The first dimension corresponds to the time step, and the second dimension represents 

spatial coordinates. The spatial coordinates are extracted from the user’s yaw and pitch angles, while the roll angle is omitted due 

to its negligible variation in the data. Simultaneously, video saliency features are input to enable feature fusion. The structure of 

this part of the network is shown in Figure 4. Here, 𝑃𝑡 denotes the trajectory data, which is encoded by the LSTM to capture 

historical positional information. The saliency feature 𝑆𝑡 is flattened via a feature flattening layer (Flatten) and passed through the 

LSTM network. Then, the outputs from the trajectory and saliency streams are concatenated in a feature fusion layer (Concatenate) 

to integrate positional and saliency information. 

Subsequently, the model computes the predicted position increment to estimate the next-step trajectory 𝑃𝑡+1. This process is 

repeated cyclically to generate predictions of the user's future viewports over time. 

...

Concatenate

LSTM

FC

LSTM

LSTM

add

Flatten

Pt+1

Pt St+1

Concatenate

LSTM

FC

LSTM

LSTM

add

Flatten

Pt+2

Pt+1 St+2

...

Concatenate

LSTM

LSTM

LSTM

Flatten

Pt-1 St

 

Figure 4. LSTM network unit 

The specific design of the LSTM unit is as follows. The forget gate is calculated using Equation (1), where 𝑓𝑡 denotes the gate 

output, and σ is the sigmoid activation function used to constrain the output within the range . Here, ℎ𝑡−1 represents the hidden 

state from the previous time step, 𝑥𝑡 is the current input, and 𝑊𝑓､𝑏𝑓 denote the weight matrix and bias for the forget gate. The 

input gate, which determines how much of the current input affects the LSTM cell state, is defined by Equations (2) and (3). The 



7070	|	Advances	in	Engineering	Innovation	|	Vol.16	|	Issue	6

candidate cell state is denoted by �̃�𝑡, and the gate output is denoted by 𝑖𝑡. 𝑊𝑖､𝑊𝐶､𝑏𝑖､𝑏𝐶  are the corresponding weights and biases 

for updating the LSTM unit 𝐶𝑡. After that, the cell state is updated as shown in Equation (4). Finally, the output gate generates the 

current cell output 𝑜𝑡, as given in Equation (5), and the hidden state ℎ𝑡 is updated as shown in Equation (6). 

 𝑓𝑡 = σ(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (1) 

 𝑖𝑡 = σ(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2) 

 �̃�𝑡 = tanh(𝑊𝐶 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (3) 

 𝐶𝑡 = 𝑓𝑡 . 𝐶𝑡−1 + 𝑖𝑡 . �̃�𝑡 (4) 

 𝑜𝑡 = σ(𝑊𝑜 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (5) 

 ℎ𝑡 = 𝑜𝑡 . 𝑡𝑎𝑛ℎ(𝐶𝑡) (6) 

3.3. Dynamic feature fusion network 

For the three user groups obtained from clustering, we construct three independent LSTM-based viewport prediction models. Each 

LSTM model is trained on trajectory data that has been clustered and augmented in the previous steps. When the trajectory data 

of a target (or current) user is received, each LSTM model generates a prediction of the future viewport. These predictions are then 

integrated using a set of weights α, as defined in Equation (7): 

 𝑂𝑡 = ∑ α𝑛𝑜𝑛
𝑛
1  (7) 

 𝐷𝑛 = |𝑜𝑛,𝑡 − 𝑃𝑡| (8) 

LSTM

LSTMDBSCAN
GAN

LSTM

GAN

GAN

Weight 
combination

Distance 
comparison

Change weight

 

Figure 5. Dynamic feedback structure 

To enhance the performance of the viewport prediction model, we employ a feedback-based strategy during the prediction 

integration stage. Figure 5 illustrates the structure of this dynamic feedback mechanism, which operates as follows: Initially, in 

the integration phase, the predicted future viewport is obtained by averaging the outputs from multiple LSTM models. The system 

then evaluates the loss value of the prediction. If the loss is too high, it computes the distance between each LSTM model’s 

predicted point and the ground truth point, denoted as D1,2,3, …n, as defined in Equation (8). Here, 𝑜𝑛,𝑡 represents the predicted 

result from each LSTM model, and 𝑃𝑡 is the true position. The LSTM model with the minimum distance Dn is identified as the 

best-performing model, and its integration weight αn is set to 50%. The remaining 50% is distributed evenly among the other 

models. Notably, the best-performing model’s weight is intentionally capped at 50% to avoid underutilization of other models, 

which could reduce diversity and generalization capacity. 

This cluster-based viewport prediction model, constructed through the above components, not only delivers high prediction 

accuracy but also exhibits strong adaptability to sudden or unexpected user behavior. In the integration stage, dynamic adjustment 

of model weights via feedback allows the system to flexibly adapt to changes. As a result, the model's responsiveness and 

robustness are significantly improved. 

4. Experimental results and analysis 

4.1. Experimental setup 

In this section, we design a series of experiments to validate the effectiveness of the proposed GAN-LSTM method for 360-degree 

viewport prediction. The dataset used (dataset source and size to be filled in) consists of videos split into training and testing sets. 

The dataset includes trajectory data from 20 participants under 20 different viewing modes, yielding a total of 400 gaze-tracking 

samples. We use an 4:1 ratio to divide the data into training and validation sets. The GAN-LSTM model is implemented in 

TensorFlow and trained using CUDA acceleration for multi-task LSTM processing. Table 1 summarizes the training parameters 

for both GAN and LSTM modules. 



Advances	in	Engineering	Innovation	|	Vol.16	|	Issue	6	|	7171

Table 1. GAN-LSTM model training parameters 

GAN-net 

Hidden layer size 128 

Batch processing size 5 

Optimizer Adam 

Training rounds 10000 

Learning rate 0.0002 

LSTM-net 

Prediction window 20 

Optimizer Adam 

Number of neurons 1024 

Learning rate 0.0005 

 

During GAN training, we set the hidden layer size to 128, the batch size to 5, the number of training epochs to 10,000, and the 

learning rate to 0.0002. Both the generator and discriminator are trained using the Adam optimizer. The training process involves 

alternating updates to the generator and discriminator losses. The discriminator loss measures how well it distinguishes between 

real and generated data, while the generator loss measures the generator’s ability to deceive the discriminator. 

As shown in Table 2, after 5,000 epochs, the discriminator loss decreases to near zero, indicating that the GAN effectively 

generates samples similar to the real data. 

Table 2. GAN training results 

Epoch 1,200 1,500 1,800 2,100 2,400 3,000 5,000 

d_loss 0.050 0.040 0.030 0.010 0.008 0.002 0.001 

Epoch 2500 5000 7500 10000 12500 15000 17500 

g_loss 6.0 9.0 12.5 15.0 17.5 20.0 21.5 

4.2. Evaluation 

Comparison Methods: We compare our proposed GAN-LSTM method with five state-of-the-art viewport prediction methods: 

DPH , Fixation , MFF , Graph Learning , and Sparkle . We follow the default settings of each baseline and fine-tune them using 

our training dataset. 

Viewport prediction for 360° video aims to forecast the user's future field of view, which cannot be fully captured within a 

single viewport. Consequently, some existing methods—especially those focused on egocentric gaze prediction for a single 

subject—are not directly applicable to viewport prediction (VS). Our task involves predicting viewports for multiple users with 

diverse characteristics. To highlight the advantages of our method in handling user diversity, we do not compare it with methods 

designed for egocentric (single-user) attention prediction. 

Evaluation metrics: We employ three widely used metrics to evaluate the performance of each method: Accuracy: The ratio of 

correctly predicted tiles to the union of predicted and actual viewed tiles. F-score: A harmonic mean of precision and recall, 

commonly used in classification tasks. Mean Squared Error (MSE): A standard regression metric that measures the average of the 

squared differences between predicted and actual values. The length of each scanpath is set to the average scanpath length in the 

training dataset. For evaluation, each predicted scanpath is compared against all actual scanpaths from the participants to compute 

the metrics. Higher accuracy and F-score values indicate better prediction quality, while a lower MSE reflects better regression 

performance. 

Table 3 presents the prediction results of our method compared with other methods on two datasets:  and . Our method 

significantly outperforms all five baseline methods across all three metrics on both datasets. These results demonstrate the 

effectiveness and generalization capability of our GAN-LSTM approach for viewport prediction (VS). 

Table 3. Accuracy, F-score, and MSE on two datasets 

Approaches 
Salient360 dataset HTRO dataset 

Accuracy↑ F-score↑ MSE↓ Accuracy↑ F-score↑ MSE↓ 

DHP 79.21% 0.51 0.23 72.56% 0.47 0.24 

Fixation 84.22% 0.53 0.19 83.15% 0.51 0.20 

MFF 81.82% 0.63 0.17 82.13% 0.64 0.17 

Graph Learning 82.32% 0.87 0.12 83.17% 0.86 0.13 

Sparkle 88.66% 0.88 0.10 89.27% 0.87 0.11 

OURS 92.26% 0.89 0.09 92.12% 0.88 0.09 

 

Next, we visualize the predicted trajectories of several methods alongside the actual trajectories. As shown in Figure 6, our 

method produces predicted trajectories that align more closely with the ground truth compared to other methods. In summary, both 



7272	|	Advances	in	Engineering	Innovation	|	Vol.16	|	Issue	6

the qualitative and quantitative results demonstrate that our method is highly effective for viewport prediction (VS) and performs 

significantly better than existing approaches. 

 

Figure 6. Qualitative results – trajectory prediction comparison 

5. Conclusion 

In this study, we propose an effective method for predicting future viewports in 360-degree videos. Our review of existing literature 

reveals that some users exhibit distinct behavioral patterns, making global models insufficient for accurately predicting their 

viewports. Therefore, successful viewport prediction must include both the analysis of user behavior and the integration of 

historical gaze trajectories and video saliency through a robust predictive model. This leads us to formulate viewport prediction as 

a multi-task learning problem. Experimental results on two datasets confirm the advanced performance of our proposed GAN-

LSTM model in 360-degree video viewport prediction. 

Predicting future viewport content is crucial for delivering a high-quality immersive experience in panoramic video 

environments. This paper focuses on multi-factor-based viewport prediction, taking into account variations in user viewing 

behaviors. Predicting viewer gaze trajectories from a user-group-based perspective presents a promising research direction. Such 

prediction can be enhanced through distributed learning frameworks, offering greater accuracy in viewport prediction. 

The proposed method also shows strong potential for future applications. For instance, the rapid development of live-streamed 

and interactive media will further increase the difficulty of model training. By modeling user behavioral patterns, our approach 

can help improve the efficiency and accuracy of viewport prediction in panoramic video services. 

References 

[1] Bastug, E., Bennis, M., Medard, M., & Debbah, M. (2017). Toward interconnected virtual reality: Opportunities, challenges, and 

enablers. IEEE Communications Magazine, 55(6), 110–117. https://doi.org/10.1109/MCOM.2017.1601089   

[2] Mao, Y., Sun, L., Liu, Y., & Wang, Y. (2020). Low-latency FoV-adaptive coding and streaming for interactive 360° video streaming. 

Proceedings of the 28th ACM International Conference on Multimedia (pp. 3696–3704). https://doi.org/10.1145/3394171.3413751   



Advances	in	Engineering	Innovation	|	Vol.16	|	Issue	6	|	7373

[3] Zhang, X., Cheung, G., Zhao, Y., Le Callet, P., Lin, C., & Tan, J. Z. G. (2021). Graph learning based head movement prediction for 

interactive 360 video streaming. IEEE Transactions on Image Processing, 30, 4622–4636. https://doi.org/10.1109/TIP.2021.3073283   

[4] Wang, S., Yang, S., Su, H., Zhao, C., Xu, C., Qian, F., Wang, N., & Xu, Z. (2024). Robust saliency-driven quality adaptation for mobile 

360-degree video streaming. IEEE Transactions on Mobile Computing, 23(2), 1312–1329. https://doi.org/10.1109/TMC.2023.3294698   

[5] Wang, S., Yang, S., Su, H., Zhao, C., Xu, C., Qian, F., Wang, N., & Xu, Z. (2024). Robust saliency-driven quality adaptation for mobile 

360-degree video streaming. IEEE Transactions on Mobile Computing, 23(2), 1312–1329. https://doi.org/10.1109/TMC.2024.3360123 

[6] Tu, J., Chen, C., Yang, Z., Li, M., Xu, Q., & Guan, X. (2023). PSTile: Perception-sensitivity-based 360° tiled video streaming for 

industrial surveillance. IEEE Transactions on Industrial Informatics, 19(9), 9777–9789. https://doi.org/10.1109/TII.2022.3216812   

[7] Jiang, Z., Ji, B., Wu, F., Liu, Y., & Zhang, Y. (2020). Reinforcement learning based rate adaptation for 360-degree video streaming. 

IEEE Transactions on Broadcasting, 67(2), 409–423. https://doi.org/10.1109/TBC.2020.3034157   

[8] Zhang, J., Qin, Q., Wan, T., & Luo, X. (2022). Perception-based pseudo-motion response for 360-degree video streaming. IEEE Signal 

Processing Letters, 29, 1973–1977. https://doi.org/10.1109/LSP.2022.3200882   

[9] Park, S., Lee, J., & Choi, J. (2021). Mosaic: Advancing user quality of experience in 360-degree video streaming with machine learning. 

IEEE Transactions on Network and Service Management, 18(1), 1000–1015. https://doi.org/10.1109/TNSM.2020.3047821   

[10] Hou, X., Wang, S., Zhou, Z., Wang, Y., & Wu, D. (2020). Predictive adaptive streaming to enable mobile 360-degree and VR 

experiences. IEEE Transactions on Multimedia, 23, 716–731. https://doi.org/10.1109/TMM.2020.2990446   

[11] Zou, J., Hao, T., Yu, C., & Sun, H. (2019). Probabilistic tile visibility-based server-side rate adaptation for adaptive 360-degree video 

streaming. IEEE Journal of Selected Topics in Signal Processing, 14(1), 161–176. https://doi.org/10.1109/JSTSP.2019.2951538   

[12] Yuan, H., Chen, Y., Yu, M., & Zhu, W. (2019). Spatial and temporal consistency-aware dynamic adaptive streaming for 360-degree 

videos. IEEE Journal of Selected Topics in Signal Processing, 14(1), 177–193. https://doi.org/10.1109/JSTSP.2019.2952001   

[13] Hassan, S. M. H. U., Lee, Y., & Kim, M. (2023). User profile-based viewport prediction using federated learning in real-time 360-degree 

video streaming. 2023 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (pp. 1–7). 

https://doi.org/10.1109/BMSB58369.2023.10211189   

[14] Chen, J., Sun, Y., He, D., & Wu, E. (2021). Sparkle: User-aware viewport prediction in 360-degree video streaming. IEEE Transactions 

on Multimedia, 23, 3853–3866. https://doi.org/10.1109/TMM.2020.3030440   

[15] Dong, P., Zhang, S., Zhang, H., & Xu, Y. (2023). Predicting long-term field of view in 360-degree video streaming. IEEE Network, 

37(1), 26–33. https://doi.org/10.1109/MNET.123.2200371   

[16] Jin, Y., Zhang, Z., Wang, W., & Li, S. (2023). Ebublio: Edge-assisted multiuser 360° video streaming. IEEE Internet of Things Journal, 

10(17), 15408–15419. https://doi.org/10.1109/JIOT.2023.3283859   

[17] Chen, J., Sun, Y., He, D., & Wu, E. (2023). Live360: Viewport-aware transmission optimization in live 360-degree video streaming. 

IEEE Transactions on Broadcasting, 69(1), 85–96. https://doi.org/10.1109/TBC.2022.3220616   

[18] Nguyen, A., & Yan, Z. (2023). Enhancing 360 video streaming through salient content in head-mounted displays. Sensors, 23(5), Article 

2470. https://doi.org/10.3390/s23052470   

[19] Xu, X., Chen, L., & Liu, Y. (2023). Multi-features fusion based viewport prediction with GNN for 360-degree video streaming. 2023 

IEEE International Conference on Metaverse Computing, Networking and Applications (pp. 57–64). 

https://doi.org/10.1109/MetaCom57706.2023.00020   

[20] Wang, W., Shen, J., Guo, F., Cheng, M., & Borji, A. (2018). Revisiting video saliency: A large-scale benchmark and a new model. 2018 

IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 4894–4903). https://doi.org/10.1109/CVPR.2018.00514   

[21] Xu, M., Song, Y., Wang, J., Qiao, M., Huo, L., & Wang, Z. (2017). Predicting head movement in panoramic video: A deep 

reinforcement learning approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(11), 2693–2708. 

https://doi.org/10.1109/TPAMI.2018.2858783   

[22] Chopra, L., Chakraborty, D., & Mondal, A. (2021). PARIMA: Viewport adaptive 360-degree video streaming. Proceedings of the Web 

Conference 2021 (pp. 2379–2391). https://doi.org/10.1145/3442381.3449857   

[23] Li, J., Zhu, C., Xu, Z., Liu, Y., & Zhang, Z. (2023). Spherical convolution empowered FoV prediction in 360-degree video multicast 

with limited FoV feedback. IEEE Transactions on Circuits and Systems for Video Technology, 33(12), 7245–7259. 

https://doi.org/10.1109/TCSVT.2023.3275976   

[24] Li, C., Xu, M., Zhang, S., & Le Callet, P. (2019). Very long term field of view prediction for 360-degree video streaming. 2019 IEEE 

Conference on Multimedia Information Processing and Retrieval (pp. 297–302). https://doi.org/10.1109/MIPR.2019.00061   

[25] Fan, C., Lee, J., Lo, W., Huang, C., Chen, K., & Hsu, C. (2017). Fixation prediction for 360° video streaming in head-mounted virtual 

reality. Proceedings of the 27th Workshop on Network and Operating Systems Support for Digital Audio and Video (pp. 1–6). 

https://doi.org/10.1145/3083165.3083181 


