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Abstract. This paper aims to study the spatial distribution pattern and influencing factors of land use carbon budget in 19 urban
agglomerations in China based on the "dual carbon" goal, and provide a theoretical basis for land use optimization and "dual
carbon" decision-making in the development process of China's urban agglomerations. Based on land use data from 19 urban
agglomerations in China in 2022, this study calculates the carbon budget for these agglomerations. Spatial autocorrelation
analysis and cluster analysis are employed to study the spatial variation pattern of the carbon budget. Furthermore, the
influencing factors of the carbon budget are explored from economic, demographic, and energy consumption perspectives, and a
regression model for the carbon budget based on key influencing factors is constructed. Research has found that: (1) In 2022, the
spatial pattern of the carbon budget across the 19 urban agglomerations in China exhibited characteristics of "higher carbon
emissions in the east and lower in the west, higher carbon sequestration in the south and lower in the north." Based on the carbon
budget distance, these agglomerations can be roughly clustered into five categories. (2) According to the hot spot analysis of the
carbon budget, hot spots for carbon emissions are concentrated around the Bohai Rim in northern China, while hot spots for
carbon sequestration are concentrated in northeastern, southeastern, and southwestern regions. (3) Energy consumption,
population size, and GDP are the primary factors influencing carbon emissions, while net primary productivity (NPP) of
vegetation and precipitation are the main factors influencing carbon sequestration. In summary, the land use of urban
agglomerations should be rationally planned, ecological protection should be emphasized, and the carbon sink capacity of urban
agglomerations should be consolidated and improved. Formulate differentiated carbon emission reduction measures according to
local conditions, focus on optimizing energy consumption and industrial structure, reasonably control the number of population,
build urban green space, and give full play to the important role of vegetation in carbon absorption.
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1. Introduction

Since the beginning of the twenty-first century, rapid economic development has been accompanied by increasingly severe
global climate change, with carbon emissions being one of the key drivers of global warming [1, 2]. In 2020, President Xi
Jinping delivered an important address at the 75th Session of the United Nations General Assembly, proposing major strategic
arrangements to accelerate the formation of green modes of production and lifestyles and making a significant commitment to
carbon neutrality [3]. In recent years, global carbon dioxide emissions have continued to rise. According to the International
Energy Agency’s 2023 CO₂ Emissions Report, global CO₂ emissions in 2023 increased by 410 million tonnes, a growth rate of
1.1%, reaching a record high of 37.4 billion tonnes. China’s CO₂ emissions in 2023 reached 12.6 billion tonnes, about 4% higher
than in 2022. In response, China will adopt stronger policies and measures to strive to ensure the realization of the major goals of
carbon peaking and carbon neutrality, and to make greater efforts and contributions toward achieving the objectives of the Paris
Agreement.

Land, as the carrier of economic development, exerts a significant influence on both carbon emissions and carbon
sequestration through changes in its utilization [4-6]. During the process of urbanization and the formation of urban
agglomerations, patterns of land use have undergone rapid transformation, most notably characterized by the large-scale
conversion of agricultural and ecological land into construction land. Such shifts in urban land use not only alter the structure
and function of terrestrial ecosystems but also impair their carbon sink capacity, ultimately leading to a continuous rise in the
total volume and rate of carbon emissions [7-11]. Statistics indicate that carbon emissions resulting from urban land use change
account for approximately one-third of total emissions caused by human activities, second only to those from fossil fuel
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combustion [12]. Therefore, examining land use changes in cities and urban agglomerations holds considerable significance for
achieving China’s “dual carbon” goals.

In recent years, research on the spatiotemporal evolution characteristics and driving factors of the carbon budget in regional
urban agglomerations and individual cities has gradually become a hotspot. At the scale of a single urban agglomeration, Cheng
et al [13]. calculated the carbon budget of the Lanxi Urban Agglomeration from 2000 to 2020 based on nighttime light data and
net primary productivity (NPP) data, in order to explore its spatiotemporal differentiation patterns. At the scale of regional urban
agglomerations, Xu [14], using the dataset of CO₂ emissions in Chinese cities released by the China Urban Greenhouse Gas
Working Group, examined the overall characteristics, composition, spatial distribution, transformation patterns of carbon
emissions, as well as the structural and spatial characteristics of carbon sinks in China’s five major urban agglomerations. Liu et
al [15]. employed the Enhanced Vegetation Index, adjusted nighttime light index, and LandScan population data to construct a
model for estimating urban carbon emissions in different regions of China, thereby improving the understanding of
spatiotemporal and regional differences in CO₂ emissions at the urban scale and providing a scientific basis for formulating
feasible CO₂ reduction policies. Zhu et al [16]., using a geographic detector, analyzed the driving factors influencing the coupling
coordination degree between carbon emission reduction and high-quality economic development in the Yangtze River Delta
Urban Agglomeration from 2006 to 2021 from both temporal and spatial perspectives. Regarding the influencing factors and
mechanisms of the carbon budget, Song [17] integrated various socioeconomic data and applied both the ordinary least squares
(OLS) model and geographically weighted regression (GWR) model to investigate the mechanisms by which factors influence
per capita carbon emissions from road transportation in different regions of the Central Plains Urban Agglomeration over
multiple periods, and proposed recommendations for achieving carbon peaking in road transportation. Zhao et al [18]., by
integrating the DMSP-OLS and NPP-VIIRS nighttime light datasets, examined the spatiotemporal evolution and influencing
factors of carbon emissions from urban residents in China, concluding that extreme weather events and energy use efficiency
have significant impacts on carbon emissions.

In summary, there has been no study thus far that approaches the analysis of the overall spatial distribution pattern and
driving mechanisms of the carbon budget from the perspective of all 19 urban agglomerations in China. Therefore, based on
2022 land use data for China, this study calculates the carbon budget of the 19 urban agglomerations, processes the data using
spatial autocorrelation analysis and hot spot analysis in ArcGIS 10.2 to obtain the spatial distribution characteristics of the carbon
budget, and further applies correlation analysis and regression modeling to examine the influencing factors. The aim is to provide
theoretical support for optimizing land use and achieving sustainable development of China’s urban agglomerations under the
“dual carbon” framework.

2. Study area overview

This study takes as its research area the 19 urban agglomerations mentioned in the National New-type Urbanization Plan (2014–
2020), which are currently at different stages of development and will undertake different missions in the course of future
development. Referring to relevant studies [19, 20], these 19 urban agglomerations are categorized into six major regions—North
China, East China, Northeast China, Central-South China, Southwest China, and Northwest China—as shown in Table 1.

Table 1. Urban agglomerations and their counterparts

Region Urban Agglomeration

North China Beijing–Tianjin–Hebei Urban Agglomeration, Hohhot–Baotou–Ordos–Yulin Urban Agglomeration, Central
Shanxi Urban Agglomeration

East China Shandong Peninsula Urban Agglomeration, Yangtze River Delta Urban Agglomeration, West Coast of the Strait
Urban Agglomeration

Northeast
China Harbin–Changchun Urban Agglomeration, Central–Southern Liaoning Urban Agglomeration

Central–
South China

Central Plains Urban Agglomeration, Middle Reaches of the Yangtze River Urban Agglomeration, Pearl River
Delta Urban Agglomeration, Beibu Gulf Urban Agglomeration

Southwest
China

Chengdu–Chongqing Urban Agglomeration, Central Yunnan Urban Agglomeration, Central Guizhou Urban
Agglomeration

Northwest
China

Northern Tianshan Urban Agglomeration, Ningxia Yellow River Urban Agglomeration, Lanxi Urban
Agglomeration, Guanzhong Plain Urban Agglomeration
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3. Data sources and research methods

3.1. Data sources

The primary data used in this study include: (1) Land Use Data: Sourced from the China Land Cover Dataset (CLCD) produced
by Professor Yang Jie and Professor Huang Xin’s team at Wuhan University (https://zenodo.org/records/8176941). This study
selects the 2022 raster land use data at 30 m resolution. Using ArcGIS 10.2, the data were reclassified, resampled, and clipped to
obtain land use data within the study area, categorized into six land types: cropland, forest, grassland, water bodies, construction
land, and unused land. (2) Net Primary Productivity (NPP) Data: Obtained from NASA’s Earth Science Data portal, specifically
the MOD17A3HGFv061 dataset (https://lpdaac.usgs.gov/products/mod17a3hgfv061/). (3) Temperature Data: Sourced from the
National Centers for Environmental Information (NCEI) under the National Oceanic and Atmospheric Administration (NOAA)
of the United States (https://www.ncei.noaa.gov/data/global-summary-of-the-day/archive/). (4) Precipitation Data: Acquired from
the ERA5-Land dataset published by the European Union and the European Centre for Medium-Range Weather Forecasts
(https://www.ecmwf.int/en/era5-land). (5) Socioeconomic and Energy Consumption Data: Obtained from provincial and
municipal statistical yearbooks, the China City Statistical Yearbook, and the China Energy Statistical Yearbook.

3.2. Research methods

3.2.1. Calculation of land use carbon budget

This study, referring to previous research on carbon emissions and carbon sequestration, identifies cropland and construction
land as carbon sources, and forest, grassland, water bodies, and unused land as carbon sinks [21-24]. The carbon budget of each
land use type is directly calculated by combining its area with the corresponding carbon emission or sequestration coefficient.
Specifically, the carbon emission coefficient of cropland is 0.4970 t·hm⁻² [23]; the carbon emission coefficient of construction
land is derived from the values of six major regions in China published by the Ministry of Natural Resources [25], specifically:
81.2 t·hm⁻² (North China), 65.3 t·hm⁻² (East China), 48.8 t·hm⁻² (Northeast China), 46.5 t·hm⁻² (Central–South China), 49.1
t·hm⁻² (Southwest China), and 33.9 t·hm⁻² (Northwest China). The carbon sequestration coefficients of grassland and forest are –
0.021 t·hm⁻² and –0.581 t·hm⁻², respectively [26, 27]; the carbon sequestration coefficient of water bodies is –0.253 t·hm⁻² [28];
and the carbon sequestration coefficient of unused land is –0.005 t·hm⁻² [24]. Positive values indicate carbon emissions, and
negative values indicate carbon sequestration. The carbon budget is specifically calculated as follows [29]:

(1)

In the formula,     represents the carbon budget,     represents the carbon budget of the    -th land use type,     represents
the area of the    -th land use type, and     represents the carbon emission coefficient of the    -th land use type.

3.2.2. Spatial autocorrelation analysis

The global Moran’s I index can describe the clustering of the carbon budget of China’s urban agglomerations in the overall
spatial distribution. The calculation formula for the global Moran’s I index is as follows:

(2)

In the formula: n is the total number of study regions;     and     are the carbon budgets of cities     and    ;     is the mean
carbon budget of all regions in the study area; and      is the spatial weight matrix. The global Moran’s      index ranges
between –1 and 1. When     > 0, there is positive spatial correlation, indicating that the carbon budgets of cities tend to cluster
spatially; when      < 0, there is negative spatial correlation, indicating that the carbon budgets of cities tend to be dispersed
spatially; and when     = 0, the carbon budgets of cities are randomly distributed in space.

3.2.3. Hot spot analysis

Hot spot analysis (Getis-Ord Gi*) is a method used for local spatial autocorrelation analysis, which can intuitively examine the
spatial distribution characteristics of urban carbon budgets. Using the Hot Spot Analysis tool in ArcGIS 10.2, cold and hot spots
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of carbon emissions and carbon sequestration are identified. A high Z-score indicates that the region is a hot spot in terms of
carbon budget, and the higher the Z-score, the more tightly clustered the hot spot; a low Z-score indicates that the region is a cold
spot, and the lower the Z-score, the more tightly clustered the cold spot.

3.2.4. Cluster analysis

In this study, SPSS 20.0 software was used to perform cluster analysis of the 19 urban agglomerations based on the carbon
budget status of different land use types in each agglomeration, using the hierarchical clustering method.

3.2.5. Geographic detector

This study applies factor detection and interaction detection within the Geographic Detector framework to investigate the effects
of different influencing factors and their interactions on the spatial distribution pattern of the carbon budget in China’s 19 urban
agglomerations. The calculation formula is as follows:

(3)

In the formula:     represents the stratification of the influencing factor;     and     represent the number of units in layer  
  and in the entire study area, respectively;     and     are the variances of the carbon budget in layer     and in the entire study
area, respectively;     represents the explanatory power of the influencing factor on the carbon budget, ranging from 0 to 1, with
larger values indicating stronger explanatory power.

3.2.6. SPSS regression analysis

The regression model between the carbon budget and its influencing factors for China’s 19 urban agglomerations was
constructed using SPSS 20.0 software.

4. Results and analysis

4.1. Spatial pattern of carbon budget in china’s urban agglomerations based on land use

4.1.1. Spatial pattern of land use in china’s urban agglomerations

Based on the land use raster data, the spatial distribution pattern of land use in China’s urban agglomerations was obtained, as
shown in Figure 1. Construction land is concentrated in North China and East China, mainly including the Beijing–Tianjin–
Hebei Urban Agglomeration, Shandong Peninsula Urban Agglomeration, and Yangtze River Delta Urban Agglomeration.
Cropland is relatively concentrated and widely distributed across Northeast China, North China, Central–South China, and
Southwest China, mainly covering the Harbin–Changchun Urban Agglomeration, Central Plains Urban Agglomeration, and
Chengdu–Chongqing Urban Agglomeration. Forests are mainly distributed in Northeast, Southeast, and Southwest China,
representing the country’s three major forested regions, including the Harbin–Changchun Urban Agglomeration, West Coast of
the Strait Urban Agglomeration, and Central Yunnan Urban Agglomeration. Water bodies are mainly distributed in Southeast
China, including the Yangtze River Delta Urban Agglomeration and Middle Reaches of the Yangtze River Urban Agglomeration.
Unused land and grassland are primarily concentrated in Northwest China, including the Northern Tianshan Urban
Agglomeration and Hohhot–Baotou–Ordos–Yulin Urban Agglomeration. Overall, the distribution is uneven, showing a spatial
pattern of “more in the west, less in the east.”
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Figure 1. Map of land use type of urban agglomerations in China in 2022

Note: The map approval number is GS(2019)1822, the same applies hereinafter.

4.1.2. Spatial pattern of carbon budget in urban agglomerations based on land use

Based on the land use data and the carbon budget calculation coefficients, the carbon budgets and their spatial patterns for
China’s 19 urban agglomerations in 2022 were obtained, as shown in Figures 2 and 3. Overall, the spatial distribution of carbon
emissions shows a pattern of “higher in the east and lower in the west,” while carbon sequestration exhibits a pattern of “higher
in the south and lower in the north.” At the regional scale, carbon emissions are relatively high in Northeast China, North China,
East China, and Central–South China. In contrast, local areas in Northeast China, the eastern coastal regions, and Southwest
China have relatively high carbon sequestration, representing the major carbon sink areas.
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Figure 2. Spatial pattern of carbon emissions in China's urban agglomerations in 2022

Figure 3. Spatial pattern of carbon sequestration in China's urban agglomerations in 2022
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Figure 4. Carbon emissions and carbon absorption of China's urban agglomerations in 2022

Based on the carbon budget data of urban agglomerations, as shown in Figure 4, areas of high carbon emissions in 2022 are
mainly concentrated in the Central–Southern Liaoning, Beijing–Tianjin–Hebei, and Shandong Peninsula Urban Agglomerations.
In terms of land use types, the Central–Southern Liaoning Urban Agglomeration has the largest area of construction land and
correspondingly the highest carbon emissions, reaching 343.9 million tonnes. At the city scale, high carbon emissions are mainly
observed in Beijing, Tianjin, and Qingdao, each exceeding 17.52 million tonnes. In contrast, the Lanxi Urban Agglomeration has
the smallest construction land area and the lowest carbon emissions, approximately 2.01 million tonnes. This indicates significant
differences in carbon emissions between urban agglomerations, primarily influenced by the size of construction land. With the
rapid development of China’s economy, these high-emission areas will face increasing environmental pressure.

In 2022, areas of high carbon sequestration are mainly distributed in the Harbin–Changchun, West Coast of the Strait,
Chengdu–Chongqing, and Central Guizhou Urban Agglomerations, encompassing cities such as Mudanjiang, Chongqing, and
Ganzhou, with carbon sequestration exceeding 0.99 million tonnes in each case. Regarding land use types, the West Coast of the
Strait Urban Agglomeration has the largest forest area and the highest carbon sequestration, approximately 12.14 million tonnes.
The Ningxia Yellow River Urban Agglomeration has the smallest forest area and the lowest carbon sequestration, around 0.08
million tonnes. The differences in carbon sequestration among urban agglomerations are also significant, primarily determined
by forest area. As the largest carbon pool in ecosystems, forests play a crucial role in absorbing CO₂ and mitigating global
climate warming.

4.1.3. Clustering characteristics of carbon budget in china’s urban agglomerations based on land use

Based on the carbon emissions and sequestration data of different land use types in the 19 urban agglomerations, hierarchical
cluster analysis was performed on the samples, dividing the 19 urban agglomerations into five categories, as shown in Figures 5
and 6. Category I includes the Beijing–Tianjin–Hebei and Central–Southern Liaoning Urban Agglomerations. These urban
agglomerations have large areas of construction land, high levels of urbanization and industrialization, and extensive
construction land that supports substantial economic activities, resulting in the highest carbon emissions from construction land
and the largest share in total carbon emissions. Additionally, cropland carbon emissions in Category I urban agglomerations are
also relatively high, leading to the highest total carbon emissions. Category II includes the Middle Reaches of the Yangtze River
and Yangtze River Delta Urban Agglomerations. Located in the middle and lower Yangtze River plains, these agglomerations
contain extensive wetlands, tributaries, and freshwater lakes, with the largest water areas and the highest carbon sequestration.
Category III includes the Lanxi and Hohhot–Baotou–Ordos–Yulin Urban Agglomerations. Situated in Northwest China, the
unique continental climate and relatively large urban areas result in extensive grassland coverage, giving Category III urban
agglomerations the highest carbon sequestration from grasslands. Category IV is the Northern Tianshan Urban Agglomeration.
This agglomeration has the largest carbon sequestration from unused land. Due to its relatively remote location and arid climate,
the population and economic development levels are low, and land development is limited. Category V includes the remaining
urban agglomerations, such as the Harbin–Changchun, Ningxia Yellow River, and Central Shanxi Urban Agglomerations, which
are widely distributed. Except for the West Coast of the Strait Urban Agglomeration, which has relatively high forest carbon
sequestration, the carbon budget of other land use types and the total carbon budget are not prominent.
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Figure 5. Phylogenetic cluster analysis pedigree diagram of urban agglomeration

Figure 6. Systematic cluster analysis results of 19 urban agglomerations

4.2. Spatial autocorrelation and hot spot analysis of carbon budget in china’s urban agglomerations

Based on the carbon budget data of the 19 urban agglomerations, the global Moran’s I indices for carbon emissions and carbon
sequestration in 2022 were calculated as 0.541398 (P < 0.01) and 0.272707 (P < 0.01), respectively. Both Z-scores exceed 2.58,
indicating that carbon emissions and carbon sequestration in China’s urban agglomerations exhibit significant positive spatial
correlation and clustering.

To further examine the spatial clustering characteristics of carbon emissions in urban agglomerations, hot spot analysis was
used to display the spatial distribution of cold and hot spots for carbon emissions and sequestration, as shown in Figures 7 and 8.
The hot spot areas for carbon emissions are mainly concentrated in the Beijing–Tianjin–Hebei and Shandong Peninsula Urban
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Agglomerations, while secondary hot spots are primarily found in the Harbin–Changchun, Central Shanxi, and Central Plains
Urban Agglomerations. The cold and secondary cold spots are widely distributed across the Northern Tianshan, Lanxi, Ningxia
Yellow River, Guanzhong Plain, Chengdu–Chongqing, Central Guizhou, Middle Reaches of the Yangtze River, and Beibu Gulf
Urban Agglomerations, covering Northwest, Southwest, and Central–South China. Overall, carbon emissions in China’s urban
agglomerations display a spatial pattern of “hot spots clustered in the Bohai Rim of northern China and cold spots clustered in
southern China.”

The spatial distribution of carbon sequestration cold and hot spots differs significantly from that of carbon emissions. Hot
spots of carbon sequestration are mainly concentrated in the Harbin–Changchun, Middle Reaches of the Yangtze River, West
Coast of the Strait, Pearl River Delta, and Central Yunnan Urban Agglomerations, while secondary hot spots are primarily
distributed in the Beijing–Tianjin–Hebei, Chengdu–Chongqing, Central Guizhou, Middle Reaches of the Yangtze River, West
Coast of the Strait, Pearl River Delta, and Beibu Gulf Urban Agglomerations. Cold spots are mainly concentrated in the Beijing–
Tianjin–Hebei, Shandong Peninsula, Central Plains, and Yangtze River Delta Urban Agglomerations, whereas secondary cold
spots are distributed across the Northern Tianshan, Lanxi, Ningxia Yellow River, Central Shanxi, Beijing–Tianjin–Hebei,
Shandong Peninsula, Chengdu–Chongqing, Middle Reaches of the Yangtze River, and Yangtze River Delta Urban
Agglomerations, showing widespread coverage. Overall, carbon sequestration in China’s urban agglomerations exhibits a spatial
pattern of “cold spots clustered in North China and East China, and hot spots clustered in Northeast, Southeast, and Southwest
China.”

Figure 7. Spatial distribution of cold and hot spots of carbon emission in China's urban agglomerations in 2022
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Figure 8. Spatial distribution of cold and hot spots of carbon absorption in China's urban agglomerations in 2022

4.3. Influencing factors of the spatial pattern of carbon budget in china’s urban agglomerations

This study selects nine influencing factors [30-33] from five dimensions: economy, population, climate, vegetation, and energy.
The economic factors include GDP (X1), primary industry output (X2), secondary industry output (X3), and tertiary industry
output (X4); the population factor is the number of permanent urban residents (X5); the climate factors include annual mean
temperature (X6) and annual precipitation (X7); the vegetation factor is net primary productivity (NPP, X8); and the energy
factor is total urban energy consumption (X9). Data analysis is performed using the Geographic Detector.

4.3.1. Influencing factors of the spatial pattern of carbon emissions in china’s urban agglomerations

Using the Geographic Detector to explore factors affecting the spatial pattern of carbon emissions, the explanatory power (q
value) of each single factor was obtained, as shown in Table 2. Among them, total energy consumption has the strongest
explanatory power (0.561), indicating that energy is the primary factor influencing carbon emissions. The number of permanent
urban residents also has a high explanatory power (0.505), suggesting that population is another major factor driving carbon
emissions. As urban populations continue to grow, carbon emissions in urban agglomerations correspondingly increase.
Economic factors are also important, with GDP showing relatively high explanatory power (0.380). Among the three industrial
sectors, the secondary industry has the strongest explanatory power (0.283), indicating that the development of the secondary
industry, particularly heavy industry, has the greatest impact on carbon emissions. Among all analyzed factors, natural factors
have relatively weaker influence.

Table 2. Carbon emission single-factor detection results

Influencing Factor X1 X2 X3 X4 X5 X6 X7 X8 X9

q value 0.380*** 0.188** 0.283*** 0.273*** 0.505*** 0.049*** 0.137*** 0.223*** 0.561***

Note:* * * P<0.01,* * P<0.05,* P<0.10

The explanatory power of the two-factor interactions on carbon emissions for each urban agglomeration is shown in Table 3.
In general, the explanatory power of two-factor interactions is greater than that of single-factor effects, indicating that carbon
emissions are influenced by the combined effects of multiple factors. The top three two-factor interaction q values are: total
energy consumption with primary industry output, total energy consumption with secondary industry output, and total energy
consumption with the number of permanent urban residents. This confirms that energy is the dominant factor affecting carbon
emissions and highlights that the interaction between energy and economic factors plays a crucial role in influencing carbon
emissions.
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Table 3. The results of the interactive detection of carbon emission influencing factors

Influencing Factor X1 X2 X3 X4 X5 X6 X7 X8 X9
X1 0.380
X2 0.629 0.188
X3 0.416 0.589 0.283
X4 0.417 0.488 0.386 0.273
X5 0.665 0.753 0.714 0.573 0.505
X6 0.441 0.349 0.405 0.351 0.615 0.049
X7 0.634 0.467 0.562 0.488 0.711 0.186 0.137
X8 0.560 0.485 0.482 0.461 0.686 0.238 0.263 0.223
X9 0.789 0.829 0.827 0.688 0.806 0.672 0.701 0.783 0.561

4.3.2. Influencing factors of the spatial pattern of carbon sequestration in china’s urban agglomerations

Using the Geographic Detector to explore factors affecting the spatial pattern of carbon sequestration, the explanatory power (q
value) of each single factor was obtained, as shown in Table 4. Among them, NPP has the strongest explanatory power (0.290),
indicating that net primary productivity of vegetation has the most significant impact on carbon sequestration. NPP not only
reflects the quality and productivity of ecosystems but is also an important factor for assessing ecosystem carbon sink capacity.
Precipitation also has a substantial influence on carbon sequestration, with relatively strong explanatory power (0.157), second
only to NPP. The effect of precipitation is mainly due to the critical role of natural factors in vegetation growth, which in turn
affects NPP. Economic factors show relatively weak explanatory power, indicating that economic development has a
comparatively minor impact on carbon sequestration.

Table 4. Carbon absorption single-factor detection results

Influencing Factor X1 X2 X3 X4 X5 X6 X7 X8 X9

q value 0.052*** 0.155** 0.033*** 0.052*** 0.104*** 0.038*** 0.157*** 0.290*** 0.149***

Note:* * * P<0.01,* * P<0.05,* P<0.10

The explanatory power of two-factor interactions on carbon sequestration for each urban agglomeration is shown in Table 5.
In general, the explanatory power of two-factor interactions is greater than that of single-factor effects, indicating that carbon
sequestration is also influenced by the combined effects of multiple factors. The q values for the interactions between NPP and
total energy consumption, and between NPP and primary industry output, exceed 0.7, demonstrating that NPP is the dominant
factor affecting carbon sequestration. Moreover, the interactions between vegetation and human activity–related factors such as
energy and industry also play an important role in influencing carbon sequestration.

Table 5. Cross-detection results of carbon absorption influencing factors

Influencing Factor X1 X2 X3 X4 X5 X6 X7 X8 X9
X1 0.052
X2 0.379 0.155
X3 0.098 0.345 0.033
X4 0.107 0.379 0.117 0.052
X5 0.215 0.400 0.249 0.244 0.104
X6 0.161 0.343 0.200 0.136 0.241 0.038
X7 0.301 0.488 0.280 0.285 0.367 0.248 0.157
X8 0.474 0.741 0.492 0.486 0.621 0.438 0.489 0.290
X9 0.325 0.505 0.427 0.340 0.457 0.323 0.475 0.783 0.149

4.3.3. Automatic linear modeling regression analysis

Linear regression analysis of the influencing factors was performed using SPSS software. A stepwise method was employed to
establish the regression model between the carbon budget and various influencing factors for the 19 urban agglomerations in
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China, as follows:

In the equation,      represents the carbon budget of the urban agglomeration (t),      represents total energy consumption
(10,000 t), and     represents NPP (gC·m−2·a−1).

The adjusted R² of the regression model is 0.795, indicating a high goodness-of-fit to the sample data. The significant factors
in the equation are coal and NPP, with importance values of 0.95 and 0.05, respectively. The regression coefficient for energy
consumption is 5128.15 (p < 0.01), indicating a significant positive effect of energy consumption on carbon emissions; the
regression coefficient for NPP is -0.36 (p < 0.01), indicating a significant positive effect of NPP on carbon sequestration.

5. Conclusions and discussion

5.1. Conclusions

(1) In 2022, the spatial distribution of the carbon budget across China’s 19 urban agglomerations was uneven, exhibiting the
pattern of “higher carbon emissions in the east and lower in the west, higher carbon sequestration in the south and lower in the
north.”

(2) Significant differences in carbon emissions were observed among the urban agglomerations. The Liaoning–Central South
(Liao Zhongnan) Urban Agglomeration had the highest carbon emissions, while the Lanxi Urban Agglomeration had the lowest,
mainly due to differences in the area of construction land. Similarly, carbon sequestration varied significantly across urban
agglomerations, with the West Coast of the Strait Urban Agglomeration showing the highest carbon sequestration and the
Ningxia Yellow River Urban Agglomeration the lowest, primarily influenced by forest area.

(3) Based on the carbon budget data derived from land use, the 19 urban agglomerations can be clustered into five categories.
Category I urban agglomerations have high carbon emissions from construction land and cropland; Category II urban
agglomerations have the largest water areas and highest carbon sequestration; Category III urban agglomerations have the
highest grassland carbon sequestration; Category IV urban agglomerations have the highest carbon sequestration from unused
land; Category V urban agglomerations include the remaining agglomerations, which are widely distributed and show no
outstanding carbon budget characteristics across land types or overall.

(4) In 2022, carbon emissions and carbon sequestration in China’s 19 urban agglomerations exhibited significant spatial
correlation and clustering. The spatial pattern shows “carbon emission hot spots clustered in the Bohai Rim of northern China,
and carbon sequestration hot spots clustered in Northeast, Southeast, and Southwest China.”

(5) Results from the Geographic Detector and regression analysis indicate that energy consumption has a significant positive
effect on carbon emissions, and the interaction between energy and economic factors is extremely important. Net primary
productivity of vegetation has a significant positive effect on carbon sequestration, and the interactions between vegetation and
human activity–related factors such as energy and industry also play a crucial role in influencing carbon sequestration.

5.2. Discussion

(1) This study found that the spatial distribution of the carbon budget across China’s 19 urban agglomerations is uneven and
exhibits significant spatial clustering. Carbon emissions primarily show an “east-high, west-low” pattern, while carbon
sequestration mainly displays a “south-high, north-low” pattern. The level of carbon emissions in urban agglomerations is mainly
determined by the area of construction land. Because construction land has a high carbon emission coefficient, it serves as the
primary carbon source within urban agglomerations [34]. Conversely, forest land, with a high carbon sequestration coefficient,
serves as the main carbon sink, so carbon sequestration is largely dependent on forest area. Under the current context of rapid
and high-quality economic development in China, it is necessary to improve the utilization efficiency of construction land,
rationally plan urban agglomeration construction land, coordinate the spatial distribution of carbon sources and sinks, and control
carbon emission intensity. At the same time, attention should be given to protecting carbon sink land such as forests, particularly
in the three major forest regions of Northeast, Southeast, and Southwest China. Ecological protection and restoration measures
should be implemented, including afforestation and forest conservation, to prevent the expansion of urban construction land from
encroaching on carbon sink areas, which would weaken the carbon sink function and exacerbate carbon emissions.

(2) Based on the differences in the carbon budget among the 19 urban agglomerations, targeted and differentiated carbon
reduction measures should be formulated from the perspective of land use patterns. For urban agglomerations dominated by
construction land, carbon emissions should be limited through measures such as controlling population density, optimizing urban
spatial layout, and restricting urban expansion. For agglomerations dominated by cropland, continuous conversion of farmland to

y = −19030144.83 + 5128.15 × X1 − 0.36 × X2

y X1

X2
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forests and grasslands should be promoted under strict adherence to the farmland red line and protection of reserve farmland,
alongside ecological restoration measures such as mountain-water-forest-field-lake projects, to enhance carbon sequestration
capacity. For agglomerations dominated by forest, grassland, and water bodies, ecological protection and management should be
emphasized, including measures to prevent human interference from disrupting carbon sequestration, as well as soil erosion and
land degradation control, to consolidate carbon sink capacity. For agglomerations dominated by unused land, where carbon
reduction pressure is relatively low, measures should focus on promoting industrial structure optimization and improving
economic development levels.

(3) When formulating carbon reduction measures for each urban agglomeration, attention should also be given to the main
factors influencing spatial variation in the carbon budget. From the perspective of energy consumption structure, efforts should
be made to transition traditional energy industries to new energy industries, enhance industrial R&D capabilities, promote the
application of new energy technologies, and establish a new energy–based industrial development system. Regarding population,
the spatial distribution of urban populations should be optimized to limit resource and environmental pressures caused by
excessive population growth, achieving a balance between urban population size and carrying capacity. In terms of vegetation
landscapes, sustainable development principles should be followed, building urban green spaces during urban development,
while simultaneously emphasizing ecological restoration and protection to enhance urban agglomerations’ carbon reduction
capacity.

(4) Due to data limitations, this study has certain shortcomings. The carbon emission and sequestration coefficients for each
land use type are based on previous studies. In the future, it will be necessary to further investigate the natural and socio-
economic characteristics of different regions and urban agglomerations and use actual monitored carbon budget data to improve
the accuracy of the results.
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