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Abstract. Remote sensing images contain a wealth of geospatial information. To accurately identify different geospatial
categories and extract relevant data, image semantic segmentation plays a crucial role. In recent years, deep learning technology
has brought significant breakthroughs to semantic segmentation of remote sensing images, significantly enhancing its
performance. This paper investigates the application of deep learning technologies in remote sensing image semantic
segmentation, based on Convolutional Neural Networks (CNN) and Transformer-based semantic segmentation methods. It
conducts an in-depth comparison of their structural characteristics and applicable scenarios, summarizes the achievements and
shortcomings of existing research, and provides technical references and theoretical support for future studies, thereby
contributing to the further development of deep learning technology in the field of remote sensing. Research results indicate that
CNN-based semantic segmentation methods still hold advantages in extracting local features and achieving efficient
segmentation, whereas Transformers address CNN's limitations in global context modeling and long-range dependency capture.
Therefore, the collaborative integration of CNN and Transformers will become an important research direction for enhancing
model performance in the future.
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1. Introduction

Semantic segmentation of remote sensing images refers to the classification of pixels in remote sensing images to form pixel-
level semantic labels, thereby accurately classifying each pixel into a specific category. During the early stages of remote sensing
technology, semantic segmentation of images primarily relied on traditional methods and could only process grayscale images,
resulting in low classification accuracy and high time consumption. However, with the continuous advancement of hardware and
software, as well as the emergence of deep learning, methods such as CNN, RNN, and Transformers have gradually been applied
to the field of remote sensing image semantic segmentation. The ability of deep learning to automatically extract high-level
features has significantly enhanced image processing capabilities and classification accuracy [1-3]. However, existing reviews
primarily focus on general image domains, with relatively few specialized reviews on semantic segmentation of remote sensing
images. In particular, there are few systematic summaries regarding innovations in deep learning model architectures, high-
resolution data processing, and practical application implementation.

This paper investigates the applicability and development trends of diverse deep learning models in remote sensing image
processing through systematic review and analysis of mainstream methodologies. The paper examines three key model
architectures: first, classic semantic segmentation models based on convolutional neural networks (CNN), including FCN, U-
Net, and DeepLabV3+, and mainly analyzes the evolution process of their network structures and their performance in remote
sensing image processing [4-6]. Subsequently, the authors analyze CNN-based semantic segmentation enhancement modules
incorporating attention mechanisms, with emphasis on SE-Net and CBAM, analyzing how they incorporate channel and spatial
attention modules to enhance their ability to focus on key information [7,8]. Finally, the paper introduces semantic segmentation
methods based on the Transformer architecture, with a focus on ViT and Swin Transformer, to analyze the advantages of self-
attention mechanisms in modeling long-distance dependencies and extracting global features [9,10].
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2. Semantic segmentation methods based on CNN (Convolutional Neural Networks)

CNNs are widely used in the field of computer vision. Through the extensive interconnection of neurons and convolutional
operations, they extract features from multi-dimensional data information. CNN is mainly composed of input layers,
convolutional layers, activation layers, pooling layers, fully connected layers, and output layers.

2.1. Evolution of classic architecture

Based on convolutional neural networks, improved networks for semantic segmentation tasks have begun to emerge and
gradually improve the efficiency and accuracy of semantic segmentation. This section will specifically introduce the classic

architectures FCN, U-Net, and DeeplabV3+, as shown in Table 1.

Table 1. Comparison table of FCN, U-Net, and DeeplabV3+

Architecture and Innovation

Points Advantage Disadvantage Usage scenarios
FCN: Modify the fully The boundaries of the - .
. . _ Basic image segmentation tasks,
connected layer to a fully Accepts inputs of any size;  prediction results are not fine . .
. o . . low-resolution remote sensing
convolutional layer and an maintains spatial structure.  enough, making it difficult to image scenes
upsampling layer. restore the details. &
U-Net: High segmentation accuracy; Medical image segmentation,

Still has difficulty
recognizing small targets and
complex edges.

high resolution remote sensing
image segmentation, satellite
image segmentation

Large scale remote sensing

The encoder-decoder structure clear structural symmetry;
adopts skip connections to retain suitable for tasks with a small
the low-level features. number of samples.

DeepLabV3+: Introducing  Large receptive field; captures
dilated convolution and the = multi-scale information; strong d scenes, high precision semantic
. . ependence on hardware .
ASPP module to achieve multi- robustness to complex Fesources segmentation, complex scene
scale context modelling backgrounds. segmentation

Complex structure; high

2.1.1. FCN (Fully Convolutional Network)

The model structure of FCN is shown in Figure 1 [4]. Compared with CNN, FCN modifies the traditional fully connected layer
into a fully convolutional layer and an upsampling layer. Although CNN's pooling layers expand the receptive field and reduce
computational cost, they also decrease the resolution of the feature maps, which is detrimental to image semantic segmentation
tasks that rely on fine-grained pixel-level accuracy. Therefore, the fully convolutional layers and upsampling layers of FCN can
solve the problems of feature map detail loss caused by CNN pooling layers and the disappearance of spatial position
information caused by fully connected layers.
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=

Figure 1. FCN semantic segmentation network model [4]

Although FCN has achieved relatively good results in image semantic segmentation, the prediction results it produces are still
not sufficiently refined and do not consider the relationships between pixels [11]. To address the shortcomings of FCN in image
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semantic segmentation tasks, such as coarse segmentation edges and insufficient recovery of detailed information, Wang, Qu,
Liu, Gu, He, Peng and He used FCN as the base framework, adopted ResNet-50 as the base network, and introduced the ASPP
(Atrous Spatial Pyramid Pooling) module to effectively combine multi-scale features [12]. They also replaced traditional
transposed convolution with Dense Upsampling Convolution (DUC). Compared with the FCN-8s model, the proposed algorithm
achieved a 2.58 percentage-point improvement in mloU (from 83.604% to 86.185%), significantly enhancing pixel-level
classification accuracy. This improvement effectively addressed the original FCN's poor performance in small object and edge
segmentation.

2.1.2. U-Net
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Figure 2. U-Net semantic segmentation network model [5]

U-Net mainly consists of an input layer, an encoder/downsampling stage, a decoder/upsampling stage, and an output layer
[5]. As shown in Figure 2, U-Net introduces skip connections, which directly transmit the output features of each layer in the
encoder to the corresponding layer in the decoder during the decoding process. This helps the decoder obtain more low-level
feature information (such as edges and textures) and improves the accuracy of segmentation.

The structure of U-Net makes it particularly suitable for high precision positioning scenarios. Through skip connections, it
can be used for satellite image segmentation, cell segmentation, and other applications. In recent years, improvements to U-Net
have mainly focused on enhancing feature extraction capabilities and introducing attention mechanisms. Xiang and Huang [13]
built upon the U-Net architecture by adding random data augmentation modules, Dual Encoder Fusion U-Net(DEFU-net)
modules, and random voting prediction modules, enhancing the model across three dimensions: sample generation, model
training, and prediction. The DEFU-net module enlarges the receptive field of convolutional layers and mitigates the adverse
effects of small batch sizes on normalization, thereby enhancing model robustness. The random voting prediction module makes
the model more robust and improves the accuracy of the results. After training and validation, the improved method achieved a
stable accuracy of 0.9508 and a converged loss of approximately 0.0813 on the building extraction task, outperforming the
original U-Net. The mloU in the validation set improved from 0.7398 to 0.8128 [13]. These enhancements strengthen local
feature representation while suppressing irrelevant cues, rendering U-Net more robust for segmenting complex structures in
remote sensing imagery.

2.1.3. Deeplabv3+

Like U-Net, DeepLabV3+ also adopts an encoder-decoder structure, but unlike U-Net, DeepLabV3+ introduces Dilated
Convolution and ASPP (Atrous Spatial Pyramid Pooling) modules [6].

DeepLabV3+ primarily consists of an input layer, encoder stages, decoder stages, and an output layer. The encoder stage
comprises convolutional layers, activation layers, and pooling layers, as well as dilated convolutions and ASPP modules. Figure
3 shows the model structure of DeepLabV3+. In the encoder stage, as shown in Figure 4, DeepLabV3+ enlarges the receptive
field by inserting holes between the elements of the convolution kernel using dilated convolution and utilizes the ASPP module
to capture contextual information at different receptive field scales through parallel multi-branch dilated convolution, helping the
model to capture feature information of different sizes and scales in the image.
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Figure 3. DeepLabV3+ semantic segmentation network model [6]
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Figure 4. Schematic diagram of dilated convolution [14]

Therefore, DeepLabV3+ is suitable for high precision semantic segmentation and semantic segmentation in complex scenes,
such as background blurring in video conferences and other types of portrait segmentation. The optimization of DeepLabV3+
focuses on combining attention mechanisms with improved feature fusion methods. Bai and Tang proposed the SMANet network
model, which introduces a strip pooling module (SPM) and the Multi-Parallel Atrous Spatial Pyramid Pooling (MASPP) Module
to enhance DeepLabV3+'s multi-scale object segmentation capabilities in remote sensing scenarios [15,16]. Experimental results
on the Wuhan Dense Labeling Dataset (WHDLD) demonstrate that SMANet elevates DeepLabV3+'s mloU from 61.30% to
64.18%.

2.2. CNN semantic segmentation enhancement module based on attention mechanism

In image semantic segmentation tasks, while the aforementioned methods can effectively extract spatial features from images,
they often encounter issues such as excessive calculation time and low segmentation efficiency when handling complex scenes
and detailed information, due to a lack of focus on important regions. Therefore, the attention mechanism has been introduced
into image semantic segmentation methods. Based on the different dimensions of the information being focused on, attention
mechanisms can be categorized into channel attention mechanisms, spatial attention mechanisms, temporal attention
mechanisms, and self-attention mechanisms, among others. This section will focus on SE-Net and CBAM.

2.2.1. SE-Net (Squeeze-and-Exitation Networks)

SE-Net (Hu et al., 2018), a canonical channel attention mechanism, characterizes channel-wise dependencies via sequential
squeeze and excitation operations.

Figure 5 shows the workflow of SE-Net. In the Squeeze stage, the SE module compresses each channel from HxWxC to
1x1xC through global average pooling, forming a channel descriptor. This descriptor encapsulates the global statistics of channel
activations, facilitating bottom-up propagation of global contextual information [7]. In the excitation stage, this descriptor is used
to obtain channel attention through two fully connected layers and activation functions that weight the channels.
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Figure 5. SE-Net workflow diagram [7]

Owing to its lightweight architecture and computational efficiency, which requires low computational resources, the SE
module can be inserted at any position in the semantic segmentation network to improve model performance. However, SE-Net
also has drawbacks, such as the difficulty of capturing complex global information through global average pooling operations
and the increase in model parameters and computational overhead caused by subsequent fully connected operations [17]. Wang
introduced a channel attention mechanism similar to SE-Net in U-Net, generating channel weights through global average
pooling and fully connected layers to focus the model on building features, achieving an overall accuracy of 98.38% [18].

2.2.2. CBAM (Convolutional Block Attention Module)

CBAM is composed of a channel attention module (CAM) and a spatial attention module (SAM), and its workflow is shown in
Figure 6. CBAM enables the network to concurrently emphasize informative channels and salient spatial locations [8].

Figure 7 shows a schematic diagram of CAM and SAM. The CAM module aggregates spatial information while preserving
the channel dimension. CAM first performs global max pooling and global average pooling on the input feature map,
compressing the feature map from HxWxC to 1x1xC. After passing through the activation functions (ReLU and Sigmoid) of the
MLP(Multi-Layer Perceptron) module, it outputs the attention weights for each channel. The SAM module compresses the
channel dimension while keeping the spatial dimension unchanged. SAM processes the CAM-refined features by concatenating
max- and average-pooled maps of size HxWx1, then employs a 7x7 convolution followed by a sigmoid activation to produce the
spatial attention map.
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Figure 6. CBAM workflow diagram [8§]
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Figure 7. Schematic diagram of CAM and SAM [8]

CBAM combines channel attention and spatial attention through a cascading approach, first performing channel attention and
then spatial attention, thereby achieving dual attention enhancement of feature maps. This cascaded design significantly enhances
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feature discriminability and segmentation accuracy. Sun, Zhao, Li and Cheng integrated the CBAM module into Res-UNet,
where the model backbone adopts a U-Net model with an encoder-decoder structure, embedding residual structures into the
encoder to effectively avoid model degradation issues [19]. Integrating CBAM enables the network to extract inter-object
discriminative cues, sharpen object boundaries, and boost semantic-segmentation accuracy on remote-sensing imagery [19].
Compared to models without CBAM, the model's mloU improved from 0.9481 to 0.9573, and the model also showed
improvements in accuracy, pixel accuracy, and other metrics. These applications demonstrate that CBAM can effectively
enhance the model's ability to focus on target features in remote sensing images by dynamically adjusting feature weights.

3. Transformer-based semantic segmentation method

To overcome the limitations of convolutional neural networks in capturing long-range pixel dependencies and to enhance the
global modeling capacity of semantic segmentation models, the Transformer architecture has been introduced into computer
vision. It achieves global modelling of features through the self-attention mechanism, offering stronger expressive capabilities
and parallel processing advantages. This section will first introduce the principles of the self-attention mechanism, followed by
an overview of two classic Transformer architectures: ViT (Vision Transformer) and Swin Transformer.

3.1. Transformer

Transformer mainly consists of encoder and decoder structures, with its core being the Self-Attention mechanism and Multi-head
Attention mechanism. Its model structure is shown in Figure 8 [3].

The Transformer's encoder first uses an Input Embedding to represent the input as a sequence of embedding vectors of fixed
dimension, and then stacks multiple identical layers on top of each other. Each layer includes the following steps:

(DMulti-Head Attention: First, the input vector sequence X is linearly transformed into Key, Value, and Query vectors, and
then the attention weights for each position are calculated according to formula (1):

Attention (Q, K, V) = softmax (?/—IZ_T )V (1
k

This operation calculates the attention weight for each position by calculating the relevance of each token to all other tokens,
and then concatenates the parallel calculation results of multiple heads, as shown in Formula (2):

MultiHead (Q, K, V) = Concat (head, . .., head; ) WO
where head; = Attention (QWiQ, KWK, VW}/) ®)

(@Residual connection and layer normalization(Add&Norm):Add the output of Attention to the original input and normalize
it.

(3 Feedforward neural network(Feed Forward): The network typically consists of fully connected layers and non-linear
activation functions.

(@Residual connection and layer normalization again

Repeat these steps L times, then output the final feature representation.

The decoder of the Transformer first takes the decoder's output from the previous time step as input via the Output
Embedding layers. Its structure is composed of multiple identical layers stacked together, with the following sequence: Masked
Multi-Head Attention, Add&Norm, Multi-Head Attention, Add&Norm, Feed Forward, and Add&Norm. The key distinction lies
in the use of Masked Multi-Head Self-Attention, which—via a causal mask—prevents the decoder from accessing future
positions during training. Subsequently, the encoder-decoder Multi-Head Attention layer receives Queries from the masked self-
attention output and Keys/Values from the encoder, aligning the target sequence with the source representation; Additionally, the
input to the decoder's Multi-Head Attention is composed of the Query output from the Masked Multi-Head Attention and the
Value and Key outputs from the encoder, thereby establishing a connection between the input and output. The overall structure is
similar to that of the encoder.
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Figure 8. Transformer model architecture [3]
3.2. ViT (Vision Transformer)

Although Transformers have become standard in natural language processing, their application in vision is still limited. ViT
(Vision Transformer), as the visual version of Transformer, is the first model to successfully apply the Transformer architecture
to image classification tasks. Figure 9 shows the model architecture of ViT [9].

The structure of the Vit model is primarily divided into the following steps: First, the input image is divided into fixed-size
non-overlapping patches, such as dividing a 224x224x3 image into 16x16 patches. Each patch is flattened into a 768-
dimensional vector and linearly projected into a fixed-length embedding, yielding the initial patch-token sequence. However,
since the Transformer itself cannot capture positional information, ViT introduces learnable Positional Embedding to preserve
spatial structural information by adding it to the patch embedding. Additionally, to extract global features from the entire image,
ViT adds a special character CLS at the beginning of the input sequence. This CLS can learn useful information from other
embeddings to serve as a global representation of the entire image. This enriched sequence is forwarded through a stack of
Transformer encoder layers—each composed of multi-head self-attention and feed-forward sub-networks—to generate final
features for downstream tasks.
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Figure 9. ViT model architecture [9]

The advantage of ViT lies in its strong global modelling capabilities. However, dividing images into small patches inevitably
results in information loss (such as the loss of local continuity and adjacency relationships), which affects the final accuracy.
Therefore, it is difficult to directly apply ViT to high resolution remote sensing images. Therefore, they proposed a feature-
guided image semantic segmentation method based on ViT called ConTransNet. Through experimental evaluation on the
Cityscapes dataset, the model achieved an mloU value of 78.1%, significantly outperforming the base ViT [20].

3.3. Swin Transformer

Swin Transformer is an improvement on the ViT structure. It fully integrates the advantages of CNN in local modelling and
hierarchical feature extraction while retaining the global modelling capabilities of Transformer [10]. This model introduces a
sliding window attention mechanism to enable information exchange between different windows, thereby achieving efficient
processing of high-resolution images.

Figure 10 shows the model architecture of the Swin Transformer. The Swin Transformer first divides the input image into 4x4

patches and flattens each patch before mapping it to a C-dimensional vector via linear projection, resulting in an initial feature

map of size 541 X % x C . The model then extracts multi-scale features from the image through four stages. The first stage

consists of a Linear Embedding layer and a Swin Transformer Block, where the Linear Embedding layer resizes the vector
dimensions to a predefined value; the other three stages consist of Patch Merging and Swin Transformer Block. After each stage,
Patch Merging merges adjacent small patches into a larger patch, thereby performing downsampling to reduce the spatial
dimension of the feature map and the expansion of the number of channels.
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Figure 10. Swin Transformer model architecture [10]

Consequently, Swin Transformer outperforms ViT in modeling high-resolution imagery, making it particularly well-suited for
remote-sensing semantic segmentation tasks.

Wang, Hu, Wu, Yan and Wang proposed an architecture that combines Swin Transformer and ResNet18 in parallel, with the
former modelling global semantic relationships and the latter collecting rich spatial information [21]. On the Potsdam dataset, the
mloU score reached 86.1%, and on the Vaihingen dataset, the mloU score reached 82.4%, showing significant improvements
compared to other models such as FCN and DeepLabV3.
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4. Discussion
4.1. Existing technical bottlenecks

Despite substantial advances, deep-learning-based remote-sensing semantic segmentation remains hindered by several practical
challenges:

(1) Challenges in data acquisition and annotation:

High-quality, large-scale datasets are indispensable for training deep-learning models, yet pixel-level annotation demands
extensive manual effort from domain experts. This pixel-level annotation work requires professionals to spend a significant
amount of time and effort using specialized software. Scarcity and high annotation costs frequently result in overfitting and poor
generalization.

(2) Limited model generalization ability:

Model generalization capability refers to the ability of a trained model to maintain good performance in new environments
and regions. Due to the variability of remote sensing data influenced by different regions, weather conditions, and time, there is
often a significant discrepancy between training data and actual application scenarios. Additionally, the high cost of labelling and
the limited number of datasets can easily lead to model overfitting. Therefore, model generalization capability remains a
challenge in remote sensing imagery. Although the CNN-based methods introduced in this paper, such as FCN, U-Net, and
DeepLabV3+, perform well on specific datasets, they still suffer from issues like overfitting and weak transferability. Modules
like SE-Net and CBAM have improved the ability to focus on key areas, but they still cannot fully address the shortcomings of
models in cross-scenario and cross-region applications; Transformer models also face issues such as large parameter counts and
strong dependence on training data, making it difficult to fully ensure their generalization capabilities.

4.2. Solution direction

In response to the current bottlenecks in semantic segmentation of remote sensing images in terms of data and application
generalization, future research can be improved in the following areas:

(1) Building a high-quality, diverse remote sensing image dataset

Future efforts should prioritize curating and openly sharing diverse, high-quality remote-sensing datasets to enhance model
efficacy and generalizability. Augmentation strategies and unsupervised learning should be jointly leveraged to mitigate
annotation costs and data scarcity, boosting performance in low-resource settings.

(2) Combining the advantages of multiple deep learning architectures to improve model adaptability

Relying on a single architecture rarely achieves an optimal trade-off between local detail and global context. Hybrid designs
that synergize CNNs’ local inductive biases with Transformers’ global receptive fields are therefore a promising direction.

(3) Enhance model generalization capabilities across regions and scenarios

The transferability and robustness of models are key to the practical application of remote sensing segmentation. Future
research can use cross-modal learning and other methods to improve the adaptability of models to images obtained from different
regions and sensors, thereby enhancing their performance stability in different scenarios.

5. Conclusion

With the advancement of deep learning, semantic segmentation techniques for remote sensing imagery have gradually shifted
from traditional CNN-based semantic segmentation methods to more flexible Transformer-based semantic segmentation
frameworks. CNN-based approaches—exemplified by FCN, U-Net, and DeepLabV3+—have continually pushed the boundaries
of segmentation accuracy and computational efficiency. They have also introduced structural innovations such as skip
connections, dilated convolutions, and attention mechanisms to adapt to the diversity and complexity of remote sensing images.
For example, attention mechanisms represented by SE-Net and CBAM can significantly enhance the model's focus on key
regions and important features, thereby improving segmentation accuracy while maintaining computational efficiency. However,
due to the limited receptive field of convolutional operations, it is challenging to model relationships between distant pixels.
Therefore, Transformers have been introduced into image semantic segmentation tasks. Transformers break the local constraints
of convolutional operations by introducing self-attention mechanisms, demonstrating strong global modelling capabilities. For
example, ViT and Swin Transformer have shown promising application potential in high-resolution processing tasks for remote
sensing images. In the future, research on remote sensing-based semantic segmentation will further develop in the directions of
structural model integration, application scenario generalization, and model lightweighting. By combining the advantages of
CNN and Transformer, it is expected to improve segmentation accuracy while addressing model generalizability and practicality
issues, thereby enabling the efficient application of remote sensing images in fields such as smart cities and disaster monitoring.
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