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Abstract. Machine learning has brought significant advancements to the field of structural health monitoring, providing flexible 

and efficient solutions for detecting both local and global damage in various infrastructures. Local damage detection focuses on 

identifying issues such as cracks and spalling in specific areas of concrete structures, including bridges, highways, and tunnels. 

Techniques like artificial neural networks (ANNs) and deep neural networks (DNNs) have proven effective in surface defect 

recognition, demonstrating their versatility across different structural environments. Additionally, cost-effective methods 

leveraging devices such as smartphones have been explored for rapid road integrity assessments, offering practical and affordable 

solutions. On a larger scale, global damage detection involves classifying structural collapse modes and types of damage, utilizing 

feature extraction and deep learning models to improve the accuracy of identifying large-scale failures. These advancements 

highlight the growing importance of machine learning and computer vision in enhancing the resilience and real-time monitoring 

of critical infrastructure systems. 
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1. Introduction 

Structural health monitoring (SHM) and rapid damage assessment following natural hazards have become critical focal points in 

civil engineering research and practice (e.g., [1], [2]). Within this domain, image-based damage recognition is gaining prominence, 

particularly in vision-based SHM and structural reconnaissance, which have traditionally relied on manual visual inspection and 

expert judgment. However, the integration of cutting-edge deep learning (DL) technologies offers significant potential to automate 

and enhance the accuracy of these assessments. 

This paper focuses on classifying various structural damage types. Specifically, the paper trying to detect the pictures with no 

damage, flexural damage, shear damage, and combined damage, respectively. Furthermore, the model is trying to classify the 

picture with various spalling conditions and collapse modes. These tasks have traditionally been performed through human 

expertise, but DL models present an opportunity to streamline and improve these evaluations. 

Our study leverages a dataset provided by PEER Hub ImageNet [18], which contains over 10,000 images depicting various 

structural types and damage states. We preprocess and standardize these images, utilizing multiple convolutional neural network 

(CNN) architectures to predict structural damage characteristics. This method offers significant potential to enhance the field of 

Structural Health Monitoring (SHM) by improving both the efficiency and accuracy of damage assessments. Additionally, our 

research seeks to explore performance differences across these models, providing a comprehensive evaluation of their effectiveness 

in identifying structural damage. 

2. Related work 

Machine learning applications in civil engineering have been developed over several years (e.g., [3]-[14]). Machine learning for 

structural health monitoring is one of the important areas. Research in this field is typically categorized into local and global 

damage detection. Local damage refers to damage affecting specific parts of a building structure, with detection methods focusing 

on identifying cracks or spalling in concrete. 
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[15] applied two artificial neural network (ANN) based algorithms—backpropagation (BP) and self-organizing maps (SOM)—

for recognizing surface defects in images of bridges. Crack detection techniques are not limited to bridges and buildings but can 

also be used to assess highways. 

[16] investigated crack detection on roads, demonstrating the potential of low-cost tools such as DSLR cameras and 

smartphones. Their experiments showed that smartphones offer a practical and affordable way to quickly assess road conditions. 

Similarly, [17] employed deep neural networks to detect linear cracks in tunnels. These studies highlight the versatility of machine 

learning and computer vision in structural health monitoring. 

Global damage refers to damage visible from the exterior of structures, encompassing the classification of collapse modes and 

damage types. [18] utilized feature extraction and fine-tuning techniques to optimize model parameters for global damage 

classification, while [19] employed region-based deep learning to detect multiple types of damage on concrete surfaces. 

Furthermore, [20] and [21] utilized computer vision to locate both local and global structural damages using smartphones and 

drones. 

3. Dataset and features 

Our application focuses on three distinct tasks aimed at improving structural damage assessment: classifying damage types, 

evaluating spalling conditions, and identifying collapse modes. Each of these tasks is trained and tested using independent datasets, 

each consisting of approximately 2,500 images. While this dataset size is relatively modest for deep learning applications, it 

remains suitable for demonstrating proof-of-concept in our models. To optimize training and ensure robust evaluation, the datasets 

are split into three subsets: 2,000 images are allocated for training, 300 for validation, and 200 for testing. All images are 

standardized to a 224x224x3 RGB format to ensure consistency across the tasks. 

Prior to input into the convolutional neural network (ConvNet) models, the pixel values of the images, initially ranging from 0 

to 255, are rescaled to fall within a normalized 0-1 range. This standardization facilitates more stable model training and enhances 

generalization. The output labels differ across the tasks: for the damage type classification, there are four distinct classes, spalling 

condition evaluation is divided into two classes, and collapse mode prediction includes three classes. Sample images representing 

each task are displayed below to illustrate the dataset. 

In terms of feature extraction, our ConvNet models utilize the pixel values of the images as input. These pixel values pass 

through multiple convolutional layers, where the model learns hierarchical patterns and features critical for each task. After several 

convolutional layers and subsequent processing, the model predicts the corresponding label based on the task—whether it is 

determining the type of damage, the spalling condition, or the collapse mode. Despite the relatively small dataset size, our approach 

leverages powerful deep learning techniques to ensure accurate and reliable predictions, with potential applications in real-time 

structural health monitoring and disaster response systems. 

 

Figure 1. Damage type classification. (a) no damage (b) flexural damage (c) shear damage (d) combined damage 

 

Figure 2. Spalling condition classification. (a) spalling (b) no spalling 
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Figure 3. Collapse mode classification. (a) Non-collapse (b) partial collapse (c) global collapse 

4. Method 

In order to predict the label of structural damage, different models are implemented. The three baseline models are implemented 

including AlexNet, VGG-16 and ResNet50. 

4.1. Base models 

The structure of AlexNet, as described in [22], consists of a deep convolutional neural network architecture designed to handle 

large-scale image classification tasks. Initially, the input image passes through a large convolutional layer, which applies multiple 

filters to extract low-level features such as edges, textures, and color gradients from the image. This convolutional layer is followed 

by a max pooling layer, which reduces the spatial dimensions of the feature maps, thereby decreasing the computational complexity 

and helping to prevent overfitting by focusing on the most prominent features. This process is repeated multiple times, allowing 

the network to progressively capture more abstract and complex features from the input image. Afterward, the image passes 

through three additional convolutional layers, which are smaller in size but crucial for refining the learned features and detecting 

high-level patterns such as shapes or objects. These layers are again followed by a final max pooling layer to further downsample 

the data. 

At this stage, the multidimensional feature maps are flattened into a one-dimensional vector, which is then fed into a series of 

fully connected layers. These layers perform the final classification by combining the high-level features learned during the 

convolutional stages. The output from the fully connected layers is used to predict the class of the input image. Throughout the 

network, Rectified Linear Unit (ReLU) activation functions are applied after each convolutional and fully connected layer to 

introduce non-linearity, enabling the network to learn and model complex relationships in the data.  

Compared to AlexNet, the most notable difference in VGG-16 lies in its architectural choices. While AlexNet employs varying 

kernel sizes, VGG-16 standardizes its convolutional layers by exclusively using 3x3 kernels across all layers. This uniform kernel 

size enhances the model’s ability to capture finer details in the spatial dimensions of the input data while maintaining simplicity 

in design. Additionally, VGG-16 incorporates 2x2 max pooling layers, which effectively reduce the spatial dimensions of the 

feature maps while retaining the most prominent features, contributing to more efficient computations. Another key distinction is 

the significant increase in the depth of the network. This deeper architecture allows VGG-16 to learn more complex patterns and 

hierarchical representations, making it more powerful in handling tasks that require deeper feature extraction, such as image 

classification and object recognition. The increased number of layers enables the network to model intricate details and abstractions, 

but also introduces challenges such as increased computational cost and potential vanishing gradient issues during training. The 

overall architecture of VGG-16 is shown below, showcasing how the deep network’s consistent use of small kernels and pooling 

layers contributes to its advanced performance in comparison to earlier models like AlexNet. 

ResNet is a deeper neural network architecture compared to earlier models like AlexNet and VGG-16. While increasing the 

depth of a neural network can improve its ability to capture complex patterns, it also introduces a significant challenge known as 

the degradation problem. As the number of layers grows, the gradients during backpropagation may either explode or vanish, 

which hampers the model’s ability to learn effectively. To mitigate this issue, ResNet introduces a novel solution known as the 

identity shortcut connection, which allows the model to "skip" one or more layers, essentially passing the input from one layer 

directly to a later layer without modification. This mechanism, referred to as residual learning, enables the model to preserve 

essential information through these shortcut connections while allowing deeper layers to focus on learning finer details. By 

incorporating residual learning, ResNet significantly increases the depth of CNNs, with architectures like ResNet-50, ResNet-101, 

and even deeper variants, enabling the network to have more layers without falling into the trap of gradient degradation. This 

innovation has not only improved performance on a wide range of tasks but also opened the door to more advanced, deeper models 

in the field of deep learning.  
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4.2. Base results 

The baseline results for the predictive models are summarized in Table 1, showing the performance metrics across three key tasks: 

spalling condition classification, collapse mode detection, and damage type identification. The training accuracy for each task is 

notably high, with 94.5%, 97.5%, and 94.2% respectively, indicating that the models are learning effectively from the training 

data. However, there is a significant drop in test accuracy, particularly for the collapse mode and damage type tasks, where the test 

accuracy falls to 58.1% and 57.7%, respectively, suggesting a potential overfitting issue. This is further illustrated in the training 

curves (Figure 4) and error trends (Figure 5), where the gap between training and test accuracy is evident, especially in the damage 

type classification task. 

Table 1. Baseline result 

Task Classes Training Accuracy Test Accuracy 

Spalling Condition 2 94.5% 65.6% 

Collapse Mode 3 97.5% 58.1% 

Damage Type 4 94.2% 57.7% 

The baseline models were trained without fine-tuning or the use of pre-trained parameters to assess the performance of naive 

models. This approach highlights the limitations of the current setup and points toward the need for improvement strategies. To 

address the overfitting and enhance generalization to unseen data, several techniques could be applied, including fine-tuning the 

models with pre-trained weights and incorporating regularization methods such as dropout or weight decay. Moreover, exploring 

a wider range of model architectures and hyperparameter configurations could help optimize performance. Moving forward, these 

strategies will be employed to refine the models and achieve better balance between training and test accuracy across all tasks. 

4.3. Model improvements 

Fine-tuning is employed to enhance the baseline model's performance. This process begins by initializing the model with pre-

trained parameters from ImageNet, which are mapped to the corresponding layers of the new model. To accelerate training and 

extract low-level features such as pixel gradients, texture, and color, the parameters in the lower-level convolutional layers are 

frozen, meaning they are not updated during training. In contrast, the parameters in the higher-level convolutional blocks and fully 

connected layers are unfrozen, allowing them to be updated during training to adapt to the new task. This hierarchical approach 

ensures that the model retains its ability to recognize basic image features while also learning specific patterns related to the new 

dataset. 

In addition to fine-tuning the model, several hyperparameters are optimized to further improve model performance. This tuning 

process includes adjusting critical elements such as the dropout rate, L1/L2 regularization strength, learning rate, and the number 

of frozen/unfrozen convolutional blocks. These adjustments are tested across four alternative architectures: VGG19, MobileNet, 

MobileNetV2, and InceptionV3, to compare performance. The hyperparameter configurations explored include different 

optimization algorithms such as SGD, RMSProp, Adam, and Momentum, which play a crucial role in improving convergence 

during training.  

The impact of these fine-tuning and hyperparameter adjustments is evident in the model's performance, as reflected in the 

training curves and prediction results, as shown in Figure 6 and 7. The baseline models, such as AlexNet, VGG16, and ResNet50, 

exhibit high variance and overfitting, with a large gap between training and test accuracy. By contrast, the improved models, 

following the fine-tuning process, show significantly reduced overfitting. Dropout and L2 regularization, in particular, help to 

stabilize the models by introducing a regularization effect, preventing over-reliance on specific features. Despite these 

improvements, fine-tuning does introduce some bias, as reflected by a slight drop in training set accuracy, but this trade-off leads 

to improved generalization on the test set. 

The summary table demonstrates that MobileNetV2 performs the best overall, achieving the highest accuracy across all tasks. 

Other models, such as VGG19 and InceptionV3, also show marked improvements compared to their baseline versions, though 

MobileNetV2's balance of speed, accuracy, and generalization makes it the top-performing model in this analysis. The results 

illustrate the effectiveness of fine-tuning and hyperparameter optimization in significantly boosting the performance of deep 

learning models for image-based tasks. 
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Table 2. Identification result summary 

 Task 
Spalling 

Condition 

Collapse 

Model 

Damage 

Type 

Baseline 

Model 

AlexNet 59.61% 53.30% 56.20% 

VGG16 65.63% 58.10% 57.70% 

ResNet50 57.94% 51.20% 52.10% 

Improved 

Model 

VGG16 84.76% 67.40% 64.11% 

VGG19 84.34% 66.50% 62.34% 

ResNet50 79.02% 62.20% 58.42% 

MobileNet 84.75% 68.20% 61.90% 

MobileNetV2 85.45% 69.11% 64.50% 

InceptionV3 80.50% 63.20% 57.14% 

4.4. Intermediate output 

While the input and output of a neural network are often well-understood, the outputs at intermediate layers receive less attention, 

despite being equally important. In an ideal convolutional neural network (CNN), the initial convolutional blocks are tasked with 

extracting low-level features, such as basic shapes, edges, and textures. For instance, in the context of damage type classification, 

these intermediate layers can identify structural patterns that indicate different damage categories. 

 

Figure 4. Intermediate output 

As we move deeper into the neural network, the activations transition from recognizing simple, low-level patterns to capturing 

more abstract and complex features, such as borders, corners, and angles. These higher-level layers are essential because they 

represent a transformation from concrete visual information to abstract, class-specific representations. By this stage, the network's 

focus shifts from the specific visual contents of an image (e.g., individual pixels or edges) to more holistic characteristics that help 

identify the image's overall category, such as the type of damage or object.  
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This is where techniques like fine-tuning with layer freezing become crucial. In practice, without fine-tuning, a model may 

perform well during training, but it could fail to generalize effectively on unseen data, such as validation or test sets. This failure 

often occurs because the network’s early layers are not effectively tuned to detect critical low-level features like shapes and edges. 

By selectively freezing certain layers and fine-tuning others, we can control the network’s variance, allowing it to better extract 

and process relevant features across different layers. This method significantly enhances the model’s ability to generalize to new, 

unseen data, leading to better overall performance in real-world applications. 

5. Conclusions 

In this study, multiple deep convolutional neural networks were employed to classify structural damage. While these models 

demonstrated fast computational performance, they exhibited certain limitations in achieving high accuracy, particularly in multi-

class classification tasks. The results suggest that the models' classification performance can be significantly improved through 

further fine-tuning of the models and hyperparameter optimization, which could enhance their ability to generalize across different 

damage categories. 

Beyond classification, this research highlights possibility for future investigation, such as damage localization and 

quantification at system and regional level [24-25], which are critical for a comprehensive understanding of structural integrity. 

These tasks could be achieved by extending the current model to incorporate techniques for identifying the specific locations and 

extents of damage. Moreover, the integration of drone or satellite imagery could further elevate the model’s capability, particularly 

in post-disaster scenarios where rapid and large-scale assessment of infrastructure is essential for timely disaster response and 

recovery planning. 

However, a notable challenge encountered in this research was the prediction accuracy falling below expectations. This was 

primarily attributed to the low quality of the input images used during training and testing. One potential solution to this issue 

would be to apply image segmentation techniques during the pre-processing stage. By isolating relevant structural features and 

excluding unnecessary background noise, segmentation could help the model focus on critical areas of damage, thereby improving 

classification accuracy. Overall, the study provides a foundation for further refinement and expansion of CNN-based methods for 

structural damage assessment, with promising implications for improving post-disaster infrastructure evaluation and maintenance 

planning. 
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