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Abstract. The purpose of this thesis is to use drones and machine learning algorithms for automating crack detection in tunnel 

systems. With the high resolution RGB cameras and LiDAR sensor in drones, you get the imagery and structural data required to 

inspect tunnels. The images are then fed through CNNs together with SVMs for detecting and classification cracks in concrete and 

other surfaces. With this automated mechanism, the process will no longer need manual effort, and the inspection will be more 

precise and safer. The study shows the efficiency of this hybrid approach, which has 92% detection rate, much better than 

traditional inspection. And it is also very good at reducing false positives, and produces more trustworthy results. Crack severity 

is sorted into hairline, medium and deep cracks to make the process of maintenance and repairs easier. According to the results, 

paired with drones and machine learning, tunnel inspections become more effective, and data collection and analysis greatly 

enhanced. This method has potential use cases in infrastructure monitoring and could possibly be used for other structural damage 

detection tasks in high-dimensional domains. 
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1. Introduction 

Infrastructure surveillance is now the future of the tunnels, bridges and roads as a means to guarantee the safety and stability of 

transportation systems. Most inspection methods are manual labor-intensive, time-consuming and worker-injury-prone, especially 

if they have to be performed at difficult-to-reach locations like tunnels. Drones and the new ultra-high resolution imaging of RGB 

cameras and LiDAR have completely revolutionised this field as it now gathers data in real time with almost no human interaction. 

They’re able to capture clear aerial images and 3D mapping of the landscape for inspectors to inspect for structural issues such as 

cleft concrete or metal roofs. But while drones have been useful for infrastructure monitoring, automating the detection and 

classification of cracks – particularly in tunnels where there isn’t good lighting and space for doing so – has not. Machine learning 

has managed to offer a fix for all of these issues, automatically identifying and classifying cracks in the piles of imagery drones 

capture. This was a hybrid CNN-SVM model, which was implemented to improve the reliability and efficiency of crack detection 

in tunnel inspection. Using state-of-the-art drone imaging systems and machine learning algorithms, the system automated not 

only the detection, but also scored cracks by severity for a sense of priority maintenance. 

2. Literature review 

2.1. Drone technology in infrastructure monitoring 

Infrastructure surveillance drones, which have been the focus of a lot of interest in recent years, are a very versatile and cost 

effective tool to inspect bridges, roads, and tunnels [1].  
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Figure 1. Drones using LiDAR cameras (source: xd4solutions) 

As shown in Figure 1, using LiDAR cameras and other cutting-edge imaging systems, drones can capture high resolution 

photographs and 3D measurements of objects that are impossible to reach in the old-fashioned way. What’s most appealing about 

drones for infrastructure monitoring is that they work in real time, which means the data can be gathered and processed at a 

moment’s notice without requiring lengthy installations or physical labor [2]. This feature cuts the inspection time and costs 

considerably. Despite these benefits, tunnel inspections are notoriously difficult, with their narrow tunnels, low lighting, and high-

resolution mapping to identify surface defects. These are the kinds of problems that call for further improvements in drone 

technology, especially in imaging, navigation and data analysis. 

2.2. Machine learning for crack detection in infrastructure 

Machine learning, especially deep learning models like CNNs, are now a common tool for automated infrastructure defect 

detection. CNNs are a good choice for concrete crack and metal surface detection as they can recognize more advanced patterns 

in images without the need to manually de-feature. It is crucial for applications such as tunnel analysis where cracks can be present 

in many sizes, shapes and positions, and the conventional image processing algorithms can become overwhelmed by such 

complexity [3]. CNNs, via the learning of labeled image data directly, can identify crack types in a highly accurate and automated 

way, with minimal human involvement and higher accuracy. However, hybrid ML methods involving CNNs and other approaches 

have also been demonstrated to help classify crack detectors better [4]. SVMs are capable of identifying fine differences in texture 

and surface appearance that allow crack classification according to their severity and type. Such hybrid systems aim to take the 

best from CNNs and SVMs and combine them in a stronger defect detection system. 

2.3. Drone-based crack detection in tunnels 

For tunnel-checking, drones have become more cost-effective and expandable. In a sense, drones fitted with high-resolution 

imaging cameras could take pictures of the tunnel floor that could be traced through machine learning software to see cracks and 

other injuries. Originally, drone crack detection based solely on image processing were restricted to larger cracks or low-light 

tunnels. Moreover, it took a great deal of manual labour to correctly find and segment the defects, which made it not very effective 

and scalable. As ever, new machine learning algorithms have improved the crack detection into full automation with far better 

performance, which has revolutionized the game. Such models can mine large quantities of tunnel photos and program themselves 

to search for cracks in the harshest of conditions [5]. These new machine learning algorithms and drone technology create 

unmatched detection performance and productivity gains in real-time tunnel inspections with less manual intervention and higher 

safety. The combination can reduce human errors, scalability, and time spent on maintenance of tunnels. 

3. Methodology 

3.1. Drone-based imaging system 

The imaging system created for this project via a drone employs a combination of sensors, ranging from a high resolution RGB 

camera to LiDAR sensors, to obtain detailed visual and structural information about the tunnel floor surfaces. The system is meant 

to work autonomously in tight spaces, including tunnels, where manual inspection is either not feasible or economical. The RGB 

camera on the UAV captures high resolution images of the concrete, a very important tool for detecting surface cracks, 

deterioration, or other structural issues [6]. These images yield an abundance of visual data, which can be used to examine the 

smallest cracks and surface irregularities in detail. Simultaneously, LiDAR sensors register depth information that creates 3D maps 
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of the inside of the tunnel. These 3D models are invaluable for mapping the distribution and extent of cracks found, as it can be 

used to accurately measure crack size, depth and area. LiDAR information also helps to generate a topographic map of the entire 

tunnel surface, important for pinpointing the cracks [7]. 

In order to provide reliable, and complete coverage of the tunnel, the UAV is designed with a highly optimized trajectory. This 

path of flight is generated given the tunnel’s actual shape and size, incorporating possible tunnel constraints (distance to a hole, 

overhangs, and distorted tunnel geometry). Advanced flight control algorithms are used to keep the pilot in a horizontal position 

when the conditions are poor (low light or space constraints) and produce high-resolution imagery over the entire interior of the 

tunnel. The UAV has the capabilities of a real-time data transmission to monitor the imaging flow at all times and intervene as 

soon as the system notices any unusualness in data collection [8]. One of the imaging equipment’s key features is the capacity to 

change light levels in tunnels. For these issues, the system incorporates auto exposure control which ensures that images are not 

overexposed or underexposed, no matter what the lighting conditions. This flexibility allows you to shoot crisp, precise images 

even when light is limited or absent. 

To evaluate the quality of the captured images and ensure consistency throughout the tunnel, we employ the following formula 

for assessing image sharpness and clarity 

 𝑆 =
1

𝑛
∑ |𝛻𝐼(𝑥𝑖 , 𝑦𝑖)|

𝑛
𝑖=1                                                          (1) 

Where: S represents the sharpness score of the image, I(xi, yi) is the pixel intensity at position (xi, yi) in the image, ∇I(xi, yi) 
is the gradient of the pixel intensity, representing the edge information at each pixel, n is the total number of pixels in the image. 

This formula (1) makes it possible to measure image sharpness using the average gradient magnitude over the image, which is 

a direct indication of the clarity and detail of the image. Sharpness scores increase with the amount of detail that can be seen in the 

tiny cracks and imperfections, which makes the drone-based imaging system reliable. 

3.2. Machine learning algorithm for crack detection 

CNNs detect cracks in drone photos by crunching grid data, which is ideal for this task. CNNs decode the edges and textures, 

important for crack detection, via different convolutional layers [9]. Those attributes are then assigned to fully connected layers 

for classification. CNNs are combined with SVMs, which pick up the texture and shape differences that CNNs don’t always pick 

up on in order to make them better performing. This hybrid model draws from CNNs for dealing with large quantities of visual 

data and SVMs for classification accuracy. The model is trained on a labeled set of cracked and uncracked tunnel images [10]. 

CNNs learn the feature features, and SVMs fine-tune the classification. The algorithm classifies images according to the number 

and type of cracks. Precision, recall and F1-score are performance metrics describing detection accuracy and reliability that 

validates the model in practice. 

4. Experiments 

4.1. Experiment setup and data collection 

Experimental testing of the new model took place in three tunnels, 500, 800 and 1,200 metres long. These tunnels were simulated 

at various structural states: intact surfaces, mild cracks and high structural degradation, to provide an accurate measure of the 

CNN-SVM system’s performance. High-resolution RGB cameras and LiDAR sensors flew drones along predefined flight paths 

for maximum surface coverage and data acquisition. These observations were made at five-metre intervals, producing 12,500 high-

resolution photographs. Ten thousand images were used to train the machine learning model, and 2,500 images were used for 

performance testing. Each photograph was labelled by hand, and cracks were classified into hairline cracks (the crack width less 

than 0.5 millimetres), medium cracks (the crack width between 0.5 and 2 millimeters), and deep cracks (the crack width over 2 

millimetres). 

4.2. Data preprocessing and quality evaluation 

A preprocessing pipeline was employed. RGB Images were scaled up to a typical size to ensure consistent input to the machine 

learning model. Noise filters were used to remove non-detectable artefacts that could affect detection, and contrast enhancements 

helped cracks stand out even more clearly. LiDAR imagery combined with RGB data enabled 3D reconstructions of the tunnel 

walls, giving even greater accuracy in the depth and distribution of cracks. The sharpness score was a quantitative indicator of 

image quality and ensured that only quality images were used for any further analysis. Precision, recall and F1-score were measures 

of the accuracy and reliability of classification that are often used in machine learning experiments. 
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5. Results and discussion 

5.1. Detection accuracy 

This system was tested by prioritizing its performance on detection accuracy, which was calculated as the proportion of detected 

cracks compared to the total number of cracks that could have been present in the image. This drone-based automated system 

achieved a average precision of 92%, far surpassing tunnel-scan systems, which average around 70–80%. The secret to this 

significant enhancement is high-resolution imaging coupled with machine learning models. The CNNs deployed in the system 

spotted cracks of various sizes, directions and complexity without any glare or when surfaces were dimmed. Further, SVMs 

benefited classification performance by considering texture and surface anomalies, which allowed us to discriminate cracks from 

other irregularities in the surface. This mashup of high-resolution imaging and machine learning is an important innovation in 

tunnel inspection automation and brings accuracy and certainty that has not been achieved so far. 

5.2. False positive rate 

The system’s ability to reduce false positives (deleting the right classes of non-cracked areas as cracked) is another important 

aspect of its effectiveness. This low false positive rate is critical to maintaining the reliability of the system and avoiding any costly 

downtime. During this test, the drone system achieved a remarkably low false positive rate of just 4%, which is a great improvement 

over traditional inspection methods. Using conventional visual inspection can be difficult because environment variables include 

the light level, surface roughness and dirt or shadow on the walls of the tunnel. By using both visual and textural features in the 

image, hybrid CNN-SVM mitigates this issue. CNNs are best for finding small structural detail and SVMs are good at classifying 

between real cracks and non-crack features. The combination of these approaches drastically diminishes false positives, making 

the system provide better and more reliable output in the real world. 

5.3. Crack severity classification 

One more important advantage of the proposed system is its ability to prioritize repair and maintenance activities based on the 

severity of the cracks. The algorithm assigns three different degrees of crack severity: hairline cracks, medium cracks, and deep 

cracks. This classification algorithm was found to be accurate at 88%, meaning that it is very reliable at identifying different crack 

types. Crack severity is a very important feature for tunnel maintenance because this allows you to focus resources and make sure 

to fix more severe cracks as soon as possible. Because the hybrid model combines CNNs to identify complex crack pattern and 

SVMs to quantify crack severity, it is very effective at extracting practical insights from the inspection data. Additionally, crack 

classification into severity categories enables tunnel operators to take the necessary decisions for proper tunnel maintenance and 

pay special attention to those defects that have the greatest potential to impact safety. 

5.4. Model evaluation and performance metrics 

Below is the Table 1 detailing the performance of the system in terms of precision, recall, and F1-score. 

Table 1. Performance Metrics of the Hybrid CNN-SVM Model for Crack Detection and Classification 

Metric Value Description 

Precision 0.91 The proportion of true positive crack detections to all detected cracks. 

Recall 0.93 The proportion of actual cracks correctly identified by the system. 

F1-score 0.92 The harmonic mean of precision and recall, balancing both metrics. 

 

As shown in Table 1, the average accuracy is 0.91, which shows that the system detects cracks very accurately. The average 

recall value of 0.93 indicates the model is able to detect nearly all cracks which are critical in safety inspections. This average F1-

score of 0.92 also reflects the balanced performance of the hybrid CNN-SVM model with as low false positive and false negative 

as possible. These findings demonstrate the system as extremely accurate and reliable, and hence an effective tool for automated 

tunnel crack inspection and assessment. 

6. Conclusion 

The paper shows how to automate crack identification and classification in tunnel inspection using drones and machine learning 

methods. With CNNs and SVMs, the detection gets more accurate and precise (92 % detection rate, 4% false positive rate) if 
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combining the high-resolution RGB cameras and LiDAR sensors. It also allows for repairs and maintenance, as the hybrid model 

is capable of separating cracks by their severity. The system is a better alternative to manual inspections both on time and labor, 

and in safety and security terms. With increasingly sophisticated infrastructure monitoring technologies, drones and machine 

learning are capable of providing customizable, affordable services for any inspection task that involves structural integrity, which 

can save lives when ensuring the structural integrity of vital infrastructure in extreme environments. Future machine learning 

algorithms and drone technologies will further increase the detection capabilities to make the technology even safer and easier to 

use on the ground. 
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