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Abstract. This paper proposes a multi-stage decision model to address the detection and disassembly of parts, semi-finished 

products, and finished products in electronic product production. Key decisions in the production process are optimized by 

implementing small and large sample sampling techniques and a variable decision model with global cost minimization. The 

methods include probability and accumulation models, normal distribution approximation, and traversal algorithms. The results 

show that rational decision-making can effectively reduce production costs and improve product quality. For small samples, the 

probability and accumulation models are established, and the number of samples with a defect rate greater than or less than the 

nominal value under 95% and 90% reliability is calculated, yielding results of 29 and 22, respectively. For large samples, the 

sample sizes under different error tolerances are calculated using the normal distribution approximation. Through MATLAB 

programming, the minimum unit cost and its corresponding decision scheme are determined through traversal-based calculations. 

The results show that the minimum unit costs in different cases are 30.98, 31.33, 32.35, 30.55, 29.62, and 29.43. Additionally, 

considering the decision problem involving multiple processes and parts, the problem is decomposed into smaller problems, with 

the minimum cost sum of each stage representing the global minimum cost. For a case with two processes and eight parts, the 

minimum unit cost is calculated to be 138. The decision scheme is that no parts or semi-finished products are tested, and the semi-

finished products and finished products are disassembled. The research results provide a scientific basis for actual production, and 

future research can further consider uncertainties and risk factors in real production to achieve more comprehensive optimization. 

Keywords: sampling testing scheme, decision scheme, minimum cost, global optimal solution 

1. Introduction 

With the trend of optimizing production capacity layout and environmental governance in the current economic and social 

development of China, optimizing control of industrial production has received widespread attention and research from both 

academia and industry [1]. In existing enterprises producing a certain electronic product, this product requires two types of 

components, which are paired and assembled into finished products. In the assembled finished products, if any component is 

defective, the finished product will definitely be defective; if both components are qualified, the assembled product may still not 

meet the standards. Two handling schemes are available for defective products: one is direct scrapping, and the other is disassembly, 

where no damage is caused to the components during disassembly, but disassembly incurs a cost. 

In 2023, Yang Lei et al. proposed a data-driven model fusion method for product quality prediction in complex production 

processes. This method combines a holistic prediction model with a segmented prediction model, using ensemble learning 

techniques to address the insufficient predictive ability of individual models, thus improving prediction accuracy and enabling 

real-time quality monitoring. However, this method is computationally complex, requires significant computational resources, and 

has high demands on data quality and quantity [2]. In 2024, Mu Yaqi et al. applied the Lean Six Sigma method in optimizing the 

production process of R Company’s pharmaceutical products, using the DMAIC process to precisely identify and improve key 

variables in the production process. This method improved production efficiency, reduced costs, and enhanced product quality [3]. 

However, it has a high implementation difficulty, requires professional knowledge and skills, and the DMAIC process has a long 

cycle, with results that are difficult to achieve in the short term. In 2021, Liu Qiang’s team proposed a production process 

management model suitable for the automotive parts manufacturing industry at Company A, combining Lean Production with 

Smart Manufacturing theories [4]. This model optimized management processes, equipment, and technology, enhancing 

automation levels and production efficiency. However, it involves high initial investment and strong technological dependence, 

requiring ongoing technical support and maintenance. Tan Bo et al. applied the PDCA cycle management model at F Garment 

Company, combining the 5W1H and 5M1E analysis methods to conduct in-depth analysis of quality issues in production, thereby 
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reducing defect rates and improving customer satisfaction [5]. Despite achieving results, the PDCA cycle relies on employee 

execution, and each cycle takes a long time, with significant effects difficult to observe in the short term. In 2011, Gausemeier et 

al. proposed a universal program model for the integrated development of electromechanical products, emphasizing the 

collaborative cooperation between product design and production systems, improving product performance and production 

efficiency [6]. This method requires interdisciplinary knowledge and coordination, making implementation more complex. Tolio 

et al. explored the co-evolution of products, processes, and production systems, emphasizing the impact of manufacturing 

technology limitations on new product development and production system design, thereby improving production efficiency and 

product quality [7]. This process requires high technical levels and has a long implementation cycle. 

This paper proposes a multi-stage decision model to address the detection and disassembly issues of components, semi-finished 

products, and finished products encountered by enterprises during the production of electronic products. By establishing small-

sample and large-sample sampling schemes and a variable decision model for global cost minimization, the key decisions in the 

production process are optimized. The research results show that rational decision-making can effectively reduce production costs 

and improve product quality. Specific methods include probability and accumulation models, normal distribution approximation, 

and traversal algorithms, providing a scientific basis for actual production. 

2. Sampling testing scheme 

2.1. Small sample sampling testing 

Since in the sampling process, the components can only be classified into two categories: qualified and defective, the sampling 

process follows a binomial distribution pattern [8]. For a given sample size 𝑛 and defect probability 𝑝, the probability of selecting 

defective components 𝑘 from 𝑛 samples is expressed as: 

𝑃𝑋 = 𝑘 = 𝐶𝑛
𝑘𝑝𝑘(1 − 𝑝)(𝑛−𝑘) 

(1) 

To calculate the probability when the defect rate of the components exceeds the nominal value, it is necessary to establish a 

cumulative probability model. The probability that the defect rate exceeds the nominal value can be expressed as: 

𝑃{𝑋 ≥ 𝑘} = ∑ 𝐶𝑛
𝑘𝑝𝑘(1 − 𝑝)(𝑛−𝑘)𝑘

𝑛=0    
(2) 

The relationship between cumulative probability and sample size is shown in Figure 1: 

 

Figure 1. The Relationship Between Sample Size and Cumulative Probability 

 

The sample size 𝑛  is iteratively calculated starting from 1, gradually increasing the sample size 𝑛 , and the cumulative 

probability corresponding to each sample size is computed. The iteration stops when the cumulative probability reaches the 

specified 95% confidence level, and the final sample size is determined to be 29. 
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From the above conclusion, it can be seen that when the sample size is 29, the defect rate of the components can be considered 

to exceed the nominal value with 95% confidence, leading to the rejection of the batch of components. Similarly, it is calculated 

that when the sample size is 22, the defect rate of the components does not exceed the nominal value with 90% confidence, so the 

batch of components can be accepted. 

2.2. Small sample sampling testing 

According to the binomial distribution pattern 𝑋~𝐵(𝑛, 𝑝0), the mean of 𝑋 is 𝑛𝑝0, and the variance is √𝑛𝑝0(1 − 𝑝0). 

When the sample size is sufficiently large, based on the Central Limit Theorem, the components in the sampling process can 

be approximated as following a normal distribution pattern [9]. It is then converted into a standard form as follows: 

𝑌 =
𝑋−𝑛𝑝0

√𝑛𝑝0(1−𝑛𝑝0)
~𝑁(0,1) = 𝑍𝛼 (3) 

By transforming it, we obtain: 

𝑛 =
𝑍𝛼𝑝0(1−𝑝0)

(𝑝1−𝑝0)
2  

(4) 

The relationship between 𝑛 and 𝑝1 is shown in Figure 2: 

 

Figure 2. Relationship Between Actual Defect Rate 𝑝1 and Sample Size 𝑛 

Define the error tolerance as: 

𝜀 = (𝑝1 − 𝑝0) 
(5) 

Since the general error range is 1%~5%, the step size 𝜀 is set to 0.01. Then, using a traversal algorithm, the sample size 𝜀 

corresponding to the error tolerance is obtained when the defect rate is 1%~5%. The final results obtained through programming 

are shown in the table below: 

Table 1. Sample Sizes Corresponding to Different Error Tolerances 

Error margin𝜀 The number of samples with 

95% confidence 

The number of samples with 

90% confidence 

1% 3458 2435 

2% 865 609 

3% 385 271 

4% 217 153 
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3. Cost minimization decision model 

In the production process of an enterprise, decisions are made at various stages, with the goal of reducing the enterprise’s costs 

through reasonable decision-making. Therefore, the final cost can be considered as the basis for the final decision-making process, 

meaning that the ultimate decision should minimize the final cost [10,11]. 

Considering that there are four decision-making stages, which are as follows: whether to test Part 1, whether to test Part 2, 

whether each assembled finished product should be tested, and whether to disassemble defective finished products detected during 

testing. Use a 0-1 decision variable 𝑘𝑖 to determine whether each decision should be implemented: 

𝑘1 = {
1, 𝑖𝑓 𝑃𝑎𝑟𝑡 1 𝑖𝑠 𝑡𝑒𝑠𝑡𝑒𝑑
0, 𝑖𝑓 𝑃𝑎𝑟𝑡 1 𝑖𝑠 𝑛𝑜𝑡 𝑡𝑒𝑠𝑡𝑒𝑑

 

𝑘2 = {
1, 𝑖𝑓 𝑃𝑎𝑟𝑡 2 𝑖𝑠 𝑛𝑜𝑡 𝑡𝑒𝑠𝑡𝑒𝑑
0, 𝑖𝑓 𝑃𝑎𝑟𝑡 2 𝑖𝑠 𝑛𝑜𝑡 𝑡𝑒𝑠𝑡𝑒𝑑

 

𝑘3 = {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝑑 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖𝑠 𝑡𝑒𝑠𝑡𝑒𝑑
0, 𝑖𝑓 𝑡ℎ𝑒 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝑑 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑡𝑒𝑠𝑡𝑒𝑑

 

𝑘4 = {
1, 𝑖𝑓 𝑑𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑎𝑟𝑒 𝑑𝑖𝑠𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝑑
0, 𝑖𝑓 𝑑𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑑𝑖𝑠𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝑑

 

Since different decisions at each stage lead to changes in the cost calculation method, each decision basis and the associated 

costs are analyzed separately. 

3.1. Decision design for each stage 

In the first stage, the testing cost for parts 𝐶1 is denoted as 𝐶1 = 𝑘1 ∙ 𝑥3 + 𝑘2 ∙ 𝑥6, where 𝑥3 and 𝑥6 represent the costs for testing 

Part 1 and Part 2, respectively. 

After testing the parts, the number of finished products is given by: 

𝑃 = 𝑚𝑖𝑛{(1 − 𝑥1)
𝑘1 , (1 − 𝑥2)

𝑘2} 
(6) 

Where 𝑥1 denotes the defect rate of Part 1 and 𝑥2 denotes the defect rate of Part 2. 

Therefore, the assembly cost for the finished products 𝐶2 should be: 𝐶2 = 𝑝 ∙ 𝑥8, where 𝑥8 is the assembly cost per finished 

product. 

The cumulative cost for the first stage is: 

𝑆1 = 𝐶1 + 𝐶2 = 𝑘1 ∙ 𝑥3 + 𝑘2 ∙ 𝑥6 + 𝑝 ∙ 𝑥8 
(7) 

After the parts are assembled, they enter the second stage. In the second stage, we first need to consider whether the assembled 

finished products should be tested. The testing cost generated is 𝐶3. 

𝑆2 = 𝐶3 = 𝑘3 ∙ 𝑥9 ∙ 𝑝 (8) 

Where 𝑥9 is the cost of testing the assembled finished products. 

In the third stage, all finished products are defective, including the defective products detected in the second stage and the 

defective products returned by the user in the fourth stage. For the disassembly process, if disassembly occurs, the two parts might 

be reused. If disassembly does not take place, the two parts need to be repurchased. This corresponds to a risk of loss, i.e., an 

increase or decrease in cost. 

Let 𝑘𝑘 = 𝑚𝑖𝑛{ 1 − 𝑥1, 1 − 𝑥4}, and if both parts are of good quality, reassembling them may result in a qualified finished 

product. Therefore, the loss risk is: (𝑥2 + 𝑥5) ∙ 𝑘𝑘 ∙ (1 − 𝑥7). 
If disassembly does not take place, there will be no cost in this stage. If disassembly occurs, a disassembly fee 𝐶4 is generated: 

𝐶4 = 𝑘4 ∙ 𝑥12 ∙ 𝑝 ∙ 𝐽 
(9) 

Where 𝑥12 is the disassembly fee and 𝐽 is the defect rate of the actual finished product. 

𝐽 =

{
 
 
 
 

 
 
 
 
𝑥1 + 𝑥4 − 𝑥1𝑥4 + (1 − 𝑥1)(1 − 𝑥4)𝑥7,
𝑘1 = 0, 𝑘2 = 0
(1 − 𝑥1)𝑥2 + (1 − 𝑥1)(1 − 𝑥4)𝑥7,
𝑘1 = 1, 𝑘2 = 0
(1 − 𝑥2)𝑥1 + (1 − 𝑥1)(1 − 𝑥4)𝑥7,
𝑘1 = 0, 𝑘2 = 1
(1 − 𝑥1)(1 − 𝑥4)𝑥7,
𝑘1 = 1, 𝑘2 = 1

 (10) 

The cumulative cost for the third stage is: 



Advances	in	Operation	Research	and	Production	Management	|	Vol	3	|	7	January	2025	|	4141
 

 

𝑆3 = 𝑘4 ∙ 𝑥12 ∙ 𝑝 ∙ 𝐽 
(11) 

In the fourth stage, there is only one scenario: if no testing was conducted in the second stage, the assembled finished products 

directly enter the market. In this case, the user may receive defective products, and since the company will unconditionally 

exchange them, a loss 𝑆4 from the exchange process will occur. This exchange loss can be represented as: 

𝑆4 = (1 − 𝑘3) ∙ 𝑥11 ∙ 𝑥7 ∙ 𝑝 
(12) 

Where 1 − 𝑘3 indicates that if no testing was performed in the second stage, no exchange loss occurs. Otherwise, exchange 

loss is incurred. 

Based on the comprehensive analysis of each stage, the decision-making model for the final cost 𝑆, using 0 − 1 decision 

variables, is: 

𝑚𝑖𝑛 𝑆 = 𝑆0 + 𝑆1 + 𝑆2 + 𝑆3 + 𝑆4 

{
 
 

 
 
𝑆0 = 𝑥2 + 𝑥5
𝑆1 = 𝑘1 ∙ 𝑥3 + 𝑘2 ∙ 𝑥6 + 𝑝 ∙ 𝑥8
𝑆2 = 𝑘3 ∙ 𝑥9 ∙ 𝑝
𝑆3 = 𝑘4 ∙ 𝑥12 ∙ 𝑝 ∙ 𝐽
𝑆4 = (1 − 𝑘3) ∙ 𝑥11 ∙ 𝑥7 ∙ 𝑝

 (13) 

3.2. Exhaustive search algorithm 

The Exhaustive Search Algorithm is a method that finds the optimal solution by enumerating all possible solutions [12,13]. It is 

suitable for problems with a small scale and limited solution space. The basic idea of the Exhaustive Search Algorithm is to 

systematically examine each possible solution and select the optimal one that satisfies specific conditions. 

The global minimum cost 𝑆 for the entire stage is derived using the Exhaustive Search Algorithm, from which the decision 

schemes that minimize the cost under different conditions are obtained. The specific decision schemes and related indicator results 

are shown in Table 2. 

Table 2. Comparison Table of Cost Optimization Schemes Under the Multi-Stage Decision Model 

condition 

Decision scheme 

cost Whether part 1  

is inspected 

Whether part 2  

is inspected 

Whether the finished 

product is inspected 

after assembly 

Whether the detected 

defective product is 

disassembled 

1 0 0 0 1 30.98 

2 1 0 0 1 31.33 

3 0 0 1 1 32.35 

4 0 1 1 1 30.55 

5 0 1 0 1 29.62 

6 0 0 0 0 29.43 

Note: 0 means no detection/no disassembly; 1 indicates that inspection/dismantling is performed. 

This result shows that, in the parts detection phase, the decision criterion is to compare the detection cost with the assembly 

cost of defective products. Taking part 1 as an example, the cost of not performing the detection is lower. Although this may affect 

subsequent results, the assembly cost of defective products is less than the detection cost, so choosing not to detect is reasonable. 

Similarly, the situation for part 2 supports this decision. In the finished product inspection phase, the decision is made by comparing 

the inspection cost with the replacement loss. For situations with a high defect rate, the cost of not inspecting is lower than the 

inspection cost, so not inspecting is appropriate. The analysis also shows that the decision of whether to disassemble the defective 

products can be determined by comparing the disassembly cost with the risk of loss. Overall, the decisions regarding the inspection 

of parts and finished products should be based on a cost-benefit analysis to achieve the optimal result. 

4. Cost minimization decision model 

When there are multiple production processes 𝑚 and different assembly scenarios 𝑛 for parts, as shown in Figure 3: 
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Figure 3. Multiple Production Processes 𝑚 and Various Part Assembly Scenarios 𝑛 

In actual production, every product must undergo multiple processes and require various parts, with each process having certain 

interdependencies. When considering multi-process and multi-part decision-making problems, the computation becomes 

extremely large, making it difficult to calculate the global minimum cost. Therefore, the model is simplified by representing the 

global minimum cost as the sum of the stage minimum costs from each phase. 

4.1. Cost analysis 

In production, the cost of purchasing parts is essential, and there is an initial required purchase cost for each part, denoted as: 

∑ 𝐵𝑗 , 𝑖 ∈ (1, 𝑛)
𝑛
𝑖=1  

(14) 

Where 𝐵𝑗  represents the purchase unit price of the 𝑗-th part. 

For inspection costs, they can be compared with the cost of assembling defective products. Let the inspection cost be 𝐶𝑖𝑗, the 

defect rate be 𝐴𝑖𝑗, and the assembly cost be𝐸𝑖+1𝑗. If the inspection cost exceeds the cost of assembling defective products, i.e., 

𝐶𝑖𝑗 > 𝐴𝑖𝑗 ∙ 𝐸𝑖+1𝑗, then no inspection is conducted. If the inspection cost is lower than the cost of assembling defective products, 

i.e., 𝐶𝑖𝑗 < 𝐴𝑖𝑗 ∙ 𝐸𝑖+1𝑗, then the part is inspected. The same logic applies to semi-finished products. 

Thus, the inspection cost can be calculated as: ∑ ∑ 𝐶𝑖𝑗𝑥𝑖𝑗
𝑛𝑖
𝑗=1

𝑚
𝑖=1  , and the assembly cost as:∑ ∑ (∏𝑧=1

𝑖 𝑘𝑧)𝐸𝑖+1𝑗
𝑛𝑖
𝑗=1

𝑚
𝑖=1 . 

For finished product inspection costs, these can be compared with the replacement loss of defective products. If the inspection 

cost exceeds the replacement loss for defective products, then no inspection is conducted. If the inspection cost is lower than the 

replacement loss, then inspection is performed. 

For the defect rate of the cost 𝐽, it can be expressed as: 

𝐽 = 𝐽𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡 + 𝐽𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ∙ 𝐴𝑚+1,𝑛𝑚+1  (15) 

If 𝐶𝑚+1,𝑛𝑚+1 > 𝑊 ∙ 𝐽, no inspection is performed; if  𝐶𝑚+1,𝑛𝑚+1 < 𝑊 ∙ 𝐽, inspection is performed. 

The disassembly cost for defective products is given by: ∑ ∑ (∏𝑧=1
𝑖 𝑘𝑧) ∙ 𝐻𝑖𝑗 ∙ 𝑦𝑖𝑗

𝑛𝑖
𝑗=1

𝑚+1
𝑖=2 . 

Using the cost minimization decision model, the replacement loss is calculated as: 𝐹4 = (1 − 𝑘3) ∙ 𝐽 ∙ ∏𝑧=1
𝑚 𝑘𝑖 ∙ 𝑊. 

4.2. Multi-stage decision model 

Based on the previously discussed model with multiple production processes 𝑚  and parts 𝑛 , the model for two production 

processes and eight parts is as follows: 

𝑚𝑖𝑛 𝐹 = 𝐹0 + 𝐹1 + 𝐹2 + 𝐹3 + 𝐹4 

{
  
 

  
 
𝐹0 = ∑ 𝐵𝑖

8
𝑖=1

𝐹1 = ∑ ∑ 𝐶𝑖𝑗𝑥𝑖𝑗
𝑛𝑖
𝑗=1

2
𝑖=1 + ∑ ∑ (∏𝑧=1

𝑖 𝑘𝑧)𝐸𝑖𝑗
𝑛𝑖
𝑗=1

2
𝑖=1

𝐹2 = 𝐶3,1 ∙ 𝑋3,1 ∙ ∏𝑧=1
2 𝐾𝑖

𝐹3 = ∑ ∑ (∏𝑧=1
𝑖 𝑘𝑧) ∙ 𝐻𝑖𝑗 ∙ 𝑦𝑖𝑗

𝑛𝑗
𝑗=1

3
𝑖=2

𝐹4 = (1 − 𝑥1,3) ∙ 𝐽 ∙ ∏𝑧=1
2 𝑘𝑖 ∙ 𝑊

 
(16) 
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Where 

𝑘𝑖 = 𝑚𝑖𝑛((1 − 𝐴𝑖𝑗)
𝑥𝑖𝑗) 

𝐽 =

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
1 − ∏𝑖=1

3 (1 − 𝐽𝑖) + (∏𝑖=1
3 (1 − 𝐽𝑖))𝐽4,

𝑘1 = 𝑘2 = 𝑘3 = 0

(1 − 𝐽1)[1 − (1 − 𝐽2)(1 − 𝐽3)] + (∏𝑖=1
3 (1 − 𝐽𝑖))𝐽4,

𝑘1 = 1, 𝑘2 = 𝑘3 = 0

(1 − 𝐽2)[1 − (1 − 𝐽1)(1 − 𝐽3)] + (∏𝑖=1
3 (1 − 𝐽𝑖))𝐽4,

𝑘2 = 1, 𝑘1 = 𝑘3 = 0

(1 − 𝐽3)[1 − (1 − 𝐽1)(1 − 𝐽2)] + (∏𝑖=1
3 (1 − 𝐽𝑖))𝐽4,

𝑘3 = 1, 𝑘1 = 𝑘2 = 0

(1 − 𝐽1)(1 − 𝐽2)𝐽3 + (∏𝑖=1
3 (1 − 𝐽𝑖))𝐽4,

𝑘1 = 𝑘2 = 1, 𝑘3 = 0

(1 − 𝐽2)(1 − 𝐽3)𝐽1 + (∏𝑖=1
3 (1 − 𝐽𝑖))𝐽4,

𝑘2 = 𝑘3 = 1, 𝑘1 = 0

(1 − 𝐽1)(1 − 𝐽3)𝐽2 + (∏𝑖=1
3 (1 − 𝐽𝑖))𝐽4,

𝑘1 = 𝑘3 = 1, 𝑘2 = 0

(∏𝑖=1
3 (1 − 𝐽𝑖))𝐽4,

𝑘1 = 𝑘2 = 𝑘3 = 1

 
(17) 

Through calculation, the decision basis for the minimum cost is determined to be F = 138 yuan. 

The decision scheme is shown in Table 3: 

Table 3. Decision Scheme for Multi-Part and Multi-Process Inspection and Disassembly 

Decision link 
Part 1 Whether to 

detect 

Part 2 Whether to 

detect 

Part 3 Whether to 

detect 

Part 4 Whether to 

detect 

Implementation status 0 0 0 0 

Decision link 
Part 5 Whether to 

detect 

Part 6 Whether to 

detect 

Part 7 Whether to 

detect 

Part 8 Whether to 

detect 

Implementation status 0 0 0 0 

Decision link 
Semi-finished product 

1 Whether to test 

Semi-finished product 

2 Whether to test 

Semi-finished product 

3 Whether to test 

Whether the finished 

product is tested 

Implementation status 0 0 0 1 

Decision link 

Semi-finished product 

1 Whether to 

disassemble 

Semi-finished product 

2 Whether to 

disassemble 

Semi-finished product 

3 Whether to 

disassemble 

Whether the finished 

product is 

disassembled 

Implementation status 1 1 1 1 

Note: 0 means no testing/disassembly; 1 indicates test/disassemble 

5. Conclusion 

This paper addresses the challenges faced by enterprises in the inspection and disassembly of parts, semi-finished products, and 

finished products during the production of electronic goods. A solution based on multi-stage decision analysis is proposed. The 

solution optimizes key decision points in the production process by designing sampling inspection strategies for both small and 

large samples and by constructing a decision model aimed at minimizing global costs. Various statistical and mathematical tools, 

including probability models, cumulative distribution functions, normal distribution approximations, and exhaustive search 

algorithms, are employed to calculate the lowest unit cost under different scenarios and to propose corresponding optimal decision 

recommendations. Experimental calculations of the relevant data demonstrate that effective decision-making can significantly 

reduce costs and improve product quality. Additionally, this paper explores complex decision-making problems involving multiple 

processing steps and various parts. By breaking down large problems into smaller ones, the process is simplified, and the sum of 

the minimum costs of each stage is taken as the optimal solution for overall costs. After analyzing a specific case with two 

production processes and eight parts, the minimum unit cost obtained is 138. The recommended decision path is to not inspect the 

parts and semi-finished products, but to only inspect the finished products and to implement disassembly for the semi-finished and 

finished products. 

This study provides solid theoretical support for practical operations within enterprises. Future research should focus more on 

the uncertainty and risk control in the production environment to achieve deeper optimization objectives. For instance, dynamic 
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adjustment strategies could be explored to update the decision model in real-time according to changes in the production line. 

Additionally, integrating big data analytics and artificial intelligence technologies could further enhance the precision and 

efficiency of decision-making. 
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