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Abstract. The paper investigates quantum stabilizer codes and our innovative construction methodology. At first, we began with
representing fundamental concepts and theories of quantum computing. In order to identify quantum error correcting codes, we
extend the method of using polynomials to represent qudits on square lattices to accommodate more complicated situations in
general Cayley graphs. The paper briefly reviews essential definitions and examples related to graphs, groups, and stabilizer codes,
and later we propose the novel method and demonstrate its application by using the dihedral group   .
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1. Introduction

Quantum computing is advancing to meet the growing demand for computational efficiency in modern science and technology.
Through the usage of quantum states, the field offers breakthrough applications and insights, including quantum cryptography for
ultra-secure classical information transmission, quantum error correction for preserving quantum coherence amidst noise, and
quantum computation for efficient processing through controlled quantum evolution [1]. Our paper mainly focuses on quantum error
correction.

In recent years, the problem of noise has emerged as a predominant obstacle in the advancement of universal quantum
computers. Quantum decoherence, which refers to the preservation of quantum states despite the interference of noise，is necessary
in order to keep quantum computing reliable. Nowadays, experimental efforts have been made to simulate quantum computations on
small-scale devices, aiming to achieve the quantum decoherence [2]. Unfortunately, these experiments are usually complicated and
challenging. Though the experiments are difficult, quantum error-correcting codes offer a promising solution, which is also the
reason for the exploration in our study.

Detecting effective quantum error-correcting codes involves various methodologies to compare and select optimal approaches:
methods for encoding a single qubit to correct multiple errors [3]; the use of entire classes of codes makes the codes for multiple-
correction of many qubits efficient [4,5]; in [6], the author provides efficient quantum error corrections codes and discusses
techniques for manipulating codes and guessing new codes.

In our paper, we introduce a novel but useful method for representing qudits through polynomials. Though previous applications
are limited to simpler square lattice codes, we do extend this approach to more complex scenarios in Cayley graphs, and give an
example of the situation on the Cayley graph of dihedral group   .

We outline topics of individual sections. Section 2 introduces basic concepts of quantum information. Section 3 introduces
Groups and Graphs, especially Cayley graphs. Section 4 discusses the definitions and examples of stabilizer codes. Section 5
discusses the existing representation of stabilizer codes and our own innovations of stabilizer codes for a more complex group or in a
more complicated graph. Section 6 shows an example of using our innovative method to find the stabilizer codes.

2. Quantum information

Quantum information systems improve the quantum computing through the usage of quantum mechanical phenomena to enhance
computational efficiency. Moreover, we would like to highlight the fundamental characteristics of quantum information, which
encompass quantum superposition and entanglement.

Property.1Quantum information is uncertain.
In classical computers, data are stored, sent, received, and processed in the string of form of bits, which is either 0 or 1. Contrary

to that, quantum information systems demonstrate a significantly different situation. Initially, quantum bits, also known as qubits, are
present in a superposition of multiple quantum states. Later, quantum collapse may be precipitated by observation in quantum
information, resulting in a state change. This collapse is the collapse of the wave function, which represents to the mathematical
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representation of the quantum state of a certain quantum system. Specifically, collapse refers to the transformation of a wave
function from a superposition of multiple quantum states to a single state as a result of observation. Quantum supervision theory
points out that the quantum states of qubits is the state in a linear combination of state 0 and state 1 instead of either 0 or 1.
Observing a qubit can change its superposition state to either 0 or 1. Hence, the qubit will transition from the state of superposition
to a state of definitiveness. As an illustration, consider a qubit system consisting of 500 qubits. When doing the first observation, 300
of them might be 0. However, in the second observation, the value might change to 200. In essence， every observation and
measurement will result in diverse outcomes.

Property.2Quantum information is not local.
According to the theory of quantum entanglement, the quantum state of each particle is not independently determined by itself,

but rather can only be described in a global context. If there is a pair of entangled particles, measurement and observation will
determine the quantum state of one of them. This allows us to infer the state of the other particle based on their global state. This
indicates that in a quantum information system, every qubit’s quantum state is affected by the others. Consider, for example, a pair
of qubits, consisting of 0 and 1. In a quantum information system with several qubits, the quantum state of one qubit influences the
states of the other qubit, leading to a complex entangled system[7].

2.1. Basic concepts

2.1.1. Qubit

In classical computer, data is stored as strings of bits (0s or 1s), and always represented as vectors over   . In quantum computing,
as used lots of times before, the basic unit of quantum information is called qubits, and the state is usually written in   , which uses
Dirac notation. “  ” and “  ” are two basic representations in Dirac notation. “  ” represents a column vector and “  ”
represents a row vector. In this essay, we mainly use “  ” . For example, the standard basis vectors of a single qubit    and   

can be written as    and   . Note that if there we want to represent three qubits, including   ,   , and   , we can

use   . This is an example of utilizing Dirac notation to represent multiple qubits. The normalized representation of qubit state is

where    and    are the probabilities of obtaining    and    respectively.    and    are used in the representation of an
arbitrary single-qudit state:[8]

There is a basic criteria for quantum error correction about the qubits and environment. The initial state of an environment is
denoted by   . A unitary transformation is used to characterize the evolution of a qubit and its environment:

in which    is defined as the four states of the environment that do not need to be normalized or mutually orthogonal or
mutually orthogonal[9].

2.2. Inner product space

An inner product space is a vector space denoted by   . The operation of    is inner product denoted by   . Here is an example.
The inner product, denoted by   ,or dot product    of two vectors    and   , where   

and    are two elements of Euclidean Space    is

There are totally 4 axioms of   :
Axiom.1   when   ,   .

Axiom.2  

Z2

|ψ⟩

| ⟩ ⟨ | | ⟩ ⟨ |
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|001⟩
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x
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Axiom.3   for all   

Axiom.4   for all   ,      .
Every inner-product space is a normed space because if there is an inner product space   , the map    defined by setting  

  defines a form on   . When the norms are “standard norms”, the vector space is complete and in this situation, the
inner-product space is called Hilbert space [10].

2.2.1. Qudit

In d-dimentional Hilbert space   , where   , where    is the set of complex numbers, the quantum state is called qudit.

2.3. Quantum error correction

An essential goal of quantum error correction is to minimise the harmful impact of noise on quantum information. Quantum noise
refers to the elements that impact the precision of calculations performed on a quantum computer. For example, cosmic rays,
radiation from mobile phones, or the magnetic field of the Earth are all the sources of quantum noise. These noises may lead to
quantum error, which is the error happening in quantum algorithm, finally resulting in the error in information transferred by
quantum computer. When quantum error happens, the input of a pure qudit will produce a mixed state or it will become a different
pure state compared with the input one.

The codes known as Quantum Error Correcting Codes (QECC) often carry out this operation. QECC always perform 3
operations to correct the error of a quantum computing. Firstly, they encode the initial state of quantum information. Then, the
diagnose errors. Finally, some recovery operations will be implemented to rectify errors.

QECC can be viewd as a mapping of    qubits (a    dimensional Hilbert space) into    qubits (a    dimensional Hilbert
space). The encoding operation of    qubits toward    qubits is denoted by   . The image of this mapping is known as the code
space.

Take the situation when only one error on a single qubit at a time as an example, the first step is to encode the given logical qudit
as follows:

Through the encoding process above, the data can be stored as 9 qubits.
The second process is the diagnosis of errors. Suppose the first qubit is flipped by switching    and   . When comparing the

first and the second qubit, it is not difficult to find they are different. Note that during the process of diagnosis, the superposition
state is not destroyed because the difference between the first and the second qubit is the object of measurement instead of the qubit
itself. Then through comparing the first and the third qubit, we can find the first qubit disagrees with the third one. Thus, we can
narrow the error to the first qudit. Finally, the recovery operation is basically flipping the first qudit. This kind of error is called a bit
flip.

Another possible error in one qubit is sign flips, which is shown as follows :

Here we only need to compare whether the first sign is same as the second and the third one, thus find the error and flip the sign.
A bit flip and a sign flip can be described as the operations as follows respectively:

2.4. Pauli matrix & pauli operator

The operations introduced in Section 2.3 belong to a group of matrices called Pauli matrix.
Pauli matrix includes 4 different matrices as follows [11]:

(→x, a→y) = a(→x,→y) a ∈ R

(
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x,

→
y) = (

→
y,

→
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Any    matrix can be expressed as a linear combination of these four matrices. For example, if    is a    matrix, it

can be expressed as follows:

where   ,   ,   ,   are constants determined by    [7].
A Pauli operator is formed by taking a tensor product of Pauli matrix on a set of qudits   . On a single qudit   ,

there are two Pauli matrices:    which are defined as follows:
Consider a set of orthonormal basis vectors denoted by   . Pauli matrices    and    are characterized by

where    the primitive   -th root of unity. Note that when applying    and    to a graph,    means flip symmetry
operation so that the overall shape of the graph does not change, and    means rotation operation so that the overall shape of the
graph does not change.

Pauli operators form a group denoted by   . The definition of group and more information about Pauli group will be discussed
in section 3. Note the following important commutation relation

Here is an example of an equilateral triangle.
The equilateral triangle    is shown in Figure 1. Specifically,    is defined as rotating    counterclockwise around the

center point    (this is also the operation of   ), and    is defined as rotating    counterclockwise around the center point   .
Note that   , where    is the notation of a point of   , is defined as the reflection with respect to the axis of symmetry across
the center point and vertex    (note that the direction of the symmetry is defined at the first time and it will not change.). For
example, let the line across the center point and vertex 1 be the axis of symmetry. When there is no operations applied to the graph,
this axis is denoted by   , which is the line perpendicular to the horizontal plane.
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Figure 1. An example of an equilateral triangle

By applying the operations   , the triangle will be changed to Figure 2. However, by applying the operations   , the
triangle will be changed to Figure 3. In order to transform Figure 3 to Figure 2, an extra    operation should be applied before the
operation   , that is why   .

Figure 2.   Figure 3.   

3. Group and cayley graph

3.1. Definition of group

A group    is used to define a set that includes an operation, denoted by   , which connects two elements in the group to form the
third element. This operation is called binary operation. All groups satisfy four axioms as follows:

Axiom.1 A group is closed under the operation.
After applying a binary operation, the third element formed by the two chosen elements should belong to the set which the two

chosen elements belong to.
Axiom.2 Associativity is allowed in groups.
Associativity is allowed in groups. For example,   .
Axiom.3 Identity element
The identity element    satisfies that the operation of    and every element in    will be equal to the chosen element   , which

is the formula:   
Axiom.4 Inverse element

X3Z3 |1⟩ Z3X3 |1⟩

ω

Z3X3 |1⟩ XdZd = ωZdXd

X3Z3 |1⟩ Z3X3 |1⟩

G *

(1 + 2) + 3 = 1 + (2 + 3)

e e G a

a*e = e*a = a
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For every element in   , there is an inverse element such that the operation of the chosen element    and its inverse    will be
the identity element, which is the formula:   .

Abelian group is also named commutative group, in which the order of two group elements does not affect the results after doing
group operation, basically satisfying    when    belong to the given abelian group.    is an example of abelian group
because    for all   . [12]

3.2. Examples and counter-examples of group

Example.1 Set of all integers with operation   :   
   is the set of all integers. The binary operation is addition.
Example.2 Set of Pauli operators with operation   :   
Pauli operators over a set of qudits form a group   . Indeed, product of Pauli operators is still a Pauli operator. Note

multiplication of Pauli operation is not necessarily commutative due to (6).
Counter-Example.1 Set of all integers with operation   :   
   is the set of all integers. The binary operation is multiplication. However, it lacks an inverse that belongs to   .

3.3. Definition of subgroups

A subgroup    is a subset of    which is a group, denoted by   .    and    are groups with the same binary operation [12].
Example.1   
Example.2 If    divides   , then   .

3.4. Fundamental theorem of homomorphism

Given two groups    and   , a mapping    is a group homomorphism if it satisfies

Here are some fundamental definitions of homomorphism:
Definition.1 If    is surjective,    is an epimorphism.
Definition.2 If    is injective,    is a monomorphism.
Definition.3 If    is bijective, which means both surjective and injective,    is an isomorphism. In this situation,    and    are

isomorphic groups, denoted by   .
Definition.4 If   ,    is an endomorphism, which means a homomorphism from a group to itself.
Definition.5 If   ,    is an automorphism and an isomorphism.
Another essential concept in terms of homomorphism is    of   , denoted by   . If    is a homomorphism,

The image of   , denoted by   , is the range of    within   , which is defined as

After introducing some basic definitions, we need to know one of the most important theorem involved in group, which is Group
Isomorphism Theorem.

   and    satisfy the two following properties:
Property.1 If    is a normal subgroup in   , and    is a subgroup of   ,

Property.2 Suppose    is a normal subgroup of a group   .   , given by    for    is a homomorphism.
Here    is    and    is   .[12]

G a b

b*a = a*b = e

a*b = b*a a, b (Z, +)

a + b = b + a a, b ∈ Z

+ (Z, +)

Z

∘ (P, ∘)

P

× (Z, ×)

Z Z

H G H ≤ G H G

(Z, +) ≤ (Q, +) ≤ (R, +) ≤ (C, +)

a ∈ N b ∈ N (bZ, +) ≤ (aZ, +)

(G1, ∘) (G2, *) f : G1 → G2

f (g1 ∘ g2) = f (g1)*f (g2) for any g1, g2 ∈ G1.

f f

f f

f f G1 G2

G1 ≅G2

G1 = G2 f

G1 = G2 f

kernal f ker (f) f : G1 → G2

ker (f) = {g ∈ G1 : f (g) = e}

f im (f) f G2

im (f) = {h ∈ G2 : there exists g ∈ G1 with f (g) = h}.

G1 G2

ker (f) G1 im (f) G2

G1/ker (f) ≅im (f).

H G f : G → G/H f (g) = gH g ∈ G

ker (f) H im (f) G/H
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3.5. Group representation

Group representation theory examines homomorphisms mapping a group to the group of invertible linear transformations over
vector spaces. To be more specific, it studies how abstract groups can be showed in the form of matrices and how their elements
relates to linear transformations of vector spaces. Through the analysis of these representations, researches can get some helpful
inspirations into the structure and properties of the group [13].

3.6. Group generators & generating set

If there is an element    such that   , then    is cyclic. Every element of    can be expressed as an integer power of   .
In this instance,    is defined as the generator of   , and    is generated by   .

Here is an example,    is cyclic because we can say it is generated by 3. All the elements of    can be write in the following
form:

A generating set refers to a group of elements that can be combined (including themselves, their inverses, and all possible
combinations of them) to produce all the elements of an entire group. In simple terms, if a group    can be generated by the
elements in a set S through the group’s operation, then we say    is a generating set of    .

3.7. Definition of graph

According to the directed and undirected nature of the edges of the graph, graphs can be classified as directed graphs, undirected
graphs, and mixed graphs. In directed graph, edges have directions, usually presented as an arrow.    means the edge’s direction
is from    to   . If the pair is not given an order and the edge has no direction，the graph is referred to as an undirected graph. A
mixed graph consists of both directed edges and undirected edges.

3.8. Cayley graph

Cayley graph is a directed graph associated to   , denoted by   , where    is a group and    is the generating set of   . The
graph includes two primary parts:

• Vertices are elements in set   .

• Edges are elements in set   .

Constructing a Cayley graph is the way of producing an unbounded sequence of   -regular graphs at all. The way to construct a
Cayley Graph is very simple, starting by taking a group    and some subset    of   . We define the elements of    as the vertices
of the Cayley graph, and the edges of the Cayley graph is the line drawn from    to    given that    and   .[8]

In a Cayley graph, each edge is associated with a pair   , where    and   . Define    as the initial vertices of the
edge    and    as the terminal vertex of the edge   . The mapping    and    are specified by

Therefore, through the generator   , the edge associated with the pair    can run from    to   .
Here is an example of a Cayley graph in the sequence   . When   , the Cayley graph   

is shown in Figure 4 [8]:

g ∈ G G = ⟨g⟩ G G g

g G G g

Z7 Z7

31 = 3, 32 = 2, 33 = 6, 34 = 4, 35 = 5, 36 = 1

G

S G

(x, y)

x y

A GA,S A S A

A

A × S

d

G H G G

x xγ x ∈ G γ ∈ H

(a, s) a ∈ A s ∈ S ι (e)

e τ (e) e ι τ

ι : A × S → A τ : A × S → A

ι : (a, s) ↦ a τ : (a, s) ↦ as

s (a, s) a as

(Cay (Z2n, 1,n, 2n − 1)) n = 3 (Cay (Z6, 1, 3, 5))
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Figure 4. CayZ6,1,3,5

4. Stabilizer codes

In quantum information and theoretical condensed matter physics, stabilizer codes are often mentioned(defined below). They
originate from quantum error correction, but are widely studied now as toy models for exotic quantum phases. The famous toric
code model for anyons as well as the X-cube model for fractons both fall under this category.

4.1. Definition

Stabilizer codes refer to a collection of quantum codes utilized for performing quantum error correction. Given a set of qudits  
 , its code space is defined as the subspace of vectors invariant under a set    of Pauli operators known as stabilizers. A

Pauli operators on    qubits can be expressed as    where    for    is from the set    and  
  for   .[9]

A theorem from linear algebra stipulates that any two stabilizers    commute, which means   , if and only if they
share the same eigenvectors. The proof is shown as follows:

Firstly, assuming    and    commute, so   . Let    (  ), where    is a qudit and    is a real number, thus

Obviously,    and    are both eigenvectors of    when   , and they share the same eigenvalue   .
Next, assuming eigenvalues of    are distinct, so the eigenspaces are one-dimensional, which means    is a scalar multiple of  

 .    is the eigenvector of   . Therefore, considering the previous steps,    is the eigenvector of both    and   .
Conversely, if    and    share the same set of eigenspaces, then there exists a basis where    and    are simultaneous diagonal.

Any two diagonal matrices commute, therefore,   . In other words,    is an abelian subgroup of   .
Let    be the largest abelian subgroup of    that fixes all elements from quantum code the set of quantum codes, denoted by  
 .    now is the stablizer group that is generated by a set of    operators   , where    is defined below, so these

operators are also called generators of   . These generators have mainly three properties.
Property.1 They have the order of 2. Any elements from    can be written in terms of the generators:

Property.2 They are commutative to each other.
Property.3 They are unitary and Hermitian.
Back to the quantum stabilizer codes, denoted by   , it can be defined as the unique subspace of Hilbert Space    that is

fixed by elements from    of    when the parameters is    as follows [9]:

Cd ⊗ … ⊗ Cd S

N cO1O2 …ON Oi i ∈ (1 ≤ i ≤ N) Oi ∈ {I,X,Y ,Z}

c = jl l = 1, 2, 3, 4

A,B ∈ S AB = BA

A B AB = BA Ax = λx x ≠ 0 x λ

ABx = BAx = Bλx = λBx (7)

x Bx A B ≠ 0 λ

A Bx

x x B x A B

A B A B

AB = BA S P

S PN

CQ S N − K g1, … , gN−K K

S

S

s = g
c1
1 . . . gcN−K

N−K
, ci ∈ {0, 1}; i = 1, . . . ,N − K. (8)

CQ H2
N

S CQ [N ,K]

CQ = ⋂s∈S { c⟩ ∈ H2
N : s c⟩ = c⟩}.∣ ∣ ∣ (9)
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4.2. An example of pauli stabilizer group

Taking a 1-qubit Pauli group as an example, the following is how the Pauli matrix generates it:

Pauli matrices have the same algebraic relationships as the four units if quaternions   . So, the six stailized states of 1-
qubit Pauli group are shown as below:

Another example is called Shor’s 9-qubit code, which encodes 1 logical qubit,   , into 9 physical qubits to correct any errors in
the logical qubit. The nine physical qubits are encoded with the logical qubit in the following way:

The stabilizer codes are :

Notice that the stabilizers pairwise commute [15].

5. Representation of stabilizer codes

One amazing observation is that Pauli stabilizer codes with certain “translation symmetry” can be studied using modules over certain
group algebra. This section first illustrates how this is done in the case of regular    lattice and then expands the situation on
Cayley graph. A nonempty partial order    is called a lattice when any    have a greatest lower bound    and a least
upper bound   [16]. Here, the operations    is called meet and    is called join. Then, more general Cayley graph structures are
considered.

5.1. Qudits on square lattice

Assign    qudits of dimension    to every point in a square lattice   . The group   , whose elements are Pauli operators on
finitely many qudits, is still defined. There is a natural    action on    by translation. For example,    maps the
Pauli operator    acting on the   -th qudit at the origin to the   -th quidit at the point    where   . This
implies that    is a module over the group ring   . A group ring is a ring where each element is
also a group.

Proposition 1.   .
Proof. Denote the standard basis of    by   . We define a map that takes    to the equivalence class of the

Pauli operator    acting on the   -th qudit at the origin. Similarly, it takes    to the equivalence class of the Pauli operator    acting
on the   -th qudit at the origin. This also holds for between   -modules isomorphisms, as is readily apparent.

We often use elements in    to represent Pauli operators in   . This is well-defined if we stipulates that    operators are
always behind    operators. For example, if we have a system with a single qudit on each point of   ,  

I = [ ] X = [ ] Y = [ ] Z = [ ]
1 0

0 1

0 1

1 0

0 −i

i 0

1 0

0 −1

(1, i, j, k)

  I → all states X → |+⟩ Z → |0⟩ Y → |i⟩

  −I → no states − X → |−⟩ − Z → |1⟩ − Y → |−i⟩

ψ9

     
|ψ9⟩  = α

2√2
[(|000⟩ + |111⟩) ⊗ (|000⟩ + |111⟩) ⊗ (|000⟩ + |111⟩)]

+ β

2√2
[(|000⟩ − |111⟩) ⊗ (|000⟩ − |111⟩) ⊗ (|000⟩ − |111⟩)]

(10)

Ô12 = Z 1Z 2 Ô23 = Z 2Z 3

Ô45 = Z 1Z 2 Ô56 = Z 2Z 3

Ô78 = Z 1Z 2 Ô89 = Z 2Z 3

Ô1−6 = (X1X2X3) (X4X5X6) Ô4−9 = (X4X5X6) (X7X8X9)

Zd

(V, ≤) x, y ∈ V x ∧ y

x ∨ y ∧ ∨

q n ZD P

ZD P (1, 0, … , 0) ∈ ZD

X i i (1, 0, … , 0) ∈ ZD i ∈ {1, … , q}

P = P/⟨ω⟩ Zn [ZD] ≅Zn [x±
1 , … ,x±

D] = R

P ≅R2q

R2q {e1, … , eq, f1, … , fq} ei

X i fi Z

i R

R2q P Z

X Z
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 , where   , stands for the Pauli operator    where the subscript
indicates the location of the qudit on which a Pauli matrix acts. It is important that we write    after    as they do not commute.

The definitions that follow are influenced by symplectic vector spaces. Let   , where    and    are positive
integers. Define an antipode map on    by

For some positive integer   , let    be a free   -module. For any    define

with    and

where    is an identity map.
In fact given   , the Pauli operator they represent commutes if and only if   , where    is the ring defined above

in Section 5.1, has zero constant term in the polynomial. Moreover, if   , then any translate of    commutes with any
translate of    [11].

5.2. Qudits on cayley graph

Let    be a discrete group with a set of generators    Let    be its Cayley graph. Recall that    is a directed graph
having one vertex associated with each group element and directed edges    whenever   . Furthermore,    acts on   
through right multiplication.

On each vertex of   , attach    identical qudits    to form a total Hilbert space

Action of    on    induces an action on    by identifying qudits on vertices connected by   -action. In doing so, a quantum
system with established stabiliser codes is created. Unlike   , which depends on the choice of   ,    and its   -action both are
independent of   . Moreover, a quantum spin system defined on square lattice is a special case of qudits on Caley graph where  

 .

5.3. Connection to group representation

Consider    Pauli operators modulo phases. It has the structure of    viewed as a module over group ring   . Modules
over    are also known as representations of group    over   .    itself is called the regular representation. The standard
symplectic form

with    and

is still well-defined on   . And a symmetric stabilizer code is determined by a submodule of    on which the form
vanishes.

(1 + x, 1 + x̄)t = (1 + x) ⋅ e + (1 + x̄) ⋅ f ∈ R2 x̄ = x−1 X0 ⊗ X1 ⊗ Z0 ⊗ Z−1

Z0 X0

R = Zn [x±
1 , … ,x±

D
] n D

R

f (x1, … ,xD) = f (x̄1, … , x̄D).¯

q P = R2q R a, b ∈ P

ω (a, b) = a†λqb,

a† = āt

λq = ( ),
0 idq

−idq 0
(11)

idq

a, b ∈ R2q a†λqb ∈ R R

a†λqb = 0 a

b

G S ⊂ G. C = C (G,S) C

(g,h) gh−1 ∈ S G C

C q Cn

H = ⨂G (Cn)⊗q.

G C H G

C S H G

S

G = ZD

P Zn[G]2q Zn [G]

Zn [G] G Zn Zn [G]

ω (a, b) = a†λqb,

a† = āt

λq = ( ),
0 idq

−idq 0

P = Zn[G]2q
P
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6. Translation-invariant stabilizer code on a cayley graph

6.1. Generalized polynomial method for searching new stabilizer codes

The method mentioned in Secion 5 can be applied to any Cayley graph. Given any Cayley graph, we can represent stabilizer codes
using our methods. In detail, we firstly represent the vertices in a Cayley graph by a group ring. One chosen Pauli operator will be
the stabilizers of the graph. By using the formula for commutativity, we can find another stabilizer that commutes with the chosen
one. Through this way, we can have various chosen stabilizers. Also by continuing using the same way to calculate more stabilizers,
we can combine them to form stabilizer codes.

In general, there are some steps we can follow to find a new stabilizer code:
1. Start by choosing a Pauli operator as stabilizer.
2. We solve commuting equations and select a new stabilizer.
3. Repeat step 2 till satisfy any pre-set condition (set before the calculation).
4. The commuting equation will get too restrictive and it is not worth to calculate that, so we can stop our calculations.
5. We can amalgamate the stabilizers to create stabilizer codes.

6.2. An example of finding stabilizer codes on a cayley graph

We will give an example of the Cayley graph of a dihedral group    as shown in Figure 4.    are 8 vertices in
this graph and it is a directed graph.

Figure 5. Cayley graph of D4

The reason why we choose to find stabilizer codes in the Cayley graph of a dihedral group is because it is a commutative group.
We place qudits on the vertices of the Cayley graph. For each qudit, they represent different operations. We define the flip between
the vertices in the outer square and the vertices in the inner square to be   , and use    to represent the rotation of 90 degrees
counterclockwise. By following these two rules, we can redenote the vertices, in which    is set to be the identity element. Thus,   
is   ,    is   ,    is   ,    is   ,    is   ,    is   ,    is   , and    is   .

Firstly, we choose a stabilizer, in which    is applied on the vertex    and    is applied on the vertex   . We denote this
stabilizer as

Our purpose is to find a vector    that commutes with   

We can apply our formula, thus we can get

D4 A,B,C,D,E,F ,G,H

τ r

E A

τ B τr C τr2 D τr3 E e H r G r2 F r3

X4 τ Z4 e

( ).
τ

e

( )
m

n
( ).
τ

e

( ) × ( ) × ( ) = 0.τ e
0 e

−e 0

m

n
(12)
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Through basic calculation, we can get

Then,

The relationship between    and    is

In this case, it is easy to notice that there are multiple solutions for this equation. We can consider different cases. Here are some
possible cases:

6. When   ,   .   . In this case, the new stabilizer that commutes with the original stabilizer   is that  

  is applied to the vertex    and    is applied to the vertex   . Therefore, the stabilizer codes are the combination of    and  

 .

7. When   ,   .    In this case, the new stabilizer that commutes with the original stabilizer    is that  

  is in    and    is in   . Therefore, the stabilizer codes are the combination of    and   .

8. When   ,   .    In this case, the new stabilizer that commutes with the original stabilizer    is

that    is in    and    is in   . Therefore, the stabilizer codes are the combination of    and   .

9. Also, we can have some more complicated cases. For example, when   ,   .   

Note that when we find stabilizer codes through this way, we can continue to find another one by using the one we just get. For
example, for Case 1, we have already got   . Therefore, we multiply    with a new stabilizer, denoted by   .

Then we set the   , so we can find the value of   . At this situation, our new stabilizers are the combination of

the original given stabilizer   ,   , and   . However, through doing calculations, we can get a series of stabilizers for each

case. The conditions will be more serious, so eventually the stabilizers will be too complicated to be worth calculating. At that time,
we can terminate the process. Ultimately, we can combine the stabilizers to form stabilizer codes.

Therefore, by continuing calculating and finding various solutions, we can get different kinds of stabilizer codes and all of them
can be clearly presented on Cayley graph.

7. Conclusion & further exploration

In conclusion, based on existing information of quantum computing and abstract algebra, we have devised an innovative method to
find a stabilizer codes to solve our the problem of quantum errors. Specifically, we use a mathematical way to write the common
way to find stabilizer codes and find that the methods can be extended to find stabilizer codes on a more complicated group or graph.
We also give an example of how to use this method to find a stabilizer group on a dihedral graph   . This approach enables the
identification of various stabilizer codes.

The further exploration is to develop a program on computer or to find a mathematical way to compare codes found through this
methods among themselves and with existing stabilizer codes, thus contributing to the development of quantum computing.

References
[1] Andrew Steane. Quantum computing. Reports on Progress in Physics, 61(2):117, 1998.
[2] David P DiVincenzo and Daniel Loss. Quantum computers and quantum coherence. Journal of Magnetism and Magnetic Materials, 200(1-

3):202–218, 1999.
[3] Andrew M Steane. Error correcting codes in quantum theory. Physical Review Letters, 77(5):793, 1996.
[4] A Robert Calderbank and Peter W Shor. Good quantum error-correcting codes exist. Physical Review A, 54(2):1098, 1996.

( ) × ( ) = 0.−e τ
m

n
(13)

−em + τn = 0. (14)

m n

τn = m (15)

n = τ m = e ( ) = ( )
m

n

e

τ
( )τ e X4

τ Z4 e ( )
τ

e
( )
e

τ

n = r m = τr ( ) = ( ).
m

n

τr

r
( )τ e

X4 τr Z4 r ( )
τ

e
( )
τr

r

n = r2 m = τr2 ( ) = ( ).
m

n

τr2

r2
( )τ e

X4 τr2 Z4 r2 ( )
τ

e
( )
τr2

r2

n = r + r2 m = τr + τr2 ( ) = ( ).
m

n

τr + τr2

r + r2

( ) = ( )
m

n

τ

e
( )m n ( )

x

y

( ) × ( ) = 0m n
x

y
( )
x

y

( )
τ

e
( )
m

n
( )
x

y

D4



Advances	in	Operation	Research	and	Production	Management	|	Vol.4	|	Issue	1	|	9191

[5] Andrew Steane. Multiple-particle interference and quantum error correction. Proceedings of the Royal Society of London. Series A:
Mathematical, Physical and Engineering Sciences, 452(1954):2551–2577, 1996.

[6] Andrew M Steane. Simple quantum error-correcting codes. Physical Review A, 54(6):4741, 1996.
[7] Lucio Piccirillo. Introduction to the Maths and Physics of Quantum Mechanics. CRC Press, 2023.
[8] Mike Krebs and Anthony Shaheen. Expander families and Cayley graphs: a beginner’s guide. Oxford University Press, 2011.
[9] Ivan Djordjevic. Quantum information processing and quantum error correction: an engineering approach. Academic press, 2012.
[10] James C Robinson. An introduction to functional analysis. Cambridge University Press, 2020.
[11] Jeongwan Haah. Algebraic methods for quantum codes on lattices. arXiv preprint arXiv: 1607. 01387, 2016.
[12] Gerhard Rosenberger, Annika Schürenberg, and Leonard Wienke. Abstract Algebra: With Applications to Galois Theory, Algebraic Geometry,

Representation Theory and Cryptography. Walter de Gruyter GmbH & Co KG, 2024.
[13] Weisheng Qiu. Group representation theory. Higher Education Press, 2011.
[14] Mark J DeBonis. Fundamentals of Abstract Algebra. CRC Press, 2024.
[15] Steven H Simon. Topological quantum: Lecture notes and proto-book. Unpublished prototype. [online] Available at: http://www-thphys.

physics. ox. ac. uk/people/SteveSimon, 26:35, 2020.
[16] Volker Diekert, Manfred Kufleitner, Gerhard Rosenberger, and Ulrich Hertrampf. Elements of Discrete Mathematics: Numbers and Counting,

Groups, Graphs, Orders and Lattices. Walter de Gruyter GmbH & Co KG, 2023.


