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Abstract. A mathematical framework is presented to quantify the relationship between quaternary-structure symmetry, free
energy, and catalytic efficiency during the transition from a Ds -symmetric tetramer to a Cs -symmetric dimer, exemplified with
LDHA. The approach constructs explicit Ds representations on subunit and interface feature spaces, derives projection
operators to decompose operators and data into irreducible-representation components, and computes symmetry-resolved free-
energy differences via Gaussian/statistical and harmonic/Hessian methods. Connections to kinetics are made through transition
state theory with channel degeneracy. Reproducible algorithms and a workflow for mapping FoldX outputs into irrep-resolved
diagnostics and efficiency predictions are provided.
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1. Introduction

Enzyme quaternary structure often exhibits symmetry, and this structural organization can significantly affect catalytic efficiency.
Understanding how symmetry reduction impacts enzymatic function is a fundamental question in structural biology and
mathematical modeling. A natural mathematical framework to address this problem is group theory, which formalizes symmetry
and its action on suitable data spaces.

Not all enzymes are suitable for controlled structural perturbations. To study symmetry- dependent effects concretely,
tetramer-to-dimer transitions provide a classical example of symmetry reduction, where experimental and structural data are
available. In this work, lactate dehydrogenase A (LDHA) is selected as the model system because it forms a Dy -symmetric
tetramer, has documented mutational studies in the literature, and structural data are available from the Protein Data Bank.

The research proceeds in the following steps:

First, to define group actions on data spaces. Structural coordinates such as collective variables, interface energies, or density
fields are formalized with an inner product structure, allowing symmetry operations to act linearly and quantitatively on the
space.

Second, to construct explicit representations and projectors. Irreducible representations (irreps) of Dy (tetramer) and Co
(dimer) are constructed, and Reynolds projection operators are derived to decompose data and operators into irrep components,
isolating the contributions of each symmetry mode.

Third, to compute symmetry-resolved free-energy differences. Gaussian/statistical (covariance-based) and harmonic/Hessian
(normal-mode-based) approximations quantify the free-energy change associated with symmetry reduction, with explicit
contributions from each irrep.

Fourth, to bridge to catalytic efficiency. Transition state theory (TST) connects free-energy differences to predicted catalytic
efficiencies, accounting for channel degeneracy and transition-state probabilities.

Fifth, to implement a computational workflow. Energy terms and structural features from FoldX outputs are mapped into the
symmetry-adapted framework, and diagnostic scores identify which symmetry components dominate the observed transition.

This approach results in a set of explicit, symmetry-resolved expressions for projected covariance matrices and free-energy
differences. These formulas represent a novel mathematical formalism linking group-theoretic symmetry, structural
transformation, and catalytic efficiency. The framework allows prediction of which symmetry modes most strongly drive the
tetramer-to-dimer transition and provides a direct quantitative bridge from structural symmetry to enzymatic function.

Copyright: © 2025 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative
Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
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2. Symmetry groups, homomorphism, and action spaces
2.1. Groups and homomorphism

Consider tetramers a finite group:
Dy={e,a,B,08}, «’=B’=e, ap=Pa (1)
and consider dimers a finite group:
Co={ey}, y'=e @

By construction Do is abelian of order 4 (isomorphic to the Klein four group V4 ), and Cs is the cyclic group of order 2.
2.1.1. Group homomorphism

Amap ¢:G—H between groups is a homomorphism iff ¢(g1g2)=0(g1)P(g2) forall g1,g0€G[1]. Define
$:D2—Cz, d(a)=y, d(B)=e ©)
and extend multiplicatively to all of D, . Concretely,
b(e)=e,(a)=v,(B)=e,(aB)=y 4

¢ as defined above is a surjective group homomorphism.
Proof. Since Dj is generated by a, with relations a2:B2:e and off=Pa , it suffices to check that the relations are
preserved:

() =0 () =y’ =e=t)(e), d(B*)=0(B)*=e ©)
and
b (aB)=0 () (B)=y-e=y=0(B)d(a)=(Ba) (6)

Hence ¢ respects the defining relations and extends to a homomorphism on Ds . Its image contains y and e, hence
Im $=Cs ,s0 ¢ is surjective.

2.1.2. Kernel and quotient

Recall kerd={geDs:d(g)=e}[1]. Here
ker¢=e, (7

which is a subgroup of order 2 . Since ¢ is a homomorphism, ker¢ is a normal subgroup. By the First [somorphism
Theorem,
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Dy /kero=Im $p=C, (®

The quotient map m:Ds—Dy/ker followed by the isomorphism from D /ker¢ to C, equals ¢ .
2.1.3. Functions factoring through the quotient

If X is any set on which Dy acts and J# is a function space on X , then the subspace of functions invariant under ker@[1],
HFd.—{fcH: U(k)f=f, Vkcker¢} ©)

is canonically identified with functions on the quotient X/ker® or, algebraically, with functions on Dy /kerd : every

fe#%® s constant on ker¢ -cosets and thus descends to a function on the quotient; conversely, a function on the quotient
pulls back to a ker¢ -invariant function.

2.2. Representations, invariant projectors and factoring through quotients
2.2.1. Representations and unitarity (definitions)

Let (H,(-,-)) be a (complex) Hilbert space. A representation of a group G on S is a group homomorphism U:G—GL(H)
satisfying U(g182)=U(g1)U(g2) . The representation U is unitary (or orthogonal in the real case) if [2]

(U(g)f,U(g)h)=(f,h) Vf,heH, geG (10)

2.2.2. Averaging projector onto kerd -invariants

Let K:=ker® be a finite subgroup. Define the averaging operator
Pri=78 Yyex U(k) (11)

Assume U is unitary. Then Px is the orthogonal projection onto the closed subspace #¥:={veH: U(k)v=v VkeK} .
Moreover Px commutes with U(g) for every g€G , hence the representation leaves X invariant.
Proof. First compute P :

P%{Z‘Tl‘z D kK ek U(k)U(k’):El‘z Shek (Zkex DUM) =7 Ypex U(h)=Px (12)

*

so Py is idempotent. Since each U(k) is unitary, U(k) =U(k)"'=U(k!), and taking adjoint yields P;:PK , hence Px

is self-adjoint. Idempotent self-adjoint operators are orthogonal projections; their range equals {v:Pxv=v} . But Pxv=v iff
1
|

JO .

Finally, for any geG,

> ek U(k)v=v, which is equivalent to U(k)v=v forall k€K (apply U(kq) and use group averaging). Thus the range is
K

U(g)PkU(g) ' =1 Siex U(®)U(K)U(g) =1 Liex Ulgke™) (13)



4 | Advances in Operation Research and Production Management | Vol.4 | Issue 3

If K is normal then gKg'=K and the right-hand side equals Px . In our setting K=ker¢ is normal, so Px commutes
with U(g) . Hence X is G -invariant.

2.2.3. Factoring a representation through the quotient

Let K=kerd and suppose U:G—U(H) is a unitary representation. Consider the restriction of U to J#¥ . For g, g €G with
gK=g'K , we have g =gk for some k€K and, for ve#¥

U(g)v=U(g)U(k)v=U(g)v (14)
Thus the map U:G/K—U(H#X) given by U(gK):=U(g)| ,x is well-defined and a representation. In other words, the
representation on the K -fixed subspace factors through the quotient group G/K=C, .
2.3. Action spaces: L* constructions and unitarity proofs

2.3.1. Why L? and which inner product

Let ##=L%*R3) (complex-valued functions) with the usual inner product

(£,8)= [qs £(r) g(r) dr (15)

L? is a Hilbert space: it is complete and admits orthogonal projections, spectral theorem for bounded self-adjoint operators,
and a well-behaved theory of quadratic forms. These properties are prerequisites for using orthogonal (projector)
decompositions, logdet formulas for Gaussian integrals, and spectral block-diagonalization of self-adjoint Hessians [3].

2.3.2. Density-field representation on L*(R%)
Definition.

Let G acton R® by orthogonal linear maps R(g)€0O(3) (or by rigid motions with zero translations for point groups).
Define [2]

(U(g)p)(x):=p (R(g)'lr) (16)

We check that U is a unitary representation.
U:G—U(L*(R?)) defined above is a unitary representation.
Proof. (Representation property.) For g1,82€G,

U(g1)U(g2)p()=Ulg1) (p(R(g2)"r))=p (R(g1) " Rig2)"r) = ((R(g2)R(g1))"r ) =Ulgrg2)o(r) (17)
(Unitarity.) For pq,p,€L2(R?),

(U(g)p1,U(g)p2)= [ps P1(R(g) 1) p2(R(g)'r) dr (18)

Change variables s:=R(g)™r . Since R(g) is orthogonal, detR(g)=+1 and dr=|detR(g)|ds=ds . Thus
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(U(g)p1,U(g)pa)= s P1(5) pa(s) ds=(py,ps) (19)

Therefore each U(g) is unitary and U is a unitary representation.
2.3.3. CV (collective-variable) representation on L*(Y,p)

Setup and unitarity criterion.
Let @ be a map from full coordinates to CVs, x—y=®(x)€YCR™ , and let p be a probability measure on Y . Consider

#:=L*(Y,n) with inner product (A,B)= [, A(y)B(y)du(y) . Assume the group G acts on Y linearly or by permutations
via I"G—GL(Y) , and define

(U()A)(y)=A (T(e)'y) 20)

U is unitary on L%(Y,p) iff p is T -invariant, i.e. p:polﬂ(g)'1 for all geG .
Proof. If p is I -invariant, then

(U(g)A,U(g)B)= [y A(T(g) 'y)B(T'(2)'y) du(y) 2y

Change variables z:l"(g)'ly ; by invariance dp(y)=dp(z) and the domain is unchanged, so the integral equals (A,B) .
Conversely, unitarity for all A,B forces invariance of p by testing against indicator functions.
2.4. Intertwining operators and boundedness

2.4.1. A linear sampling operator

Suppose we construct a linear sampling operator S:L2(R?)—L2(Y,u) of the integral-kernel type
(Sp)(v)= Jrs K(v:r) p(r) dr (22)

where K:YxR?®—C is measurable. Typical choices of K are localized feature kernels (e.g. Gaussian windows integrated
against coordinates).

If for p -almost every y the function r—XK(y,r) liesin L*(R®) and the function y»—>HK(y,-)Hiz(R3) is integrable w.r.t. p
,then S is a bounded linear operator L*(R*)—L*(Y,u) .
Proof. By Cauchy—Schwarz,
|(Sp)(¥)1*=I /K (y,1)p(x) dr\QSHK(y,')HEZ(m) HPH?ﬁ(Rs) (23)

Integrate both sides w.t. y and use the integrability assumption to obtain ||Sp\|ig(Yp)§C ||p||iz(R3) with

C=[y HK(y,)Hig dp(y)<oo . Thus S is bounded.
2.4.2. Equivariance (intertwining) condition

An equivariance condition
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SoU(g)=T'(g)oS VgeG 24)

is equivalent to a symmetry constraint on the kernel K :

K (T(2)y,r) =K (r.R(g)r) (for ae. y,1) (25)
Indeed,
(S(U(g)p)) () =K (y;r)p(R(g) 1) dr=/K(y,R(g)s)p(s) ds (26)
while
(T()Sp) (v)=(Sp)(T'(8) y)=/K(T(g) 'y,s)p(s) ds @7

Equality for all p forces the kernel relation above. Under that relation, S is an intertwiner and thus maps symmetry-adapted
subspaces into symmetry-adapted subspaces.

2.5. Decomposition into irreducibles and projector formulas
2.5.1. Complete reducibility for finite group
For a finite group G and a unitary representation U on a complex Hilbert space ¢ , Maschke’s theorem implies 5%

decomposes as a (Hilbert) direct sum of finite-dimensional G -invariant subspaces each of which splits into irreducible
representations (isotypic decomposition) [2]:

%%@7\6@%\ (28)

where G denotes the set of (equivalence classes of) irreducible representations and Hj is the A -isotypic component.

2.5.2. Character projector (explicit orthogonal projector)

Let x be the character of an irreducible unitary representation V, of dimension d, . Then the orthogonal projector onto the x -
isotypic component of J€ is

Py= %ﬁ > gec x(8) Ulg) (29)

One may verify P)Q(:PX , P;:PX ,and P,U(h)=U(h)P, forall heG ; hence P, projects orthogonally onto an invariant

subspace isomorphic to a direct sum of copies of V.
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3. Irreducible representations and projectors
3.1. Irreps and character table of D,
3.1.1. Why all irreps are one-dimensional

The group Dy considered here is the dihedral group of order 4 , which is isomorphic to the direct product
D, 2 CyxCy = { e, &, B, af }, a®=B’=e, ap=Pa (30)

Since Dy is abelian, each element commutes with every other. A standard theorem in representation theory states:

> For a finite abelian group G, every irreducible representation over C is one-dimensional.

The intuition is that the group algebra C[G] of an abelian group splits as a direct sum of one-dimensional eigenspaces, and
thus irreps can only be 1 D characters.

Therefore, all irreps of Dy are homomorphisms

x:Da—{+1,-1} (€28

3.1.2. Conjugacy classes and the number of irreps

For any group, the number of irreducible representations equals the number of conjugacy classes. Since D, is abelian, each
element forms a conjugacy class by itself:

e, a, B, ap (32)

Thus Dy has 4 inequivalent irreps in total.
3.1.3. Explicit construction of irreps

Each one-dimensional character ¥ is determined by its values on the generators a,f . There are 2 choices for x(a) (+1 or -1
), and 2 choices for x(B) , hence 2x2=4 distinct irreps in total.
Explicitly:

(X((x)aX(B))E(lal)a (17'1)a ('171)7 ('L'l) (33)
The corresponding value on af is then determined multiplicatively:

x(aB)=x(a)x(B) (34)

3.1.4. The character table

It is conventional to label these four irreps as A1,B1,B2,B3 , giving the table [2]:
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Table 1. Four irrep p

Irrep p Xp(€) Xp (@) Xo(B) Xp(aB)
A,y 1 1 1 1
B, 1 1 -1 -1
B, 1 -1 1 -1
Bs 1 -1 -1 1

3.1.5. Orthogonality sanity check

Characters of irreps are orthogonal with respect to the inner product

(XpoXo) = TD3] 2ogeDs Xp(8) Xo() (39)
Since all values are real ( £1 ), orthogonality reduces to checking that each pair of rows in the table has dot product zero in
R*, which is immediate. Thus the table is consistent.
3.2. Reynolds/character projectors: derivation and properties
3.2.1. General formula

Let U:Dy—GL(V) be a unitary representation with character yy(g)=TrU(g) . For each irrep p with character ¥, , the

associated projector is [2]

Py = 5 X pen, Xo(8) Ule) (36)

3.2.2. Simplification for D,

Here dimp=1 and x,(g)c{%1} isreal, so

Pg,=1/4 (I-U( 37

a)
Pg,=1/4 (I-U(a)-U(

Each projector is simply a linear combination of the four representation matrices, with coefficients +1/4 .
3.2.3. Why these are projectors

We check the key properties:
Idempotence: szPp . This follows from Schur orthogonality of characters:
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6 Lo}
By Laen, Xo(87) Xo(hg) =i o (h) (38)

b
Mutual orthogonality: P P ;=0 if p#o . This again comes from the orthogonality of characters.

A direct substitution shows P[Z):P

Resolution of identity:
Z p p p:I (39)

Thus the representation space splits as a direct sum of the four invariant subspaces.
Commutation: U(h)P,=P,U(h) forall heD, . Hence each P, is an intertwiner and respects the group symmetry.

3.2.4. Self-adjointness

If U is unitary, then

Po=157 L Xo(8) Ule) =157 Xy %(8) Ulg™) (40)
Since xp(g'l):)(p(g) for one-dimensional real characters, this equals P, . Hence P, is Hermitian and therefore an
orthogonal projector.
3.2.5. Multiplicity formula

The multiplicity m, of p in U is

My = 7oy 2gen, Xp(8) Xu(e) @1)

Equivalently, ramk(Pp):mp . This gives a direct computational method to decompose U .
3.3. Concrete D, representations in LDHA: two working examples

3.3.1. Example A: chain representation on R*

Group action. Label four chains (A,B,C,D) as standard basis vectors. Define: a: A«<+B, C+D, B: A«~C, B&D
so that off swaps A<D and B«+C . The U(g) are 4x4 permutation matrices.
Character computation. The trace of each permutation matrix equals the number of fixed points:

xu(e)=4, xu(a@)=xv(B)=xuv(aB)=0.
Decomposition. Using multiplicities,

mp=1/4>"_%,(8)xu(8) (42)
we obtain

mAlsz1:mB2:mB3:1 (43)
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Hence

R*~ A,®B;®B,®B;

Explicit basis. An orthogonal eigenbasis realizing the decomposition is

Alt (1,1,1,1), Blt (1,1,—1,—1),
By: (1,-1,1,-1), Bs: (1,-1,-1,1).

Applying the projectors and extracts each component.
3.3.2. Example B: interface representation on R®

Group action. List six interfaces:

(AB,AC,AD,BC,BD,CD)

The action of a,B,af permutes these as:

a: AB—AB, AC+~BD, AD+BC, CD—CD,
B: AB«~CD, AC—AC, AD+BC, BD—BD,
aB: AB«~CD, AC+~BD, AD—AD, BC—BC.

Characters. Counting fixed points:

Xu(€)=6, xu () =xu(B)=xu(aB)=2

Decomposition. Multiplicities:

mp,=1/4(6+242+2)=3,
mp, =1/4(6+2-2-2)=1,
mp,=1/4(6-2+2-2)=1,
mp,=1/4(6-2-242)=1.

So
R® = 3A,0B10B,®B;
Orbit structure and basis. Interfaces split into three orbits:
AB,CD, AC,BD, AD,BC

This yields:

(44)

(45)

(46)

7

(4%)

(49)

(50)

62))
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A basis: s;=AB+CD, s,=AC+BD, s3=AD+BC,
B; basis: bj=AB-CD,

52
B, basis: by=AC-BD, (52)
B3 basis: b3=AD-BC.
Thus the space naturally decomposes into symmetric orbit sums ( A; ) and antisymmetric differences ( B; ).
Projector action. For any weRS ,
wP) =P w (53)

where w(A1) averages over each orbit and w(Bi) extracts the signed difference. This provides an explicit computational
recipe.

3.4. Applications of the projectors
3.4.1. Block diagonalization of equivariant operators

If K is Dy -equivariant ( U(g)K=KU(g) ), then

K= > ,PKP, ~ P K,, KP:PPKPP|ImPp (54)

Thus K block-diagonalizes into irreducible sectors.
3.4.2. Numerical recipe

Given U(a),U(B) , construct the four projectors. Then compute
wP)=P,w, C,=P,CP ], K,=P,KP (55)

Subsequent log-determinant and free energy formulas decompose accordingly.
3.4.3. Stability

Because P, are orthogonal projectors with rational coefficients, the decomposition is numerically robust: the projections are
exact up to floating-point error. For Dy , all coefficients are +1/4 , ensuring excellent conditioning.

4. Explicit representations on subunit and interface spaces
4.1. Subunit (4D) representation: construction, checks, and decomposition
4.1.1. Basis and ordering

Let Vgp=R* with the standard basis corresponding to chains (AB,C,)D):
ea=(1,0,0,0)", eg=(0,1,0,0) ", ec=(0,0,1,0) ", ep=(0,0,0,1) " (56)

-
We represent a general vector as v=(Xa,XB,XC,XD)
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4.1.2. Group action by permuting chains
We define the D2 action by permuting chain labels (orthogonal maps in the Euclidean inner product):

a: A+B, C+D,
B: A~D, B&C, (57)
ap: A«~C, B&D.

Each action is a permutation of the basis and is therefore represented by a permutation matrix U(g) satisfying
U(g) 'U(g)=1.

4.1.3. Building the matrices entry-by-entry

A permutation matrix U(g) is determined by where g sends each basis vector. For example, o swaps A<B and C+D,
hence

U(a)ea=ep, U(a)ep=ex, U(a)ec=ep, U(a)ep=ec (58)

so the columns of U(a) are the images of the basis vectors:

0100
Ulo)= 1000 59
““looo1 (>9)
0010
Proceeding identically for  and off gives
0001 0010
U(B)—OOlO U(B)_OOOl 60
“lo1 ool YT 100 0 (60)
1000 0100
4.1.4. Representation sanity checks
We verify the group relations on matrices:
U(a)*=I, U(B)*=L, U(0)U(B)=U(B)U()=U (o) (61)

These hold because applying the swaps twice returns each chain to itself, and o, commute on labels, so their permutation
matrices commute.

4.1.5. Characters and quick multiplicity count

The character of a permutation is the number of fixed basis vectors (its trace). For the identity, xy(e)=TrI=4 . For each non-
identity above, no chain is fixed, so xy(&)=xy(B)=xy (aB)=0 . Using the multiplicity formula



Advances in Operation Research and Production Management | Vol.4 | Issue 3 | 13

my=15- Y gep, Xp(8) Xu(g), [D2|=4 (62)

and the Dy character table, one obtains ma,=mp,=mp,=mg,=1 . Therefore

[ Voun™A,®B1©B®B;. (63)

4.1.6. An explicit irrep eigenbasis (and why it works)

Define the four vectors

1 1 1
1 1 -1 -1
up,=1/2 ,up,=1/2 ,ug,=1/2 , ug,=1/2 (64)
1 -1 1 -1
1 -1 -1 1
Each u, is an eigenvector of every U(g) with eigenvalue Xp(g) (the one-dimensional irrep property). For instance,
0100][1 -1
U 1/2 L 000 ! =1/2 L 65
@un, =120 g o 1 [1]|TV2 |7 (63)
0 01 0|(1 1

while U(B)up,=+up, and U(af)up,=-up, , matching the character row [1,-1,1,-1] of B, . Orthogonality is immediate
from the sign patterns, and the 1/2 factor normalizes the vectors to unit length.

4.1.7. Projectors (closed form matrices)

Because D is abelian with real characters,

Pa,=1/4 (I+U(a)+U(B)+U(af))=1/411",
Pg,=1/4 (I+U(a)-U(B)-U(aB)), 66)
Pg,=1/4(I-U(a)+U(B)-U(aB)),
Pg,=1/4(I-U(a)-U(B)+U(aB)),

where 1=(1,1,1,1) " . Explicitly,
1 1 1 1 1 1 _1 _1
4 4 4 4 4 4 4 4
11 1 1 11 1 .1
_ 4 4 4 4 4 4 4 4
Po=ly 0 1 2P~ |0 1 1 1]
4 4 4 4 "4 "1 4 4
1 1 1 1 111 1
4 4 4 4 4 4 4 4
1 .1 .1 1 1.1 1 _1 (67)
4 4 4 4 4 4 4 4
111 1 11 11
I R S | 1 I | 1 1
Po,=t 1 1 1 a|'Ps= |1 1 1 a1
4 4 4 4 4 4 4 4
1 1 _1 1 11 11
4 4 4 4 4 4 4 4
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For any veR*, the four components V(p):PpV lie on the irrep lines and sum to v .
4.2. Interface (6D) representation: construction, checks, and decomposition
4.2.1. Basis and ordering

Let Vin=R® with the basis listing the unordered interfaces in the fixed order
(AB, BC, CD, DA, AC, BD) (68)

Denote a vector as

T
W:(WAB)W807WCDaWDA7WACaWBD) (69)

4.2.2. How to build each permutation matrix

Given a group element g, map each unordered edge (e.g. AB ) by acting on its endpoints (e.g. A—g(A), B—g(B) ), then
relabel the resulting unordered edge in our fixed order. Place a 1 in row “image index” and column “original index”. Doing this
for all six edges yields the 6x6 permutation matrix U(g) .

4.2.3. Explicit edge mappings

Using your subunit actions,
a:A+-B, CoD, B:A-D, B&C, af:A+~C, B&D (70)

we obtain the following maps (written as “original edge +— image edge”):

Table 2. Edge mappings

Edge AB BC CD DA AC BD
o AB DA CD BC BD AC
B CD BC AB DA BD AC
af CD DA AB BC AC BD

Reading column-by-column (image of basis vectors) gives

100000 001000 001000
000100 010000 000100
U(a):001000U(B):loooooU(aB)zlooooo an
01000 0| 00010 0| 010000
00000 1 00000 1 000010
0000 1 0] 0000 1 0] 00000 1]
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4.2.4. Representation checks

Each U(g) is orthogonal ( U(g)TU(g):I ) since it permutes coordinates. Moreover,
U(e)*=U(B)* =L, U(a)U(B)=U(B) U (e)=U(csp) (72)

so we indeed have a (unitary) representation of Dy .
4.2.5. Characters (why the traces are 6,2,2,2 )

- e fixes all 6 edges: xy(e)=6.
- o fixes AB and CD, swaps BC+DA and AC<BD : xy(a)=2.
- B fixes BC and DA , swaps AB<>CD and AC+~BD: xy(B)=2.
- op fixes AC and BD, swaps AB<+CD and BC+DA : xy(aB)=2.

4.2.6. Multiplicity calculation spelled out

With the Dy character table {Xa,,XB,,XB,:XB;} and the above xy ,

mp=7 (Xp(€)6-+, (@) 2+X,(B) -2+, (oB) 2) (73)
o)
my,=3, mp,=1, mp,=1, mp,=1 (74)
Hence
Vint™3A; © B; © B, © Bs. (75)

4.2.7. Orbit structure and immediate block basis

The six edges split into three Dy -orbits of size 2 :

AB,CD, BC,DA, AC,BD (76)

For each orbit, form the symmetric (sum) and antisymmetric (difference) combinations:

s;=AB+CD, b;=AB-CD,
s,=BC+DA, by=BC-DA, (77)
s3=AC+BD, by=AC-BD.

Then s1,82,83 span the 3A; subspace (fixed by all U(g) ), and bj,bs,bs are one-dimensional eigenlines carrying
B;1,B2,B3 respectively. Indeed,
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e a f aff
b;: 1 1 -1 -1 (rowB
1 ( 1) 78)
b2: 1 -1 1 -1 (I‘OWBQ)
b32 1 -1 -1 1 (I‘OWBg)
because o fixes AB,CD while f and aff swap them, etc.
4.2.8. Projectors as explicit 6x6 matrices
Using
Pp=1/4 (I+x, () U(c)+x, (B)U(B)+x, (aB)U(a)) (79)
we obtain (block-diagonal over the three orbits):
- 1 -
3 03 000 10 -3 0 0 0]
0 3 03 00 000000
101 000 Ao 1 000
Pa=|2 | 2 | ,Pp,=|2 7 2 (80)
0 5 0 5 00 0 00 0OO0OO
0000 35 3 000 000
0 0 0 O 1 1 70 0 0 0O 07
i 2 2
[0 0 0 0 0 O] 0 000 0 07
0_%0__;00 0000 O0O O
P_OOOOOOP_OOOOOO
P"1o 10 4 oo ® (0000 0 0 (81
11
0000 00 0000 35 -3
0 0 0 0 00 0000 -4 3
These satisfy P?=P,,, P,P;=5,,P,,and > P,=I.
4.2.9. Worked projection formulas
-
For W:(WABaWBCaWCDaWDA’WACaWBD) 5
Pa,w=(waB+Wcp/2, Wc+Wpa/2, WaB+Wcp/2, WBc+WpA /2, Wac+WBD/2, wac+wep/2)
Pg,w=(WaB-Wcp/2, 0, -WaB-Wep/2, 0,0,0) ',

. (82)

T

Pp,w=(0, wgc-wpa/2, 0, -wpc-wpa /2, 0, 0)

Pp,w=(0, 0, 0,0, wac-WBD /2, -WAC-WBD/2)

Thus w=w(A1)+w(B1) +wB2) +w(Bs) with each w(P) living in the claimed irrep block.
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4.2.10. Why orthogonality holds

Since each P, is a polynomial in the commuting orthogonal matrices U(g) with real coefficients, we have P;:Pp and
P,P;=6,,P, . Hence images of different P, are mutually orthogonal subspaces, providing a numerically stable decomposition
for downstream energy/covariance block-diagonalization.

5. Symmetry-resolved free energy

We present two equivalent routes (Hessian / Gaussian route and statistical / covariance route), prove their equivalence under the
harmonic approximation, treat practical numerical issues (zero modes, regularization, finite-sample bias), and define diagnostic
irrep scores that attribute the free-energy change to symmetry sectors.

5.1. Harmonic (Hessian) route
5.1.1. Local quadratic approximation

Let xcRY denote local internal coordinates (collective coordinates, normal-mode coordinates, or small displacements)
measured relative to a stable configuration pg that depends on the symmetry state Ge{Dj,Cs} . Taylor-expand the potential
energy about p up to second order [4]:

Eq(x) = Eo(G) + 1/2(x-hc) 'Ke (x-tg) + O(|x-ng®) (83)

where KG:VQE(;,(H(;) is the symmetric positive-definite Hessian (we assume a local minimum so K¢ >0 ; see zero-mode
handling below). E(G) is the potential energy minimum (baseline).

5.1.2. Partition function in the quadratic approximation

The canonical partition function (restricting to coordinates x ) is
Z(G)= [ga el dxmePo(@ frqexp (-8/2(x-uG)TKG(x-uG)) dx (84)
The Gaussian integral is standard:
Jraexp (-B/2x "Kx) dx:(2Tr/B)d/2 (detK)'1/22(2T[kBT)d/2 (detK)'l/2 (85)
Therefore
7(G)~ePP(C) (2nkpT)?? (detKg)™/? (86)

5.1.3. Free energy and logdetk term

Take F(G)=-kpTInZ(G) to obtain (up to additive constants independent of G )

F(G) = Ey(G) + E%E IndetKg + const (87)
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Here “const” contains (d/2)kpTIn(2nkgT) and any Jacobian factors from coordinate choices; since we always compute
differences between G states, such G -independent constants cancel.

5.1.4. Symmetry and block-diagonalization

Suppose U(g) is the orthogonal/unitary representation of G acting on the coordinate space so that Eg is G -invariant in the
(

sense Eq(U(g)x)=Eg(x) whenever g is a symmetry of that configuration. If the Hessian itself is G -invariant (i.e.
U(g )TKgU(g) ¢ forall g in the symmetry group of that structure), then K¢ commutes with the representation operators
U(g) :
K, U(g)|=0, YgeG (88)

By Schur’s lemma and the general theory of finite-group representations (Maschke’s theorem), V=R® decomposes into
isotypic components corresponding to irreducible representations p :

V=@, V,C™
(89)

isotypic component

and any operator commuting with U(g) is block-diagonal with respect to this decomposition. Concretely, let P, be the
orthogonal projector onto the p -isotypic subspace (constructed via the character projector). Then

K¢ = @,Kpa, Kpa:i=P, KcP, acting on Im(P,) (90)

Each block K, ¢ is itself symmetric positive-definite on its subspace.
5.1.5. Dimension bookkeeping

Let ny,=rank(P,) denote the effective dimensionality of the p -block (for abelian groups n, equals the multiplicity). Then

Ep nP_
5.1.6. Factorization of the gaussian integral

Because K is block-diagonal in this orthogonal decomposition, the determinant factorizes:
detKg=]], detK, ¢ 91
The symmetry-resolved free energy:
F(G)~E(G)+=2! >, IndetK, g+const (92)

5.1.7. Symmetry-resolved free-energy difference

Subtracting the Dy and C, expressions gives
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AF=F(C,)-F(D;)="8" ¥ [IndetK, c,-IndetK,p,] + AE (93)

where AE(=E((C5)-Eq(D3) is the baseline potential-energy difference (can be approximated from enthalpic terms such as
FoldX).

5.2. Statistical (Covariance) route
5.2.1. Linear-response relation between hessian and covariance

Under harmonic fluctuations at temperature T , equipartition and Gaussian statistics give [4]
T -
Co = ((x-hg)(x-ha) ) =ksTKg 94

provided samples are drawn from the quadratic Boltzmann weight e ' Kax/2 This is the standard fluctuation—dissipation
relation.

5.2.2. Express IndetK via IndetC

Taking determinants and logarithms on each p -block yields
IndetK, ¢=-IndetC, ¢ +n,ln(kgT) (95)

where n,=rank(P,) .
Substituting and absorbing the n,In(kgT) terms into the baseline gives the covariance form

AF =~ -k—‘;T Ep [lndeth’cz-lndeth,Dz] + AE;], (56)

where AE;] differs from AEq by the additive constant kgT/23 n,ln(kgT) (which cancels in comparisons or can be

included in the baseline).
Thus the Hessian and covariance routes are equivalent under the harmonic approximation and when C and K are invertible
on the projected subspaces.

5.2.3. Eigenvalue (mode) representation

Let {Xg(i;) ?:pl denote the positive eigenvalues of K, g (Hessian modes in the p channel). Then

IndetK, o = >;") I\ 97)

Equivalently, for covariance eigenvalues {ci’i(G)} (so o°=kgT/A),

51

IndetC, g = Y7, lno'® (98)



20 | Advances in Operation Research and Production Management | Vol.4 | Issue 3

Therefore each mode contributes additively to F(G) and to AF ; this allows per-mode attribution.
5.3. Diagnostic irrep scores and linear-response approximation
5.3.1. Definition of diagnostic scores

We define two complementary irrep-resolved diagnostics:

Af)SpeC) :=Indet (CpCz C:Dz) =IndetCpc,-IndetCyp,,

99)
(var),
Ap ar =tr (prcz_CP,D2)'
The contribution of irrep p to AF (covariance form) is [4]
AF, = -XgT plpec) (100)

(

Large positive A:pec) (i.e. larger detC in C;) yields a negative contribution to AF (i.e. stabilization of the Cs basin

relative to Dy ), and vice versa.
5.3.2. First-order (linear-response) sensitivity of Indet

If C is perturbed by a small symmetric 6C , then
Indet(C+8C) = IndetC + tr(C™6C) - 1/2tr (C™6C C18C) +0(|6C|%) (101)

Thus, when differences between C, ¢, and C,p, are small, the leading contribution is
APt (Cy, (CoeCony) ) (102)

This gives a practical linearized approximation to AF, and shows the direct connection between Aévar) (trace difference)

spec . . . . .
and Aé P°%) yia the inverse covariance weighting.

5.3.3. Interpretation of signs

(spec)

0 >0 and

If Cpc,~Cpp, ina generalized sense (more variance in many directions), then IndetC, c,>IndetC,p, , so A
AF,<0:the C, basin gains entropic stabilization in channel p .
Conversely, reduced variance in C, relative to D, (tightening) gives positive AF,, (destabilization of C ).

5.4. Practical computation: projection, eigen-decomposition, and numerics
5.4.1. Algorithmic recipe

1. Choose feature / CV vector weR™ that captures interface energies, contact counts, active-site geometries, etc., and collect N
samples w() ..., w®™ from MD/ENM/resampled FoldX ensembles for each state G .

2. Compute empirical covariance Cg=xk S (wh-w)(wh-w) "
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3. Construct representation matrices U(g) on the CV space (permutation/sign or linear action) and form projectors

Pp="52 ¥, %,(2)Ule)

4. Compute projected covariance blocks prczpp GG PJ .

5. Compute slogdet(C, ) (numerically stable log-determinant via e.g. eigenvalues or Cholesky with regularization);
accumulate

~ ~

AF = —k#ET >, |slogdet(Cy c,)-slogdet(Cpp,) | + ZE\O (103)

6.Estimate confidence intervals by bootstrap resampling of the sample set {w(j)} (resample replicates, recompute @p,(; and
AF).
5.4.2. Zero modes and coordinate gauge
Physical systems contain trivial zero modes (overall translations and rotations) that give zero eigenvalues in K and divergences
in detK . Remedies:

Project out rigid-body modes from w (work in internal/coarse-grained coordinates) or perform computations in internal
coordinates where rigid motions are absent.

Remove near-zero eigenvalues before computing log-determinant, i.e. compute the product over nonzero eigenvalues only, or
add a small regularizer €l and track the dependence on € .
5.4.3. Regularization and finite-sample stability

Empirical C may be rank-deficient or ill-conditioned when N is not much larger than the projected dimension p, . Use:

Ridge regularization: @E)Z:@p’g—l—sl with €>0 small; compute Indet of this regularized matrix. Choose € by cross-
validation or L-curve inspection.

Shrinkage estimators (Ledoit—Wolf): 6:(1—}\)@+}\T with target T (e.g. diagonal), gives lower-variance Indet estimates.

Dimensionality reduction: retain only principal components that capture a large fraction of variance within each p block;
compute Indet on the reduced block (adds a model selection step).

5.4.4. Stable evaluation of Indet

Compute the log-determinant via slogdet routines (Cholesky if positive-definite, or eigen-decomposition)
IndetC= "7, Ink; (104)

where {A;} are eigenvalues. Use numerically stable libraries (e.g. LAPACK routines) and avoid forming full dense inverses.
5.5. Baseline energy AEO and mapping FoldX outputs

5.5.1. What AEQ represents

AE is the difference in basin minima energies E((C2)-E(D3) . In practice one often uses empirical or computed enthalpic
proxies (FoldX total or interface energies) as an approximation:

AE¢~Er.14x (C2)-Erouax (D2) (105)

with the caveat that FoldX energies are not exact free energies (lack full entropy).
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5.5.2. Character-weighted baseline separation

To retain symmetry attribution in the baseline enthalpy, decompose per-group-element energies E(g) via character inner
products:

(XoBle = 16 Lecc X (2) E(e) (106)

A simple model for baseline difference is
dim,
AEo~ 35, “ar ((xp,E>c2-<xp,E>D2) (107)

i.e. project the FoldX energies into irrep channels and sum the channel differences. Treat this as an enthalpic proxy to be
combined with the fluctuation-derived terms [5,6].

5.6. Final expressions and per-irrep contributions

5.6.1. Final covariance-based formula

AF = -4 ¥, [indetC, o, IndetC, p, | + ATy, (108)

with ap,G:PpagP; and KE\O the chosen baseline enthalpy difference.

5.6.2. Per-irrep free-energy contribution

Define
AF, = -1 [IndetC, c,-IndetCyp,] + AE, (109)

so that AF=>" o AF, . Here AEq, denotes the irrep-resolved baseline enthalpy term (from FoldX projection).

5.6.3. First-order attribution using the linear approximation

If 6C,:=C; c,-Cpp, is small,
AR~ 55T b (Gl 8C, ) +AED, (110)

This linear form is useful to identify dominant directions using the eigenvectors of C;}DQ (i.e. high-sensitivity directions).

6. From free energy to efficiency: a Transition-State-Theory (TST) bridge

Notation and preliminaries. We denote by G&€{D2,C2} the symmetry group of the enzyme assembly (tetramer vs dimer). For a

given symmetry state G we write:
* Qr(G) (or Zr(G) ) for the reactant-basin partition function (reactant ensemble),
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: Qi (G) for the transition-state (TS) partition function associated with the reactive dividing surface,
- Fr(G)=-kgTInQg(G) for the reactant free energy, and

- FHG)=-kgTInQ*}(G) for the TS free energy.
We also define the free-energy difference already used in the manuscript:

AF =Fg(C2)-Fr(D2) (111)

6.1. TST basic formula and species ratio

Transition-state theory gives (up to the usual prefactor and a transmission coefficient) [7]

k(@) = BT (@) 29 _ BT (G exp (-paGH(@)) (112)
where k(G)€(0,1] is the transmission (or recrossing) coefficient for state G and
AGHG) = F{(G)-Fr(G) (113)

is the activation free energy measured relative to the reactant basin.

Now compare dimer (Cs3) and tetramer (D) . Define also mq as the number of equivalent catalytic channels (active sites)
per oligomer: for a homotetramer mp,=4 , for a homodimer mc,=2 (unless some sites are silent). The per-oligomer (or per-
species) catalytic capability scales with mg , so the ratio of specificity-like constants (kca;/Kn) (under the rapid-equilibrium
approximation for binding) may be written schematically as

(keat/Kn)oy  moy Koy QH(C)/Qm(Cy) _ MCy  KCy [ < ; i )]
(keat/Kn)p, WDy kD, QI(Dy)/Qr(Dy) ™Dy KD, -exp |-p AG’CZ'AGD2 . (114)

This is identical to the short boxed formula you gave; we now unpack and connect it to the AF expressions from the
symmetry-resolved free-energy analysis.

6.2. Partition-function form and relation to AF

Using Fr(G)=-kpTInQg(G) and FI(G):—kBTani(G) , expands to
AG{,-AG, = (F(C2)-F¥(Dy))- (Fr(C)-Fr(D2)) (115)

Hence

S —exp [ (AGE,-AGH, ) | =exp [-B (F}(C2)-F(D2) ] exp [B (Fr(C2)-Fr(D2))] (116)

6.2.1. Interpretation

The rate ratio thus splits into two conceptually separate effects:
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(TS-shift) x (reactant-baseline-shift) (117)
The reactant-baseline term contains the AF we computed in the symmetry-resolved analysis:

exp [B (Fr(Cs)-Fr(Ds))]=exp(BAF) (118)
Therefore the full ratio can be written as

(keat/Km)c, mc, KXo,

T o, ~ 7. v, “XP(BAF)-exp [-B (F¥(C2)-F(Dy))] (119)

6.2.2. Two limiting cases

1. TS is invariant under symmetry change. If the transition-state free energy is essentially the same for the two assemblies (i.e.
F#(Cq)~F#(Dy) ), the TS-shift factor is unity and

(kcat/KM)C mg KC
e/ BMey 0y KCp
(et /R, ~ i, " wp, CXP(BAF) (120)

In this scenario a higher reactant free energy Fr(Cs) (i.e. AF>0) increases the rate of Cq relative to Dy because the
barrier measured from the reactant basin is effectively lower.

2. Barrier shift parallels reactant shift (barrier measured in absolute energy). If F*(Cy)-F¥(Dy)~Fg(Cs)-Fgr(D2)=AF
(i.e. both TS and reactant basin shift by the same absolute energy so the absolute barrier is unchanged), then the exponential
terms cancel and

(kcat/Kn) cy ~ Moy Koy
(keat/Km)p, ~~ ™D, kD,

(121)

That is, only multiplicity and dynamical recrossing differences remain.
Important note on sign conventions: in earlier sections we defined AF=Fg(C;)-Fg(D2) . When you see formulas of the
form exp(-BAF) in other parts of the manuscript, verify the context — sometimes authors report efficiency «Qpg (not

1/Qg ). The TST result above is unambiguous once Q]F and Qg are explicitly identified.
6.3. TS-probability surrogate: p(TS) and AG*
A convenient experimental / data-driven surrogate for the activation free energy is the TS-region occupancy. Define a TS-like

region Stg in CV space (geometric thresholds around the dividing surface). Its Boltzmann weight relative to the reactant basin
is

JogsPdx - gig)
prs(G) == freacthme’BE(x)dX ~ QrQ) (122)
Hence [5]
i
AGHG) = kgTIn-T& ~ kpTinps(G) (123)

Qr(G

fai’
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An immediately estimable ratio:

(kcat/KM)C2 NE & X PTS(C2) (124)

(kcat/Km)p, WD, kp, Prs(D2)

This is practical: compute or estimate prg from MD or by coarse-grained CV sampling (subject to careful definition of Stg

).
6.4. Speciation / oligomeric equilibrium and observed (bulk) kinetics
6.4.1. Equilibrium between dimer and tetramer

In a preparation where both dimers (D) and tetramers (T) can exist and interconvert via

2D=T (125)
define the (dissociation-like) equilibrium constant
K, D~ (126)
47

Let Ciot denote the total subunit concentration (monomer equivalents)

Ciot =4 [T] + 2 [D] (127)

Solving for [D] in terms of Cyo; and Kq yields a quadratic in d:=[D] :

4& +2d-Cior=0 (128)
Hence
K K2 +4K 4Cto
d— [D] _ d+\/ i+ dCtot (129)

taking the physically positive root. The tetramer concentration is then

T =& (130)

6.4.2. Observed (bulk) catalytic rate under substrate-limited linear regime

At low substrate (initial-rate linear regime), each active site contributes approximately (keat/Knm)[S] to the second-order rate,
so the bulk initial rate per unit volume is

vo~(S] (mr [T] (keat /Knr) p+mp [D] (kear/Knr)p) (131)
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It is often convenient to normalize by total subunit concentration Cto to obtain an observed efficiency per subunit:

( kecat ) . — mr [T) (kcat/KM)’IéJt::lD [D] (keat/Knm)p (132)

Using the solution for [T],[D] above one can predict how measured bulk kinetics vary with total concentration and Kj .
6.4.3. Alternative normalization (per oligomer molecule)

If instead one reports rate per oligomer molecule (not per subunit), define N, ,=[T]+[D] , and the per-molecule observed
efficiency is

Keaf __ mr [T] (kcat/Knm) p+mp [D] (keat /Kn)
(38 = B — (133)

Choose the normalization that matches how experimental data are reported.
6.5. Assumptions, caveats, and practical recommendations
6.5.1. Assumptions made in the bridge

Rapid oligomeric equilibration: we assumed that the D = T interconversion is fast compared to catalysis (so the equilibrium
distribution holds during initial-rate measurement). If not, a kinetic model including interconversion rates must be used.
Well-defined TS partition function: Qi must be meaningfully defined (requires a reasonable dividing surface in CV space).
Separable effects: we treated multiplicity mq , transmission K¢ , and free-energy terms multiplicatively; in reality these can
be coupled (e.g. interface changes may alter reaction coordinate friction and hence « ).
Harmonic / local approximations: when expressing Qr via AF we typically used the Gaussian (log-det) approximation for
fluctuation contributions; large anharmonic changes require more careful sampling.

7. Why the regular-character convolution fails

A tempting but incorrect formula is [8]

AF=L 5, o, (B(e)-B(9(8))) Xeegl8) Y

where x,., denotes the character of the regular representation of the group (here D3 ). We unpack why this formula is
mathematically and physically unsound, and we show the correct operator-based alternative.

7.1. Why the naive formula is algebraically trivial

Recall that for any finite group G, the regular character satisfies [2]

G ; =6
xreg(g)z{o,' e (135)

Substituting this
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o Yecn, (B(@)-E(9(2))) Xeeg(8) =15 (E(e)-E(0(€))) D2|=E(e)-E(d(e)) (136)

Because ¢ is a homomorphism with ¢(e)=e , the right-hand side reduces to E(e)-E(e)=0, so AF=0 identically. Thus
the formula cannot encode any nontrivial structural information — it is algebraically nullified by the properties of the regular

character.
7.2. Conceptual reason: scalars vs operators
The underlying conceptual mistake is treating E(g) as if it were the full object controlling the free-energy change under
symmetry, while the free energy (in the Gaussian/harmonic approximation) is controlled by operators (Hessians or covariance
matrices) whose spectra determine detK or detC and thus the entropic part of the free energy.

Concretely:

E(g) is a scalar-valued function on the group elements — e.g. an interface enthalpy associated (by some choice) to the

labeling induced by g .
The free energy in the harmonic regime is

F(G)~Eo(G)+*%" ¥, IndetK, o (137)

so it depends on determinants of matrices K,g (or equivalently the spectra of covariance blocks C, ¢ ). Spectral
information cannot be recovered from a single scalar per group element.
A simple counterexample (illustrative). Consider two different Hessians K® and K@ that, under some ad-hoc mapping,

yield identical scalar lists {E(g)} but have different eigenvalue spectra. Their IndetK will differ, hence their F differ, while
the scalar convolution returns zero (or the same trivial value) and misses the actual free-energy difference.

7.3. Correct object: projectors acting on operators

The correct symmetry-aware decomposition acts on operators, not scalars. Construct the character projectors

dim,
Py =S5 ZgecXo(8) Ulg) (138)
and apply them to the operator of interest (Hessian K or covariance C):
K,c=P,Kg PpT, Coc=P,Cq PpT (139)

Then each p -block contains the full spectral information for that symmetry channel, and the free-energy difference is
recovered from the logdet of those blocks:

AF=Y2T $ [IndetC, c,-IndetC, p, ]+ AE, (140)

8. Free energy difference as a symbolic expression

8.1. Setup and notation

Let Ge{D,,Cs} denote the oligomeric symmetry state. The six inter-subunit interface variables are collected into
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weRS, n9=E[w|G], =@ =Cov(w|G) (141)

We will denote by n the dimension of the fluctuating subspace under consideration (here n<6 after removing any
constrained/rigid modes). For each irreducible representation p of Dy define the projection operator

d
Py=T5,1 2_gen, Xo(8) U(g) (142)
where U(g) are the permutation (orthogonal) matrices on interface space and x,, the characters. These satisfy [2]
T
PyPs=6,.Pp, P, =Py, Zp P,=I (143)
We define the symmetry-resolved covariances and means by

ng>:pp =@ P, uE)G>:pp p(@ (144)

A convenient parameterization of the mean vector is to assign one variable to each orbit of interfaces under D5 :

_S(IG)_

S

(G)
(145)

corresponding to the interfaces (AB, BC, CD, DA, AC, BD).
8.2. Gaussian (harmonic) partition function — full derivation

Let the microscopic conformational coordinate be x€R? . The energy function Eg(x) respects the symmetry action U(g) of
group G . The constrained partition function (or Z(G)) is expressed as a Reynolds average to ensure only G -equivalent
configurations contribute:

Z(G) = 15 Lyea Jnaexp (-BEc(U(g)x)) dx, p=(ksT)" (146)
Assume the reactant-basin energy is quadratic about its minimum wg (or pg ):
E(w)~Eo(G)+1/2(w-wo) Kc(w-wo) (150)

with symmetric positive-semidefinite Hessian Kg of size nxn (restricted to the fluctuation subspace). The reactant
partition function in the harmonic approximation is
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QR(G):Z(G): fRn e PE(W) dwasePE0(G) fRn e'g v Kgy dy

151
—ePE0(C) (2m)™2 (det(BK )2, (151)

where we used the Gaussian integral identity [e™!/ 2YTAydy:(2T[)n/ 2(detA)'1/ > for A>0 . Taking the free energy
F(G)=-kpTIlnQg(G) yields

F(G)=Eo(G)+-5" IndetK g +-E™ Inp-<E* In(2r) (152)

The last two terms are G -independent constants (they depend only on n and T ) and may be absorbed into “const” in what
follows.
It is often convenient to express F in terms of the covariance matrix

2 @=(yy")=(BKce)" (153)
whence detKg=p"det(2(®)" and
F(G):EO(G)'kiéT lndetz(G)-i-COnst (154)

This form makes the entropic role of the covariance explicit: larger covariance = larger det¥= lower F (more entropy).

8.3. Symmetry-resolved blocks and factorization

If the basin/hessian Kg is invariant under the group action (i.e. U(g)KgU(g)T:KG for all g), then Kg commutes with
every U(g) . By standard representation theory one may choose an orthonormal basis that simultaneously block-diagonalizes all
U(g) and K¢ so that

Ke=®,K,q, z:(G)g@ngG) (155)
with
K,o=P,KcP], B\%=pP,5@P] (156)
Determinants factorize over blocks, we obtain the symmetry-resolved free energy
F(G)=E,(G)- kBT > lndetE( ) +const (157)

Subtracting the two symmetry states yields the central symbolic expression:

AF = F(C)-F(Dy) = AE, - 2T 3~ <1ndet2£c2)—lndetEéD2)>, (158)

where AE(=E((C3)-E¢(D2) . (Note: For positive-definite matrices, lndetX=In|3|.)
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Remark on zero modes / pseudo-determinants. If K¢ has zero eigenvalues (rigid translations/rotations or constrained
directions), the Gaussian integral is formally divergent. Practically one removes those rigid modes (restrict to fluctuation

subspace) and uses the pseudodeterminant

pdet A=[], oA

(159)

replacing det . Equivalently, fix gauges or integrate out rigid coordinates—this affects only the absorbed “const” and not the

difference between symmetry states if the zero-mode count is the same.
8.4. Orbit-based parameterization and explicit closed form

Label the six unordered edges as
(AB, BC, CD, DA, AC, BD)
which form three Ds -orbits of size two:
0,={AB,CD}, 0,={BC,DA}, 03={AC,BD}

Assume the covariance is block-diagonal by orbit (no cross-orbit covariances):

(
G)_ 1 G) +(@) (G G)_ |Vi
2@ =diag (2(* (¥ 2{), £(¢= l (

V@ @ 0 0 0 0]
99 0 0 0o o0

G G
T V@ D 0 o
0 0o ¥ V¥ o o
0 0 o 0 v 9
0o 0 o o 9 v

(160)

(161)

(162)

(163)

(164)

where e;1,eio are the standard basis vectors for the two edges in orbit i (e.g. for O1, ej1=e,p,e12=ecp ). Compute the

variances in these coordinates:

Var(usyi):vi(c)—l—ci(G), Var(ub,i):vi(c)—c.(G)

1

Under the orbit-decoupling assumption the projection onto irreps yields

(165)
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2% =diag (vi¥ -+, vi¥+ef®, VD) (166)
and the nontrivial one-dimensional irreps give

o= (VgG)-CgG)), ne)= (VQG)-CQG)), s = (ng>-ch>) (167)

Hence the determinants are products of these scalar entries, and substituting into explicit orbit form

(1

{ 02)) (v Ca)
(vi(D2)+c

)
D2)) (vaZ)

) (168)

C.
1

AF=AE-*& 33 | In

(
¢

This is the closed-form symbolic expression in terms of the orbit-parameters {si(G),vi(G

),ci(G)} and the enthalpic baseline
difference AEy , enabling sensitivity analysis without specific numerical values.
Positivity constraint. For physical positive-definiteness one requires

vi951c9)) i=1,2,3, (169)

so that each orbit-block is SPD and the logarithms are well-defined.
8.5. Sensitivity (partial derivatives) — how each parameter affects AF

Differentiating gives closed-form sensitivities. For a fixed orbit i and varying the Co parameters,

( -C.
1(02) ' (170)

and

(171)

Analogous formulas (with opposite sign inside the big parentheses) hold for derivatives with respect to vi(D2) and ci(DZ)

8.5.1. Interpretation

‘Increasing v(© (more variance on orbit i in the dimer) decreases AF if v® g (entropy stabilizes C, relative to D, .

(C2)

i

>0 increases AF .

‘The sensitivity scales as 1/(v2-c?) and therefore grows if the block becomes nearly singular; this indicates directions where
small structural changes produce large free-energy effects.

-Increasing positive covariance ¢
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8.5.2. Numerical stability and regularization

When (v?-ci2 ) is very small, add a small Tikhonov regularizer €>0 to ¥ (i.e. replace X—X+€I) to stabilize logarithms and

derivatives; carry this through the algebra if needed for numerical work.
The formulas above provide a fully symbolic, algebraically explicit map

{ AEy, 59, v(@ @y s AF (172)

1

suitable for sensitivity analysis, uncertainty propagation, and for guiding mutational design that targets particular orbit
variances or correlations.

9. Conclusion

9.1. Summary of symbolic results

Starting from a harmonic basin approximation and symmetry-resolved block diagonalization we derived

F(G)=Eo(G)-*5" 3", Indetx?+-const (173)
and therefore
AF=AE-5 3, (1ndets(*-Indetz ). (174)

Under orbit-decoupling this reduces to the explicit orbit expression in terms of {si(G),vi(G),ci(G)} .

9.2. Bridge to transition-state theory and efficiency

In the TST approximation the catalytic-efficiency ratio can be expressed schematically as

(kca /KM) m K
et MGy B0 KOs exp -B(AGgZ-AG]@Z)] (175)

(kcat/KM)p, ~ mDy KD,
Using the identity
AGE,-AG, = (F}(Co)-F¥(Dy))- (Fr(C2)-Fr(D2)) (176)

and inserting the symmetry-resolved expression for Fr(G) (i.e. AF ), we isolate the reactant-baseline contribution:

s _ 20810 exp (BAF)-exp [-B (F(Cy)-F (D) (177)

(keat/KM)p, ™Dy KD,

Two useful limiting scenarios are:
1. TS invariant: if F¥(Cy)~F*(Dy) then
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keat /K m
(keat/Km)cy  me, Ko, -exp(BAF) o

(keat/KM)D, ™D, KD,

2. Absolute-barrier preserved: if FI(C2)-FI(D2)NAF (i.e. both TS and reactant shift in parallel) then exponential terms
cancel and only multiplicity and dynamical factors remain:

(keat/Km)o,  mc, o,
(keat/KM)D, ™D, KD,

(179)

Absorbing the main symmetry effect into AF , a simplified statistical-kinetic bridge for the efficiency ratio N=keat/Kn is

2 () Pexp (-2 (180)

The prefactor 4/ |Cz|/|D2| reflects reduced symmetry volume, and the exponential encodes the thermodynamic penalty.

9.3. Connection to FoldX data

For each group element g, let E(g) denote FoldX energy components. Define the character inner product:

(XorB) 6 =T Lgec % (8) E(8) (181)
AEg~ ), %" (<xp,E>CZ-<xp,E>D2) (182)

Similarly, ¥, =P, »(©) PZ with w the feature vector ensemble.

9.4. Final synthesis

. dimy
(1) Pp=222 3, ,(8)U(g), Zp.c=P, 5 P;
(i) AF=-~27 >, [IndetS, o,-Indet X, p, ] +AEy; (183)

oy N o\ V2
(iif) n—gz %(\lfz‘\) exp (-AF/kgT).
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