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Abstract.  A mathematical framework is presented to quantify the relationship between quaternary-structure symmetry, free
energy, and catalytic efficiency during the transition from a    -symmetric tetramer to a    -symmetric dimer, exemplified with
LDHA. The approach constructs explicit      representations on subunit and interface feature spaces, derives projection
operators to decompose operators and data into irreducible-representation components, and computes symmetry-resolved free-
energy differences via Gaussian/statistical and harmonic/Hessian methods. Connections to kinetics are made through transition
state theory with channel degeneracy. Reproducible algorithms and a workflow for mapping FoldX outputs into irrep-resolved
diagnostics and efficiency predictions are provided.
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1. Introduction

Enzyme quaternary structure often exhibits symmetry, and this structural organization can significantly affect catalytic efficiency.
Understanding how symmetry reduction impacts enzymatic function is a fundamental question in structural biology and
mathematical modeling. A natural mathematical framework to address this problem is group theory, which formalizes symmetry
and its action on suitable data spaces.

Not all enzymes are suitable for controlled structural perturbations. To study symmetry- dependent effects concretely,
tetramer-to-dimer transitions provide a classical example of symmetry reduction, where experimental and structural data are
available. In this work, lactate dehydrogenase A (LDHA) is selected as the model system because it forms a     -symmetric
tetramer, has documented mutational studies in the literature, and structural data are available from the Protein Data Bank.

The research proceeds in the following steps:
First, to define group actions on data spaces. Structural coordinates such as collective variables, interface energies, or density

fields are formalized with an inner product structure, allowing symmetry operations to act linearly and quantitatively on the
space.

Second, to construct explicit representations and projectors. Irreducible representations (irreps) of      (tetramer) and    
(dimer) are constructed, and Reynolds projection operators are derived to decompose data and operators into irrep components,
isolating the contributions of each symmetry mode.

Third, to compute symmetry-resolved free-energy differences. Gaussian/statistical (covariance-based) and harmonic/Hessian
(normal-mode-based) approximations quantify the free-energy change associated with symmetry reduction, with explicit
contributions from each irrep.

Fourth, to bridge to catalytic efficiency. Transition state theory (TST) connects free-energy differences to predicted catalytic
efficiencies, accounting for channel degeneracy and transition-state probabilities.

Fifth, to implement a computational workflow. Energy terms and structural features from FoldX outputs are mapped into the
symmetry-adapted framework, and diagnostic scores identify which symmetry components dominate the observed transition.

This approach results in a set of explicit, symmetry-resolved expressions for projected covariance matrices and free-energy
differences. These formulas represent a novel mathematical formalism linking group-theoretic symmetry, structural
transformation, and catalytic efficiency. The framework allows prediction of which symmetry modes most strongly drive the
tetramer-to-dimer transition and provides a direct quantitative bridge from structural symmetry to enzymatic function.
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2. Symmetry groups, homomorphism, and action spaces

2.1. Groups and homomorphism

Consider tetramers a finite group:

(1)

and consider dimers a finite group:

(2)

By construction     is abelian of order     (isomorphic to the Klein four group    ), and     is the cyclic group of order    .

2.1.1. Group homomorphism

A map     between groups is a homomorphism iff     for all   [1]. Define

(3)

and extend multiplicatively to all of    . Concretely,

(4)

    as defined above is a surjective group homomorphism.
Proof. Since      is generated by      with relations      and     , it suffices to check that the relations are

preserved:

(5)

and

(6)

Hence      respects the defining relations and extends to a homomorphism on     . Its image contains      and     , hence  
 , so     is surjective.

2.1.2. Kernel and quotient

Recall   [1]. Here

(7)

which is a subgroup of order     . Since      is a homomorphism,      is a normal subgroup. By the First Isomorphism
Theorem,

D2={e,α,β,αβ}, α2=β2=e,  αβ=βα

C2={e,γ}, γ2=e

D2 4 V4 C2 2

ϕ:G→H ϕ(g1g2)=ϕ(g1)ϕ(g2) g1,g2∈G

ϕ:D2→C2, ϕ(α)=γ,  ϕ(β)=e

D2

ϕ(e)=e,ϕ(α)=γ,ϕ(β)=e,ϕ(αβ)=γ

ϕ

D2 α,β α2=β2=e αβ=βα

ϕ(α2)=ϕ(α)2=γ2=e=ϕ(e), ϕ(β2)=ϕ(β)2=e

ϕ(αβ)=ϕ(α)ϕ(β)=γ⋅e=γ=ϕ(β)ϕ(α)=ϕ(βα)

ϕ D2 γ e
Imϕ=C2 ϕ

kerϕ={g∈D2:ϕ(g)=e}

kerϕ=e,β

2 ϕ kerϕ
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(8)

The quotient map     followed by the isomorphism from     to     equals    .

2.1.3. Functions factoring through the quotient

If     is any set on which     acts and     is a function space on    , then the subspace of functions invariant under   [1],

(9)

is canonically identified with functions on the quotient      or, algebraically, with functions on     : every  
   is constant on    -cosets and thus descends to a function on the quotient; conversely, a function on the quotient

pulls back to a    -invariant function.

2.2. Representations, invariant projectors and factoring through quotients

2.2.1. Representations and unitarity (definitions)

Let     be a (complex) Hilbert space. A representation of a group     on     is a group homomorphism    
satisfying    . The representation     is unitary (or orthogonal in the real case) if [2]

(10)

2.2.2. Averaging projector onto kerϕ -invariants

Let     be a finite subgroup. Define the averaging operator

(11)

Assume     is unitary. Then     is the orthogonal projection onto the closed subspace    .
Moreover     commutes with     for every    , hence the representation leaves     invariant.

Proof. First compute    :

(12)

so     is idempotent. Since each     is unitary,    , and taking adjoint yields    , hence    
is self-adjoint. Idempotent self-adjoint operators are orthogonal projections; their range equals    . But     iff  

 , which is equivalent to     for all     (apply     and use group averaging). Thus the range is

   .
Finally, for any    ,

(13)

D2/kerϕ≅Im ϕ=C2

π:D2→D2/kerϕ D2/kerϕ C2 ϕ

X D2 H X kerϕ

H kerϕ:={f∈H: U(k)f=f, ∀k∈kerϕ}

X/kerϕ D2/kerϕ

f∈H kerϕ kerϕ
kerϕ

(H,⟨⋅,⋅⟩) G H U:G→GL(H)
U(g1g2)=U(g1)U(g2) U

⟨U(g)f,U(g)h⟩=⟨f,h⟩ ∀f,h∈H, g∈G

K:=kerϕ

PK:= 1
|K| ∑k∈K U(k)

U PK H K:={v∈H: U(k)v=v ∀k∈K}

PK U(g) g∈G H K

P2
K

P2
K=

1

|K|2
∑k,k'∈K U(k)U(k')= 1

|K|2
∑h∈K (∑k∈K 1)U(h)= 1

|K| ∑h∈K U(h)=PK

PK U(k) U(k)*=U(k)-1=U(k-1) P
*
K=PK PK

{v:PKv=v} PKv=v
1
|K| ∑k∈K U(k)v=v U(k)v=v k∈K U(k0)

H K

g∈G

U(g)PKU(g)-1= 1
|K| ∑k∈K U(g)U(k)U(g)-1= 1

|K| ∑k∈K U(gkg-1)
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If     is normal then     and the right-hand side equals    . In our setting     is normal, so     commutes
with    . Hence     is    -invariant.

2.2.3. Factoring a representation through the quotient

Let     and suppose     is a unitary representation. Consider the restriction of     to    . For     with
   , we have     for some     and, for    ,

(14)

Thus the map      given by      is well-defined and a representation. In other words, the
representation on the    -fixed subspace factors through the quotient group    .

2.3. Action spaces: L2 constructions and unitarity proofs

2.3.1. Why L2 and which inner product

Let     (complex-valued functions) with the usual inner product

(15)

    is a Hilbert space: it is complete and admits orthogonal projections, spectral theorem for bounded self-adjoint operators,
and a well-behaved theory of quadratic forms. These properties are prerequisites for using orthogonal (projector)
decompositions,     formulas for Gaussian integrals, and spectral block-diagonalization of self-adjoint Hessians [3].

2.3.2. Density-field representation on L2(R3)

Definition.
Let      act on      by orthogonal linear maps      (or by rigid motions with zero translations for point groups).

Define [2]

(16)

We check that     is a unitary representation.
    defined above is a unitary representation.
Proof. (Representation property.) For    ,

(17)

(Unitarity.) For    ,

(18)

Change variables    . Since     is orthogonal,     and    . Thus

K gKg-1=K PK K=kerϕ PK

U(g) H K G

K=kerϕ U:G→U(H) U H K g, g'∈G

gK=g'K g'=gk k∈K v∈H K

U(g')v=U(g)U(k)v=U(g)v

Ũ:G/K→U(H K) Ũ(gK):=U(g)|
H K

K G/K≅C2

H =L2(R3)

⟨f,g⟩= ∫R3 f(r) g(r) dr
¯

L2

logdet

G R3 R(g)∈O(3)

(U(g)ρ)(r):=ρ(R(g)-1r)

U
U:G→U(L2(R3))

g1,g2∈G

U(g1)U(g2)ρ(r)=U(g1)(ρ(R(g2)
-1r))=ρ(R(g1)

-1R(g2)
-1r)=ρ((R(g2)R(g1))

-1r)=U(g1g2)ρ(r)

ρ1,ρ2∈L2(R3)

⟨U(g)ρ1,U(g)ρ2⟩= ∫R3 ρ1(R(g)-1r) ρ2(R(g)-1r) dr
¯

s:=R(g)-1r R(g) detR(g)=±1 dr=|detR(g)| ds=ds
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(19)

Therefore each     is unitary and     is a unitary representation.

2.3.3. CV (collective-variable) representation on L2(Y,μ)

Setup and unitarity criterion.
Let     be a map from full coordinates to CVs,    , and let     be a probability measure on    . Consider  

  with inner product    . Assume the group     acts on     linearly or by permutations
via    , and define

(20)

    is unitary on     iff     is    -invariant, i.e.     for all    .
Proof. If     is    -invariant, then

(21)

Change variables     ; by invariance      and the domain is unchanged, so the integral equals     .
Conversely, unitarity for all     forces invariance of     by testing against indicator functions.

2.4. Intertwining operators and boundedness

2.4.1. A linear sampling operator

Suppose we construct a linear sampling operator     of the integral-kernel type

(22)

where     is measurable. Typical choices of     are localized feature kernels (e.g. Gaussian windows integrated
against coordinates).

If for    -almost every     the function     lies in     and the function     is integrable w.r.t.  

 , then     is a bounded linear operator    .
Proof. By Cauchy–Schwarz,

(23)

Integrate both sides w.r.t.       and use the integrability assumption to obtain      with  

 . Thus     is bounded.

2.4.2. Equivariance (intertwining) condition

An equivariance condition

⟨U(g)ρ1,U(g)ρ2⟩= ∫R3 ρ1(s) ρ2(s) ds=⟨ρ1,ρ2⟩
¯

U(g) U

Φ x↦y=Φ(x)∈Y⊂Rm μ Y

H :=L2(Y,μ) ⟨A,B⟩= ∫Y A(y)B(y) dμ(y)¯G Y

Γ:G→GL(Y)

(U(g)A)(y):=A(Γ(g)-1y)

U L2(Y,μ) μ Γ μ=μ∘Γ(g)-1 g∈G
μ Γ

⟨U(g)A,U(g)B⟩= ∫Y A(Γ(g)-1y)B(Γ(g)-1y) dμ(y)
¯

z=Γ(g)-1y dμ(y)=dμ(z) ⟨A,B⟩

A,B μ

S:L2(R3)→L2(Y,μ)

(Sρ)(y)= ∫R3 K(y,r) ρ(r) dr

K:Y×R3→C K

μ y r↦K(y,r) L2(R3) y↦∥K(y,⋅)∥2L2(R3) μ

S L2(R3)→L2(Y,μ)

|(Sρ)(y)|2=|∫K(y,r)ρ(r) dr|2≤∥K(y,⋅)∥2L2(R3) ∥ρ∥
2
L2(R3)

y ∥Sρ∥2L2(Y,μ)≤C∥ρ∥2L2(R3)

C= ∫Y ∥K(y,⋅)∥2L2 dμ(y)<∞ S
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(24)

is equivalent to a symmetry constraint on the kernel    :

(25)

Indeed,

(26)

while

(27)

Equality for all     forces the kernel relation above. Under that relation,     is an intertwiner and thus maps symmetry-adapted
subspaces into symmetry-adapted subspaces.

2.5. Decomposition into irreducibles and projector formulas

2.5.1. Complete reducibility for finite group

For a finite group      and a unitary representation      on a complex Hilbert space     , Maschke’s theorem implies    
decomposes as a (Hilbert) direct sum of finite-dimensional     -invariant subspaces each of which splits into irreducible
representations (isotypic decomposition) [2]:

(28)

where     denotes the set of (equivalence classes of) irreducible representations and     is the    -isotypic component.

2.5.2. Character projector (explicit orthogonal projector)

Let     be the character of an irreducible unitary representation     of dimension    . Then the orthogonal projector onto the    -
isotypic component of     is

(29)

One may verify    ,    , and     for all    ; hence     projects orthogonally onto an invariant
subspace isomorphic to a direct sum of copies of    .

S∘U(g)=Γ(g)∘S ∀g∈G

K

K(Γ(g)-1y,r)=K(y,R(g)r)  (for a.e. y,r)

(S(U(g)ρ))(y)=∫K(y,r)ρ(R(g)-1r) dr=∫K(y,R(g)s)ρ(s) ds

(Γ(g)Sρ)(y)=(Sρ)(Γ(g)-1y)=∫K(Γ(g)-1y,s)ρ(s) ds

ρ S

G U H H

G

H ≅⨁λ∈ĜHλ

Ĝ Hλ λ

χ Vχ dχ χ
H

Pχ=
dχ
|G| ∑g∈G χ(g) U(g)
¯

P2
χ=Pχ P

*
χ=Pχ PχU(h)=U(h)Pχ h∈G Pχ

Vχ
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3. Irreducible representations and projectors

3.1. Irreps and character table of D2

3.1.1. Why all irreps are one-dimensional

The group     considered here is the dihedral group of order    , which is isomorphic to the direct product

(30)

Since     is abelian, each element commutes with every other. A standard theorem in representation theory states:
> For a finite abelian group    , every irreducible representation over     is one-dimensional.
The intuition is that the group algebra     of an abelian group splits as a direct sum of one-dimensional eigenspaces, and

thus irreps can only be    D characters.
Therefore, all irreps of     are homomorphisms

(31)

3.1.2. Conjugacy classes and the number of irreps

For any group, the number of irreducible representations equals the number of conjugacy classes. Since      is abelian, each
element forms a conjugacy class by itself:

(32)

Thus     has     inequivalent irreps in total.

3.1.3. Explicit construction of irreps

Each one-dimensional character     is determined by its values on the generators    . There are     choices for     (    or  
 ), and     choices for    , hence     distinct irreps in total.

Explicitly:

(33)

The corresponding value on     is then determined multiplicatively:

(34)

3.1.4. The character table

It is conventional to label these four irreps as    , giving the table [2]:

D2 4

D2 ≅ C2×C2 = { e, α, β, αβ }, α2=β2=e,  αβ=βα

D2

G C
C[G]

1
D2

χ:D2→{+1,-1}

D2

e, α, β, αβ

D2 4

χ α,β 2 χ(α) +1 -1
2 χ(β) 2×2=4

(χ(α),χ(β))∈(1,1), (1,-1), (-1,1), (-1,-1)

αβ

χ(αβ)=χ(α)χ(β)

A1,B1,B2,B3
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Table 1. Four irrep ρ

Irrep    

3.1.5. Orthogonality sanity check

Characters of irreps are orthogonal with respect to the inner product

(35)

Since all values are real (   ), orthogonality reduces to checking that each pair of rows in the table has dot product zero in  
 , which is immediate. Thus the table is consistent.

3.2. Reynolds/character projectors: derivation and properties

3.2.1. General formula

Let      be a unitary representation with character     . For each irrep      with character     , the
associated projector is [2]

(36)

3.2.2. Simplification for D2

Here     and     is real, so

(37)

Each projector is simply a linear combination of the four representation matrices, with coefficients    .

3.2.3. Why these are projectors

We check the key properties:
Idempotence:    . This follows from Schur orthogonality of characters:

ρ χρ(e) χρ(α) χρ(β) χρ(αβ)

A1 1 1 1 1

B1 1 1 -1 -1

B2 1 -1 1 -1

B3 1 -1 -1 1

⟨χρ,χσ⟩ =  1
|D2|

∑g∈D2
χρ(g) χσ(g)
¯

±1
R4

U:D2→GL(V) χU(g)=TrU(g) ρ χρ

Pρ =  dimρ
|D2|

∑g∈D2
χρ(g) U(g)
¯

dimρ=1 χρ(g)∈{±1}

PA1=1/4 (I+U(α)+U(β)+U(αβ)),
PB1=1/4 (I+U(α)-U(β)-U(αβ)),
PB2=1/4 (I-U(α)+U(β)-U(αβ)),
PB3=1/4 (I-U(α)-U(β)+U(αβ)).

±1/4

P2
ρ=Pρ
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(38)

A direct substitution shows    .
Mutual orthogonality:     if    . This again comes from the orthogonality of characters.
Resolution of identity:

(39)

Thus the representation space splits as a direct sum of the four invariant subspaces.
Commutation:     for all    . Hence each     is an intertwiner and respects the group symmetry.

3.2.4. Self-adjointness

If     is unitary, then

(40)

Since      for one-dimensional real characters, this equals     . Hence      is Hermitian and therefore an
orthogonal projector.

3.2.5. Multiplicity formula

The multiplicity     of     in     is

(41)

Equivalently,    . This gives a direct computational method to decompose    .

3.3. Concrete D2 representations in LDHA: two working examples

3.3.1. Example A: chain representation on R4

Group action. Label four chains     as standard basis vectors. Define:    
so that     swaps     and    . The     are     permutation matrices.
Character computation. The trace of each permutation matrix equals the number of fixed points:  

 
Decomposition. Using multiplicities,

(42)

we obtain

(43)

1
|D2|

∑g∈D2
χρ(g-1) χσ(hg)=

δρσ
dimρ  χρ(h)

P2
ρ=Pρ

PρPσ=0 ρ≠σ

∑ρ Pρ=I

U(h)Pρ=PρU(h) h∈D2 Pρ

U

P
*
ρ=

1
|D2|

∑g χρ(g) U(g)*= 1
|D2|

∑g χρ(g) U(g-1)

χρ(g-1)=χρ(g) Pρ Pρ

mρ ρ U

mρ =  1
|D2|

∑g∈D2
χρ(g) χU(g)
¯

rank(Pρ)=mρ U

(A,B,C,D) α: A↔B,  C↔D, β: A↔C,  B↔D
αβ A↔D B↔C U(g) 4×4

χU(e)=4, χU(α)=χU(β)=χU(αβ)=0.

mρ=1/4∑g χρ(g)χU(g)

mA1=mB1=mB2=mB3=1
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Hence

(44)

Explicit basis. An orthogonal eigenbasis realizing the decomposition is

(45)

Applying the projectors and extracts each component.

3.3.2. Example B: interface representation on R6

Group action. List six interfaces:

(46)

The action of     permutes these as:

(47)

Characters. Counting fixed points:

(48)

Decomposition. Multiplicities:

(49)

So

(50)

Orbit structure and basis. Interfaces split into three orbits:

(51)

This yields:

R4 ≅ A1⊕B1⊕B2⊕B3

A1: (1,1,1,1), B1: (1,1,-1,-1),

B2: (1,-1,1,-1), B3: (1,-1,-1,1).

(AB,AC,AD,BC,BD,CD)

α,β,αβ

α: AB↦AB,  AC↔BD,  AD↔BC,  CD↦CD,

β: AB↔CD,  AC↦AC,  AD↔BC,  BD↦BD,

αβ: AB↔CD,  AC↔BD,  AD↦AD,  BC↦BC.

χU(e)=6, χU(α)=χU(β)=χU(αβ)=2

mA1=1/4(6+2+2+2)=3,

mB1=1/4(6+2-2-2)=1,

mB2=1/4(6-2+2-2)=1,

mB3=1/4(6-2-2+2)=1.

R6 ≅ 3A1⊕B1⊕B2⊕B3

AB,CD, AC,BD, AD,BC
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(52)

Thus the space naturally decomposes into symmetric orbit sums (   ) and antisymmetric differences (   ).
Projector action. For any    ,

(53)

where      averages over each orbit and      extracts the signed difference. This provides an explicit computational
recipe.

3.4. Applications of the projectors

3.4.1. Block diagonalization of equivariant operators

If     is    -equivariant (   ), then

(54)

Thus     block-diagonalizes into irreducible sectors.

3.4.2. Numerical recipe

Given    , construct the four projectors. Then compute

(55)

Subsequent log-determinant and free energy formulas decompose accordingly.

3.4.3. Stability

Because      are orthogonal projectors with rational coefficients, the decomposition is numerically robust: the projections are
exact up to floating-point error. For    , all coefficients are    , ensuring excellent conditioning.

4. Explicit representations on subunit and interface spaces

4.1. Subunit (4D) representation: construction, checks, and decomposition

4.1.1. Basis and ordering

Let     with the standard basis corresponding to chains    :

(56)

We represent a general vector as    .

A1 basis: s1=AB+CD,  s2=AC+BD,  s3=AD+BC,

B1 basis: b1=AB-CD,

B2 basis: b2=AC-BD,

B3 basis: b3=AD-BC.

A1 Bi

w∈R6

w(ρ)=Pρw

w(A1) w(Bi)

K D2 U(g)K=KU(g)

K = ∑ρ PρKPρ ≃ ⨁ρKρ,  Kρ=PρKPρ|ImPρ

K

U(α),U(β)

w(ρ)=Pρw, Cρ=PρCP⊤
ρ , Kρ=PρKP⊤

ρ

Pρ

D2 ±1/4

Vsub=R4 (A,B,C,D)

eA=(1,0,0,0)⊤, eB=(0,1,0,0)⊤, eC=(0,0,1,0)⊤, eD=(0,0,0,1)⊤

v=(xA,xB,xC,xD)
⊤
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4.1.2. Group action by permuting chains

We define the     action by permuting chain labels (orthogonal maps in the Euclidean inner product):

(57)

Each action is a permutation of the basis and is therefore represented by a permutation matrix      satisfying  
 .

4.1.3. Building the matrices entry-by-entry

A permutation matrix     is determined by where     sends each basis vector. For example,     swaps     and    ,
hence

(58)

so the columns of     are the images of the basis vectors:

(59)

Proceeding identically for     and     gives

(60)

4.1.4. Representation sanity checks

We verify the group relations on matrices:

(61)

These hold because applying the swaps twice returns each chain to itself, and     commute on labels, so their permutation
matrices commute.

4.1.5. Characters and quick multiplicity count

The character of a permutation is the number of fixed basis vectors (its trace). For the identity,    . For each non-
identity above, no chain is fixed, so    . Using the multiplicity formula

D2

α: A↔B, C↔D,

β: A↔D, B↔C,

αβ: A↔C, B↔D.

U(g)

U(g)⊤U(g)=I

U(g) g α A↔B C↔D

U(α)eA=eB, U(α)eB=eA, U(α)eC=eD, U(α)eD=eC

U(α)

U(α)=

⎡⎢⎣0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

⎤⎥⎦β αβ

U(β)= ,  U(αβ)=

⎡⎢⎣0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

⎤⎥⎦ ⎡⎢⎣0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎤⎥⎦U(α)2=I, U(β)2=I, U(α)U(β)=U(β)U(α)=U(αβ)

α,β

χU(e)=Tr I=4
χU(α)=χU(β)=χU(αβ)=0
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(62)

and the     character table, one obtains    . Therefore

(63)

4.1.6. An explicit irrep eigenbasis (and why it works)

Define the four vectors

(64)

Each     is an eigenvector of every     with eigenvalue     (the one-dimensional irrep property). For instance,

(65)

while     and    , matching the character row     of    . Orthogonality is immediate
from the sign patterns, and the     factor normalizes the vectors to unit length.

4.1.7. Projectors (closed form matrices)

Because     is abelian with real characters,

(66)

where    . Explicitly,

(67)

mρ=
1

|D2|
∑g∈D2

χρ(g) χU(g), |D2|=4

D2 mA1=mB1=mB2=mB3=1

 Vsub≅A1⊕B1⊕B2⊕B3.

uA1=1/2 , uB1=1/2 , uB2=1/2 , uB3=1/2

⎡⎢⎣1111⎤⎥⎦ ⎡⎢⎣ 1

1

-1

-1

⎤⎥⎦ ⎡⎢⎣ 1

-1

1

-1

⎤⎥⎦ ⎡⎢⎣ 1

-1

-1

1

⎤⎥⎦uρ U(g) χρ(g)

U(α) uB2=1/2 =1/2 =- uB2

⎡⎢⎣0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

⎤⎥⎦⎡⎢⎣ 1

-1

1

-1

⎤⎥⎦ ⎡⎢⎣-11-11⎤⎥⎦U(β) uB2=+uB2 U(αβ) uB2=-uB2 [1,-1,1,-1] B2

1/2

D2

PA1=1/4 (I+U(α)+U(β)+U(αβ))=1/411⊤,

PB1=1/4 (I+U(α)-U(β)-U(αβ)),
PB2=1/4 (I-U(α)+U(β)-U(αβ)),
PB3=1/4 (I-U(α)-U(β)+U(αβ)),

1=(1,1,1,1)⊤

PA1= , PB1= ,

PB2= , PB3= .

⎡⎢⎣ 1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

⎤⎥⎦ ⎡⎢⎣ 1
4

1
4 - 1

4 - 1
4

1
4

1
4 - 1

4 - 1
4

- 1
4 - 1

4
1
4

1
4

- 1
4 - 1

4
1
4

1
4

⎤⎥⎦⎡⎢⎣ 1
4 - 1

4 - 1
4

1
4

- 1
4

1
4

1
4 - 1

4

- 1
4

1
4

1
4 - 1

4

1
4 - 1

4 - 1
4

1
4

⎤⎥⎦ ⎡⎢⎣ 1
4 - 1

4
1
4 - 1

4

- 1
4

1
4 - 1

4
1
4

1
4 - 1

4
1
4 - 1

4

- 1
4

1
4 - 1

4
1
4

⎤⎥⎦
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For any    , the four components     lie on the irrep lines and sum to    .

4.2. Interface (6D) representation: construction, checks, and decomposition

4.2.1. Basis and ordering

Let     with the basis listing the unordered interfaces in the fixed order

(68)

Denote a vector as

(69)

4.2.2. How to build each permutation matrix

Given a group element    , map each unordered edge (e.g.    ) by acting on its endpoints (e.g.    ,    ), then
relabel the resulting unordered edge in our fixed order. Place a     in row “image index” and column “original index”. Doing this
for all six edges yields the     permutation matrix    .

4.2.3. Explicit edge mappings

Using your subunit actions,

(70)

we obtain the following maps (written as “original edge     image edge”):

Table 2. Edge mappings

Edge

Reading column-by-column (image of basis vectors) gives

(71)

v∈R4 v(ρ)=Pρv v

Vint=R6

(AB, BC, CD, DA, AC, BD)

w=(wAB,wBC,wCD,wDA,wAC,wBD)
⊤

g AB A↦g(A) B↦g(B)
1

6×6 U(g)

α:A↔B, C↔D,  β:A↔D, B↔C,  αβ:A↔C, B↔D

↦

AB BC CD DA AC BD

α AB DA CD BC BD AC

β CD BC AB DA BD AC

αβ CD DA AB BC AC BD

U(α)= , U(β)= , U(αβ)=

⎡⎢⎣1 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

⎤⎥⎦ ⎡⎢⎣0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 1 0

⎤⎥⎦ ⎡⎢⎣0 0 1 0 0 0

0 0 0 1 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤⎥⎦
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4.2.4. Representation checks

Each     is orthogonal (   ) since it permutes coordinates. Moreover,

(72)

so we indeed have a (unitary) representation of    .

4.2.5. Characters (why the traces are 6,2,2,2 )

·     fixes all     edges:    .
·     fixes     and    , swaps     and    :    .
·     fixes     and    , swaps     and    :    .
·     fixes     and    , swaps     and    :    .

4.2.6. Multiplicity calculation spelled out

With the     character table     and the above    ,

(73)

so

(74)

Hence

(75)

4.2.7. Orbit structure and immediate block basis

The six edges split into three    -orbits of size    :

(76)

For each orbit, form the symmetric (sum) and antisymmetric (difference) combinations:

(77)

Then      span the      subspace (fixed by all     ), and      are one-dimensional eigenlines carrying  
  respectively. Indeed,

U(g) U(g)⊤U(g)=I

U(α)2=U(β)2=I, U(α)U(β)=U(β)U(α)=U(αβ)

D2

e 6 χU(e)=6
α AB CD BC↔DA AC↔BD χU(α)=2
β BC DA AB↔CD AC↔BD χU(β)=2
αβ AC BD AB↔CD BC↔DA χU(αβ)=2

D2 {χA1
,χB1

,χB2
,χB3

} χU

mρ=
1
4 (χρ(e)⋅6+χρ(α)⋅2+χρ(β)⋅2+χρ(αβ)⋅2)

mA1=3,  mB1=1,  mB2=1,  mB3=1

 Vint≅3A1 ⊕ B1 ⊕ B2 ⊕ B3.

D2 2

AB,CD,  BC,DA,  AC,BD

s1=AB+CD, b1=AB-CD,

s2=BC+DA, b2=BC-DA,

s3=AC+BD, b3=AC-BD.

s1,s2,s3 3A1 U(g) b1,b2,b3

B1,B2,B3
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(78)

because     fixes     while     and     swap them, etc.

4.2.8. Projectors as explicit 6×6 matrices

Using

(79)

we obtain (block-diagonal over the three orbits):

(80)

(81)

These satisfy    ,    , and    .

4.2.9. Worked projection formulas

For    ,

(82)

Thus     with each     living in the claimed irrep block.

e α β αβ
b1: 1 1 -1 -1 (row B1)

b2: 1 -1 1 -1 (row B2)

b3: 1 -1 -1 1 (row B3)

α AB,CD β αβ

Pρ=1/4 (I+χρ(α)U(α)+χρ(β)U(β)+χρ(αβ)U(αβ))

PA1= , PB1=

⎡⎢⎣ 1
2 0 1

2 0 0 0

0 1
2 0 1

2 0 0
1
2 0 1

2 0 0 0

0 1
2 0 1

2 0 0

0 0 0 0 1
2

1
2

0 0 0 0 1
2

1
2

⎤⎥⎦ ⎡⎢⎣ 1
2 0 - 1

2 0 0 0

0 0 0 0 0 0

- 1
2 0 1

2 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤⎥⎦PB2= , PB3=

⎡⎢⎣0 0 0 0 0 0

0 1
2 0 - 1

2 0 0

0 0 0 0 0 0

0 - 1
2 0 1

2 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤⎥⎦ ⎡⎢⎣0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1
2 - 1

2

0 0 0 0 - 1
2

1
2

⎤⎥⎦P2
ρ=Pρ PρPσ=δρσPρ ∑ρ Pρ=I

w=(wAB,wBC,wCD,wDA,wAC,wBD)
⊤

PA1w=(wAB+wCD/2, wBC+wDA/2, wAB+wCD/2, wBC+wDA/2, wAC+wBD/2, wAC+wBD/2)
⊤,

PB1w=(wAB-wCD/2, 0, -wAB-wCD/2, 0, 0, 0)
⊤,

PB2w=(0, wBC-wDA/2, 0, -wBC-wDA/2, 0, 0)
⊤,

PB3w=(0, 0, 0, 0, wAC-wBD/2, -wAC-wBD/2)
⊤.

w=w(A1)+w(B1)+w(B2)+w(B3) w(ρ)
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4.2.10. Why orthogonality holds

Since each      is a polynomial in the commuting orthogonal matrices      with real coefficients, we have      and  
 . Hence images of different     are mutually orthogonal subspaces, providing a numerically stable decomposition

for downstream energy/covariance block-diagonalization.

5. Symmetry-resolved free energy

We present two equivalent routes (Hessian / Gaussian route and statistical / covariance route), prove their equivalence under the
harmonic approximation, treat practical numerical issues (zero modes, regularization, finite-sample bias), and define diagnostic
irrep scores that attribute the free-energy change to symmetry sectors.

5.1. Harmonic (Hessian) route

5.1.1. Local quadratic approximation

Let      denote local internal coordinates (collective coordinates, normal-mode coordinates, or small displacements)
measured relative to a stable configuration     that depends on the symmetry state    . Taylor-expand the potential
energy about     up to second order [4]:

(83)

where     is the symmetric positive-definite Hessian (we assume a local minimum so    ; see zero-mode
handling below).     is the potential energy minimum (baseline).

5.1.2. Partition function in the quadratic approximation

The canonical partition function (restricting to coordinates    ) is

(84)

The Gaussian integral is standard:

(85)

Therefore

(86)

5.1.3. Free energy and logdetk term

Take     to obtain (up to additive constants independent of    )

(87)

Pρ U(g) P⊤
ρ =Pρ

PρPσ=δρσPρ Pρ

x∈Rd

μG G∈{D2,C2}
μG

EG(x) = E0(G) + 1/2(x-μG)
⊤KG(x-μG) + O(∥x-μG∥

3)

KG=∇2EG(μG) KG≻0
E0(G)

x

Z(G)= ∫Rd e-βEG(x) dx≈e-βE0(G) ∫Rd exp(-β/2(x-μG)
⊤KG(x-μG)) dx

∫Rd exp (-β/2x⊤Kx) dx=(2π/β)d/2 (detK)-1/2=(2πkBT)d/2 (detK)-1/2

Z(G)≈e-βE0(G) (2πkBT)d/2 (detKG)
-1/2

F(G)=-kBTlnZ(G) G

F(G) ≈ E0(G) +  kBT2  lndetKG + const
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Here “const” contains      and any Jacobian factors from coordinate choices; since we always compute
differences between     states, such    -independent constants cancel.

5.1.4. Symmetry and block-diagonalization

Suppose     is the orthogonal/unitary representation of     acting on the coordinate space so that     is    -invariant in the
sense      whenever      is a symmetry of that configuration. If the Hessian itself is     -invariant (i.e.   

  for all     in the symmetry group of that structure), then     commutes with the representation operators  
 :

(88)

By Schur’s lemma and the general theory of finite-group representations (Maschke’s theorem),      decomposes into
isotypic components corresponding to irreducible representations    :

(89)

and any operator commuting with      is block-diagonal with respect to this decomposition. Concretely, let      be the
orthogonal projector onto the    -isotypic subspace (constructed via the character projector). Then

(90)

Each block     is itself symmetric positive-definite on its subspace.

5.1.5. Dimension bookkeeping

Let     denote the effective dimensionality of the    -block (for abelian groups     equals the multiplicity). Then  
 .

5.1.6. Factorization of the gaussian integral

Because     is block-diagonal in this orthogonal decomposition, the determinant factorizes:

(91)

The symmetry-resolved free energy:

(92)

5.1.7. Symmetry-resolved free-energy difference

Subtracting the     and     expressions gives

(d/2)kBTln(2πkBT)
G G

U(g) G EG G
EG(U(g)x)=EG(x) g G

U(g)⊤KGU(g)=KG g KG

U(g)

[KG, U(g)]=0, ∀g∈G

V=Rd

ρ

V = ⨁ρ  Vρ⊗Cmρ

isotypic component

U(g) Pρ

ρ

KG = ⨁ρKρ,G,  Kρ,G:=P⊤
ρ KGPρ acting on Im(Pρ)

Kρ,G

nρ=rank(Pρ) ρ nρ

∑ρ nρ=d

KG

detKG=∏ρ detKρ,G

F(G)≈E0(G)+ kBT
2 ∑ρ lndetKρ,G+const

D2 C2
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(93)

where     is the baseline potential-energy difference (can be approximated from enthalpic terms such as
FoldX).

5.2. Statistical (Covariance) route

5.2.1. Linear-response relation between hessian and covariance

Under harmonic fluctuations at temperature    , equipartition and Gaussian statistics give [4]

(94)

provided samples are drawn from the quadratic Boltzmann weight    . This is the standard fluctuation–dissipation
relation.

5.2.2. Express lndetK via lndetC

Taking determinants and logarithms on each    -block yields

(95)

where    .
Substituting and absorbing the     terms into the baseline gives the covariance form

(96)

where     differs from     by the additive constant     (which cancels in comparisons or can be
included in the baseline).

Thus the Hessian and covariance routes are equivalent under the harmonic approximation and when     and     are invertible
on the projected subspaces.

5.2.3. Eigenvalue (mode) representation

Let     denote the positive eigenvalues of     (Hessian modes in the     channel). Then

(97)

Equivalently, for covariance eigenvalues     (so    ),

(98)

ΔF≡F(C2)-F(D2)=
kBT
2 ∑ρ [lndetKρ,C2-lndetKρ,D2] + ΔE0

ΔE0≡E0(C2)-E0(D2)

T

CG = ⟨(x-μG)(x-μG)
⊤
⟩ = kBT K-1

G

∝e-βx
⊤KGx/2

ρ

lndetKρ,G=-lndetCρ,G+nρln(kBT)

nρ=rank(Pρ)
nρln(kBT)

ΔF ≈ - kBT
2 ∑ρ [lndetCρ,C2

-lndetCρ,D2
] + ΔE

'

0,

ΔE
'
0 ΔE0 kBT/2∑ρ nρln(kBT)

C K

{λ(G)
ρ,i }

nρ
i=1 Kρ,G ρ

lndetKρ,G = ∑
nρ
i=1 lnλ

(G)
ρ,i

{σ2,(G)
ρ,i } σ2=kBT/λ

lndetCρ,G = ∑
nρ
i=1 lnσ

2,(G)
ρ,i
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Therefore each mode contributes additively to     and to    ; this allows per-mode attribution.

5.3. Diagnostic irrep scores and linear-response approximation

5.3.1. Definition of diagnostic scores

We define two complementary irrep-resolved diagnostics:

(99)

The contribution of irrep     to     (covariance form) is [4]

(100)

Large positive     (i.e. larger     in    ) yields a negative contribution to     (i.e. stabilization of the     basin
relative to    ), and vice versa.

5.3.2. First-order (linear-response) sensitivity of lndet

If     is perturbed by a small symmetric    , then

(101)

Thus, when differences between     and     are small, the leading contribution is

(102)

This gives a practical linearized approximation to     and shows the direct connection between     (trace difference)

and     via the inverse covariance weighting.

5.3.3. Interpretation of signs

If     in a generalized sense (more variance in many directions), then    , so     and  
 : the     basin gains entropic stabilization in channel    .

Conversely, reduced variance in     relative to     (tightening) gives positive     (destabilization of    ).

5.4. Practical computation: projection, eigen-decomposition, and numerics

5.4.1. Algorithmic recipe

1. Choose feature / CV vector     that captures interface energies, contact counts, active-site geometries, etc., and collect  
  samples     from MD/ENM/resampled FoldX ensembles for each state    .

2. Compute empirical covariance    .

F(G) ΔF

Δ
(spec)
ρ :=lndet(Cρ,C2C

-1
ρ,D2

)=lndetCρ,C2-lndetCρ,D2 ,

Δ(var)
ρ :=tr (Cρ,C2

-Cρ,D2
).

ρ ΔF

ΔFρ = - kBT
2  Δ

(spec)
ρ

Δ(spec)
ρ detC C2 ΔF C2

D2

C δC

lndet(C+δC) = lndetC + tr(C-1δC) - 1/2tr (C-1δCC-1δC)+O(∥δC∥3)

Cρ,C2 Cρ,D2

Δ(spec)
ρ ≈tr(C-1

ρ,D2
  (Cρ,C2

-Cρ,D2
))

ΔFρ Δ(var)
ρ

Δ(spec)
ρ

Cρ,C2≻Cρ,D2 lndetCρ,C2>lndetCρ,D2 Δ(spec)
ρ >0

ΔFρ<0 C2 ρ
C2 D2 ΔFρ C2

w∈Rm N
w(1),…,w(N) G

ĈG= 1
N-1 ∑N

j=1 (w
(j)-w̄)(w(j)-w̄)⊤
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3. Construct representation matrices      on the CV space (permutation/sign or linear action) and form projectors  
 .

4. Compute projected covariance blocks    .

5. Compute      (numerically stable log-determinant via e.g.  eigenvalues or Cholesky with regularization);
accumulate

(103)

6.Estimate confidence intervals by bootstrap resampling of the sample set     (resample replicates, recompute     and

   ).

5.4.2. Zero modes and coordinate gauge

Physical systems contain trivial zero modes (overall translations and rotations) that give zero eigenvalues in     and divergences
in    . Remedies:

Project out rigid-body modes from      (work in internal/coarse-grained coordinates) or perform computations in internal
coordinates where rigid motions are absent.

Remove near-zero eigenvalues before computing log-determinant, i.e. compute the product over nonzero eigenvalues only, or
add a small regularizer     and track the dependence on    .

5.4.3. Regularization and finite-sample stability

Empirical     may be rank-deficient or ill-conditioned when     is not much larger than the projected dimension    . Use:

Ridge regularization:      with      small; compute      of this regularized matrix. Choose      by cross-
validation or L-curve inspection.

Shrinkage estimators (Ledoit–Wolf):     with target     (e.g. diagonal), gives lower-variance     estimates.
Dimensionality reduction: retain only principal components that capture a large fraction of variance within each      block;

compute     on the reduced block (adds a model selection step).

5.4.4. Stable evaluation of lndet

Compute the log-determinant via     routines (Cholesky if positive-definite, or eigen-decomposition)

(104)

where     are eigenvalues. Use numerically stable libraries (e.g. LAPACK routines) and avoid forming full dense inverses.

5.5. Baseline energy ΔE0 and mapping FoldX outputs

5.5.1. What ΔE0 represents

    is the difference in basin minima energies    . In practice one often uses empirical or computed enthalpic
proxies (FoldX total or interface energies) as an approximation:

(105)

with the caveat that FoldX energies are not exact free energies (lack full entropy).

U(g)

Pρ=
dimρ
|G| ∑g χρ(g)U(g)
¯

Ĉρ,G=Pρ ĈG P⊤
ρ

slogdet(Ĉρ,G)

Δ̂F = - kBT
2 ∑ρ [slogdet(Ĉρ,C2)-slogdet(Ĉρ,D2)] + Δ̂E0

{w(j)} Ĉρ,G

Δ̂F

K
detK

w

εI ε

Ĉ N pρ

Ĉ
(ε)
ρ,G=Ĉρ,G+εI ε>0 lndet ε

C̃=(1-λ)Ĉ+λT T lndet
ρ

lndet

slogdet

lndetC=∑p
i=1 lnλi

{λi}

ΔE0 E0(C2)-E0(D2)

ΔE0≈EFoldX(C2)-EFoldX(D2)



22	|	Advances	in	Operation	Research	and	Production	Management	|	Vol.4	|	Issue	3

5.5.2. Character-weighted baseline separation

To retain symmetry attribution in the baseline enthalpy, decompose per-group-element energies      via character inner
products:

(106)

A simple model for baseline difference is

(107)

i.e. project the FoldX energies into irrep channels and sum the channel differences. Treat this as an enthalpic proxy to be
combined with the fluctuation-derived terms [5,6].

5.6. Final expressions and per-irrep contributions

5.6.1. Final covariance-based formula

(108)

with     and     the chosen baseline enthalpy difference.

5.6.2. Per-irrep free-energy contribution

Define

(109)

so that    . Here     denotes the irrep-resolved baseline enthalpy term (from FoldX projection).

5.6.3. First-order attribution using the linear approximation

If     is small,

(110)

This linear form is useful to identify dominant directions using the eigenvectors of     (i.e. high-sensitivity directions).

6. From free energy to efficiency: a Transition-State-Theory (TST) bridge

Notation and preliminaries. We denote by     the symmetry group of the enzyme assembly (tetramer vs dimer). For a
given symmetry state     we write:

·     (or    ) for the reactant-basin partition function (reactant ensemble),

E(g)

⟨χρ,E⟩G =  1
|G| ∑g∈G χρ(g) E(g)
¯

ΔE0 ≈ ∑ρ
dimρ
|G| (⟨χρ,E⟩C2

-⟨χρ,E⟩D2
)

 Δ̂F = - kBT
2 ∑ρ [lndetĈρ,C2

-lndetĈρ,D2
] + Δ̂E0,

Ĉρ,G=PρĈGP
⊤
ρ Δ̂E0

ΔFρ = - kBT
2   [lndetCρ,C2-lndetCρ,D2] + ΔE0,ρ

ΔF=∑ρ ΔFρ ΔE0,ρ

δCρ:=Cρ,C2-Cρ,D2

ΔFρ≈- kBT
2 tr(C-1

ρ,D2
δCρ)+ΔE0,ρ

C-1
ρ,D2

G∈{D2,C2}
G

QR(G) ZR(G)
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·     for the transition-state (TS) partition function associated with the reactive dividing surface,
·     for the reactant free energy, and
·     for the TS free energy.
We also define the free-energy difference already used in the manuscript:

(111)

6.1. TST basic formula and species ratio

Transition-state theory gives (up to the usual prefactor and a transmission coefficient) [7]

(112)

where     is the transmission (or recrossing) coefficient for state     and

(113)

is the activation free energy measured relative to the reactant basin.
Now compare dimer     and tetramer    . Define also     as the number of equivalent catalytic channels (active sites)

per oligomer: for a homotetramer    , for a homodimer     (unless some sites are silent). The per-oligomer (or per-
species) catalytic capability scales with    , so the ratio of specificity-like constants     (under the rapid-equilibrium
approximation for binding) may be written schematically as

(114)

This is identical to the short boxed formula you gave; we now unpack and connect it to the      expressions from the
symmetry-resolved free-energy analysis.

6.2. Partition-function form and relation to ΔF

Using     and    , expands to

(115)

Hence

(116)

6.2.1. Interpretation

The rate ratio thus splits into two conceptually separate effects:

Q‡(G)
FR(G)=-kBTlnQR(G)

F‡(G)=-kBTlnQ‡(G)

ΔF = FR(C2)-FR(D2)

k(G) =  kBTh  κ(G)  Q‡(G)
QR(G)  =  kBTh  κ(G) exp(-βΔG‡(G))

κ(G)∈(0,1] G

ΔG‡(G) = F‡(G)-FR(G)

(C2) (D2) mG

mD2=4 mC2=2
mG (kcat/KM)

 
(kcat/KM)C2
(kcat/KM)D2

≈
mC2
mD2

⋅
κC2
κD2

⋅ Q
‡(C2)/QR(C2)

Q‡(D2)/QR(D2)
=

mC2
mD2

⋅
κC2
κD2

⋅exp [-β(ΔG‡
C2
-ΔG‡

D2
)] .

ΔF

FR(G)=-kBTlnQR(G) F‡(G)=-kBTlnQ‡(G)

ΔG‡
C2
-ΔG‡

D2
= (F‡(C2)-F

‡(D2))- (FR(C2)-FR(D2))

Q‡(C2)/QR(C2)

Q‡(D2)/QR(D2)
=exp [-β(ΔG‡

C2
-ΔG‡

D2
)]=exp [ -β (F‡(C2)-F

‡(D2))] exp [ β (FR(C2)-FR(D2))]
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(117)

The reactant-baseline term contains the     we computed in the symmetry-resolved analysis:

(118)

Therefore the full ratio can be written as

(119)

6.2.2. Two limiting cases

1. TS is invariant under symmetry change. If the transition-state free energy is essentially the same for the two assemblies (i.e.  
 ), the TS-shift factor is unity and

(120)

In this scenario a higher reactant free energy     (i.e.    ) increases the rate of     relative to     because the
barrier measured from the reactant basin is effectively lower.

2.  Barrier shift parallels reactant shift (barrier measured in absolute energy). If    
(i.e. both TS and reactant basin shift by the same absolute energy so the absolute barrier is unchanged), then the exponential
terms cancel and

(121)

That is, only multiplicity and dynamical recrossing differences remain.
Important note on sign conventions: in earlier sections we defined     . When you see formulas of the

form      in other parts of the manuscript, verify the context — sometimes authors report efficiency      (not  
 ). The TST result above is unambiguous once     and     are explicitly identified.

6.3. TS-probability surrogate: p(TS) and ΔG‡

A convenient experimental / data-driven surrogate for the activation free energy is the TS-region occupancy. Define a TS-like
region     in CV space (geometric thresholds around the dividing surface). Its Boltzmann weight relative to the reactant basin
is

(122)

Hence [5]

(123)

(TS-shift)×(reactant-baseline-shift)

ΔF

exp [ β (FR(C2)-FR(D2))]=exp(βΔF)

(kcat/KM)C2
(kcat/KM)D2

=
mC2
mD2

⋅
κC2
κD2

⋅exp(βΔF)⋅exp [-β (F‡(C2)-F
‡(D2))]

F‡(C2)≈F‡(D2)

(kcat/KM)C2
(kcat/KM)D2

≈
mC2
mD2

⋅
κC2
κD2

⋅exp(βΔF)

FR(C2) ΔF>0 C2 D2

F‡(C2)-F
‡(D2)≈FR(C2)-FR(D2)=ΔF

(kcat/KM)C2
(kcat/KM)D2

≈
mC2
mD2

⋅
κC2
κD2

ΔF=FR(C2)-FR(D2)
exp(-βΔF) ∝QR

∝1/QR Q‡ QR

STS

pTS(G) := 
∫STS

e-βE(x)dx

∫reactant e
-βE(x)dx

 ≈  Q‡(G)
QR(G)

ΔG‡(G) = -kBTln Q‡(G)
QR(G)  ≈ -kBTlnpTS(G)
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An immediately estimable ratio:

(124)

This is practical: compute or estimate     from MD or by coarse-grained CV sampling (subject to careful definition of  
 ).

6.4. Speciation / oligomeric equilibrium and observed (bulk) kinetics

6.4.1. Equilibrium between dimer and tetramer

In a preparation where both dimers (D) and tetramers (T) can exist and interconvert via

(125)

define the (dissociation-like) equilibrium constant

(126)

Let     denote the total subunit concentration (monomer equivalents)

(127)

Solving for     in terms of     and     yields a quadratic in    :

(128)

Hence

(129)

taking the physically positive root. The tetramer concentration is then

(130)

6.4.2. Observed (bulk) catalytic rate under substrate-limited linear regime

At low substrate (initial-rate linear regime), each active site contributes approximately     to the second-order rate,
so the bulk initial rate per unit volume is

(131)

(kcat/KM)C2
(kcat/KM)D2

≈
mC2
mD2

⋅
κC2
κD2

⋅
pTS(C2)

pTS(D2)

pTS STS

2 D⇌T

Kd = 
[D]2

[T]

Ctot

Ctot = 4 [T] + 2 [D]

[D] Ctot Kd d:=[D]

4 d2

Kd
+2d-Ctot=0

d = [D] = 
-Kd+√ K2

d+4KdCtot 

4

[T] = d2

Kd

(kcat/KM)[S]

v0≈[S] (mT [T] (kcat/KM)T+mD [D] (kcat/KM)D)
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It is often convenient to normalize by total subunit concentration     to obtain an observed efficiency per subunit:

(132)

Using the solution for     above one can predict how measured bulk kinetics vary with total concentration and    .

6.4.3. Alternative normalization (per oligomer molecule)

If instead one reports rate per oligomer molecule (not per subunit), define     , and the per-molecule observed
efficiency is

(133)

Choose the normalization that matches how experimental data are reported.

6.5. Assumptions, caveats, and practical recommendations

6.5.1. Assumptions made in the bridge

Rapid oligomeric equilibration: we assumed that the D   T interconversion is fast compared to catalysis (so the equilibrium
distribution holds during initial-rate measurement). If not, a kinetic model including interconversion rates must be used.

Well-defined TS partition function:     must be meaningfully defined (requires a reasonable dividing surface in CV space).
Separable effects: we treated multiplicity    , transmission    , and free-energy terms multiplicatively; in reality these can

be coupled (e.g. interface changes may alter reaction coordinate friction and hence    ).
Harmonic / local approximations: when expressing     via     we typically used the Gaussian (log-det) approximation for

fluctuation contributions; large anharmonic changes require more careful sampling.

7. Why the regular-character convolution fails

A tempting but incorrect formula is [8]

(134)

where      denotes the character of the regular representation of the group (here     ). We unpack why this formula is
mathematically and physically unsound, and we show the correct operator-based alternative.

7.1. Why the naive formula is algebraically trivial

Recall that for any finite group    , the regular character satisfies [2]

(135)

Substituting this

Ctot

( kcat
KM

)
obs

 = 
mT [T] (kcat/KM)T+mD [D] (kcat/KM)D

Ctot

[T],[D] Kd

Nmol=[T]+[D]

( kcat
KM

)
mol

 = 
mT [T] (kcat/KM)T+mD [D] (kcat/KM)D

[T]+[D]

⇌

Q‡

mG κG
κ

QR ΔF

ΔF
?
= 1

|D2|
∑g∈D2

(E(g)-E(ϕ(g))) χreg(g)

χreg D2

G

χreg(g)={
|G|, g=e,

0, g≠e.
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(136)

Because     is a homomorphism with    , the right-hand side reduces to    , so     identically. Thus
the formula cannot encode any nontrivial structural information — it is algebraically nullified by the properties of the regular
character.

7.2. Conceptual reason: scalars vs operators

The underlying conceptual mistake is treating      as if it were the full object controlling the free-energy change under
symmetry, while the free energy (in the Gaussian/harmonic approximation) is controlled by operators (Hessians or covariance
matrices) whose spectra determine     or     and thus the entropic part of the free energy.

Concretely:
     is a scalar-valued function on the group elements — e.g.  an interface enthalpy associated (by some choice) to the

labeling induced by    .
The free energy in the harmonic regime is

(137)

so it depends on determinants of matrices      (or equivalently the spectra of covariance blocks     ). Spectral
information cannot be recovered from a single scalar per group element.

A simple counterexample (illustrative). Consider two different Hessians     and     that, under some ad-hoc mapping,
yield identical scalar lists     but have different eigenvalue spectra. Their     will differ, hence their     differ, while
the scalar convolution returns zero (or the same trivial value) and misses the actual free-energy difference.

7.3. Correct object: projectors acting on operators

The correct symmetry-aware decomposition acts on operators, not scalars. Construct the character projectors

(138)

and apply them to the operator of interest (Hessian     or covariance    ):

(139)

Then each     -block contains the full spectral information for that symmetry channel, and the free-energy difference is
recovered from the     of those blocks:

(140)

8. Free energy difference as a symbolic expression

8.1. Setup and notation

Let     denote the oligomeric symmetry state. The six inter-subunit interface variables are collected into

1
|D2|

∑g∈D2
(E(g)-E(ϕ(g))) χreg(g)=

1
|D2|

(E(e)-E(ϕ(e))) |D2|=E(e)-E(ϕ(e))

ϕ ϕ(e)=e E(e)-E(e)=0 ΔF=0

E(g)

detK detC

E(g)
g

F(G)≈E0(G)+ kBT
2 ∑ρ lndetKρ,G

Kρ,G Cρ,G

K(1) K(2)

{E(g)} lndetK F

Pρ =  dimρ
|G| ∑g∈G χρ(g) U(g)
¯

K C

Kρ,G = Pρ KG P⊤
ρ , Cρ,G = Pρ CG P⊤

ρ

ρ
logdet

ΔF=- kBT
2 ∑ρ [lndetCρ,C2

-lndetCρ,D2
]+ΔE0

G∈{D2,C2}
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(141)

We will denote by      the dimension of the fluctuating subspace under consideration (here      after removing any
constrained/rigid modes). For each irreducible representation     of     define the projection operator

(142)

where     are the permutation (orthogonal) matrices on interface space and     the characters. These satisfy [2]

(143)

We define the symmetry-resolved covariances and means by

(144)

A convenient parameterization of the mean vector is to assign one variable to each orbit of interfaces under    :

(145)

corresponding to the interfaces (AB, BC, CD, DA, AC, BD).

8.2. Gaussian (harmonic) partition function — full derivation

Let the microscopic conformational coordinate be    . The energy function     respects the symmetry action     of
group     . The constrained partition function (or Z(G)) is expressed as a Reynolds average to ensure only     -equivalent
configurations contribute:

(146)

Assume the reactant-basin energy is quadratic about its minimum     (or    ):

(150)

with symmetric positive-semidefinite Hessian      of size      (restricted to the fluctuation subspace). The reactant
partition function in the harmonic approximation is

w∈R6, μ(G)=E[w∣G], Σ(G)=Cov(w∣G)

n n≤6
ρ D2

Pρ=
dimρ
|D2|
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¯
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1
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2

s(G)
1

s
(G)
2

s
(G)
3

s(G)
3

⎤⎥⎦x∈Rd EG(x) U(g)
G G

Z(G) =  1
|G| ∑g∈G   ∫Rd exp (-βEG(U(g)x)) dx,  β=(kBT)-1

w0 μG
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(151)

where we used the Gaussian integral identity      for     . Taking the free energy  
  yields

(152)

The last two terms are    -independent constants (they depend only on     and    ) and may be absorbed into “const” in what
follows.

It is often convenient to express     in terms of the covariance matrix

(153)

whence     and

(154)

This form makes the entropic role of the covariance explicit: larger covariance     larger     lower     (more entropy).

8.3. Symmetry-resolved blocks and factorization

If the basin/hessian     is invariant under the group action (i.e.     for all    ), then     commutes with
every    . By standard representation theory one may choose an orthonormal basis that simultaneously block-diagonalizes all
    and     so that

(155)

with

(156)

Determinants factorize over blocks, we obtain the symmetry-resolved free energy

(157)

Subtracting the two symmetry states yields the central symbolic expression:

(158)

where    . (Note: For positive-definite matrices,    .)
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Remark on zero modes / pseudo-determinants. If      has zero eigenvalues (rigid translations/rotations or constrained
directions), the Gaussian integral is formally divergent. Practically one removes those rigid modes (restrict to fluctuation
subspace) and uses the pseudodeterminant

(159)

replacing    . Equivalently, fix gauges or integrate out rigid coordinates—this affects only the absorbed “const” and not the
difference between symmetry states if the zero-mode count is the same.

8.4. Orbit-based parameterization and explicit closed form

Label the six unordered edges as

(160)

which form three    -orbits of size two:

(161)

Assume the covariance is block-diagonal by orbit (no cross-orbit covariances):

(162)

(163)

Introduce normalized symmetric / antisymmetric orbit coordinates for orbit    :

(164)

where     are the standard basis vectors for the two edges in orbit     (e.g. for    ,    ). Compute the
variances in these coordinates:

(165)

Under the orbit-decoupling assumption the projection onto irreps yields
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(166)

and the nontrivial one-dimensional irreps give

(167)

Hence the determinants are products of these scalar entries, and substituting into explicit orbit form

(168)

This is the closed-form symbolic expression in terms of the orbit-parameters      and the enthalpic baseline
difference    , enabling sensitivity analysis without specific numerical values.

Positivity constraint. For physical positive-definiteness one requires

(169)

so that each orbit-block is SPD and the logarithms are well-defined.

8.5. Sensitivity (partial derivatives) — how each parameter affects ΔF

Differentiating gives closed-form sensitivities. For a fixed orbit     and varying the     parameters,

(170)

and

(171)

Analogous formulas (with opposite sign inside the big parentheses) hold for derivatives with respect to     and    .

8.5.1. Interpretation

·Increasing     (more variance on orbit     in the dimer) decreases     if     (entropy stabilizes     relative to    .

·Increasing positive covariance     increases    .
·The sensitivity scales as     and therefore grows if the block becomes nearly singular; this indicates directions where

small structural changes produce large free-energy effects.
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8.5.2. Numerical stability and regularization

When     is very small, add a small Tikhonov regularizer     to     (i.e. replace    ) to stabilize logarithms and
derivatives; carry this through the algebra if needed for numerical work.

The formulas above provide a fully symbolic, algebraically explicit map

(172)

suitable for sensitivity analysis, uncertainty propagation, and for guiding mutational design that targets particular orbit
variances or correlations.

9. Conclusion

9.1. Summary of symbolic results

Starting from a harmonic basin approximation and symmetry-resolved block diagonalization we derived

(173)

and therefore

(174)

Under orbit-decoupling this reduces to the explicit orbit expression in terms of    .

9.2. Bridge to transition-state theory and efficiency

In the TST approximation the catalytic-efficiency ratio can be expressed schematically as

(175)

Using the identity

(176)

and inserting the symmetry-resolved expression for     (i.e.    ), we isolate the reactant-baseline contribution:

(177)

Two useful limiting scenarios are:
1. TS invariant: if     then

(v2
i -c

2
i ) ϵ>0 Σ Σ↦Σ+ϵI

{ ΔE0, s
(G)
i , v(G)

i , c(G)
i  } ↦ ΔF

F(G)=E0(G)- kBT
2 ∑ρ lndetΣ

(G)
ρ +const

ΔF=ΔE0-
kBT
2 ∑ρ (lndetΣ

(C2)
ρ -lndetΣ(D2)

ρ ).

{s(G)
i ,v(G)

i ,c(G)
i }

(kcat/KM)C2
(kcat/KM)D2

≈
mC2
mD2

⋅
κC2
κD2

⋅exp [-β(ΔG‡
C2
-ΔG‡

D2
)]

ΔG‡
C2
-ΔG‡

D2
= (F‡(C2)-F

‡(D2))- (FR(C2)-FR(D2))

FR(G) ΔF

(kcat/KM)C2
(kcat/KM)D2

=
mC2
mD2

⋅
κC2
κD2

⋅exp(βΔF)⋅exp [-β (F‡(C2)-F
‡(D2))]

F‡(C2)≈F‡(D2)
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(178)

2. Absolute-barrier preserved: if      (i.e. both TS and reactant shift in parallel) then exponential terms
cancel and only multiplicity and dynamical factors remain:

(179)

Absorbing the main symmetry effect into    , a simplified statistical–kinetic bridge for the efficiency ratio     is

(180)

The prefactor     reflects reduced symmetry volume, and the exponential encodes the thermodynamic penalty.

9.3. Connection to FoldX data

For each group element    , let     denote FoldX energy components. Define the character inner product:

(181)

(182)

Similarly,     with     the feature vector ensemble.

9.4. Final synthesis

(183)
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