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An analytic way to prove the explicit formula for Hermite
polynomial after heat flow deformation and observation in 3D
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Abstract. Deformation of polynomials is a kind of operation where we add a new variable to the original polynomial. In our
case, suppose P is a monic polynomial of degree n with complex coefficients. We evolve P with respect to time by heat flow,
creating a function P(t,z) of two variables with given initial data      for which     . In this
paper, we focus on the deformed polynomial P(t,z). First, we proved the Taylor series representation of deformed polynomial.
Then we apply the results to the classical Hermite polynomials and extend to the case of matrix-valued polynomials. From the
inspiration of deformed polynomials’ roots movement, we proved the behavior of Hermite polynomials after heat flow
deformation and got an explicit formula. For further work, similar to what we have done in this paper, we want to have an
explicit formula for deformed matrix Hermite polynomials and give a proof.
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1. Introduction

Suppose     be a monic polynomial of degree    . From Terence Tao’s blog [1], we know we can create a
function     of two variables with the given initial data     for which

(1)

where we evolve     with respect to time by heat flow. On the space of polynomials of degree at most    , the operator     is
nilpotent, and we can solve this equation explicitly both forwards and backwards in time by the Taylor series. And there is a class
of polynomials called orthogonal polynomials, among them we choose Hermite polynomials and apply the deformation
operation on them both on normal and matrix polynomials.

2. Preliminaries: properties of analytic functions

An analytic function (or holomorphic function) is a complex function that can be represented by a convergent power series in
some neighborhood of every point in its domain. Formally, a function     is analytic at a point     if it can be written as

(2)

where      are complex coefficients, and the series converges within a certain radius around     . The key properties of
analytic functions are

•Differentiability: Analytic functions are infinitely differentiable in their domain.
• Power Series Representation: If a function is analytic, it has a Taylor series expansion around any point in its domain,

converging to the function in some neighborhood.
• Cauchy-Riemann Equations: For    ,     is analytic if     and     satisfy the Cauchy-Riemann equations:

P (0,z)=P (z)  ∂t P (t,z)= ∂zzP (t,z)

P(z)=zn+an-1zn-1+a0 n
P(t,z) P(0,z)=P(z)

∂tP(t, z) = ∂zzP(t, z)

P n ∂zz

f(z) z0

f(z) = ∑∞
n=0 an(z − z0)n

an z0

f(z)=u(x,y)+iv(x,y) f u v
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(3)

• Isolated Zeros: If     is not identically zero, its zeros are isolated.
• Uniqueness Theorem: If two analytic functions agree on a set with an accumulation point, they are identical throughout their

domain.
In this work, we will deal with zeroes of entire functions. One of the main results in this context is the Fundamental Theorem

of Algebra. Next, we describe the necessary steps for its proof:
Theorem 2.1 (Liouville’s Theorem). If     is entire (analytic everywhere in    ) and bounded, then     is constant.
Proof. Suppose     is entire and bounded by some constant    , so     for all    . By Cauchy’s estimates, we

have:

(4)

Taking    ,     for all    , implying that    . Hence,     is constant.
Theorem 2.2 (Fundamental Theorem of Algebra). Every non-constant polynomial      with complex coefficients has at

least one root in    .
Proof. Assume for contradiction that      has no roots in     . Define     , which is entire and bounded as  

  as    . By Liouville’s Theorem,     is constant, which implies     is constant—a contradiction.

3. Polynomial deformation and root motion

Consider a polynomial     with real coefficients, and deform it as     such that  
 . Let the deformation satisfy

(5)

where    .
We follow the steps in Terecene’s Blog [1].
Example 3.1. (Quadratic Polynomial)
Take     A deformation is given by

(6)

The roots of     depend on    :

• For     , the roots are real and approach each other as t increases.

• When    , the roots collide.

• For    , the roots become complex and move vertically in the complex plane.

3.1. Heat flow polynomials and their roots motion

Theorem 3.2 (explicit expression for heat deformation). An explicit expression for the heat flow deformation equation is:

(7)

Proof. The deformation conditions are:

(8)

with the initial condition    . Applying the Taylor series expansion of     with respect to     around    , we
obtained the following.

(9)

∂u
∂x = ∂v

∂y and
∂u
∂y = − ∂v

∂x

f(z)

f(z) C f(z)

f(z) M |f(z)|≤M z∈C

∣ ∫
(n)

(0)∣ ≤ n!M
Rn

R→∞ f (n)(0)=0 n≥1 f(z)=f(0) f

P(z)
C

P(z) C f(z)= 1
P(z)

|P(z)|→∞ |z|→∞ f(z) P(z)

P(z) = an(z-z1)(z-z2)…(z-zn) P(z,t) P(z,0)=P(z)

∂tP(t, z) = ∂zzP(t, z)

t≥0

P(z)=z2+bz+c.

P(z, t) = z2 + bz + c + 2t

P(z,t) t

t< b2-4c
8

t= b2-4c
8

t> b2-4c
8

P(t, z) = ∑∞
j=0

tj

j! ∂ j
zzP(z)

∂tP(t, z) = ∂zzP(t, z)

P(0,z)=P(z) P(t,z) t t=0

P(t, z) = ∑∞
j=0

(t−0)j

j! ∂ j
tP(0, z)
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Inserting the knowing conditions, we get:

(10)

as desired.
Starting from      for each root     , differentiating with respect to t and using the chain rule and the heat

equation gives:

(11)

Theorem 3.3 (Mutual Effects between the real roots). Let      be a heat deformed polynomial with initial condition  
  , where      is a polynomial of degree     . Let      be the roots of     . Then the following

evolution equations hold

(12)

Proof. Using the fundamental theorem of Algebra, we can write the deformed polynomial as follows:

(13)

Take its first partial derivative with respect to z using product rule, we get:

(14)

Similarly, its second partial derivative with respect to z is:

(15)

Next, we insert    . For the first partial derivative, we have the summation of n terms indexed by    :

(16)

And we have four cases:
(1) If    , as it contains factor    .
(2) If     survives as it drops out    .
Thus,

(17)

Continue with the second partial derivative

(18)

Here we have the sum of    -indexed terms:

(19)

From combinatorial point of view, each term

(20)

P(t, z) = ∑∞
j=0

tj

j! ∂ j
zzP(z)

P(t,zi(t))=0 zi(t)

∂zzP(t, zi(t)) + ∂tzi(t)∂zP(t, zi(t)) = 0

P(z;t)

P(z;0)=P(z) P(z) n zi, i=1, ..., n Pn(z;t)

∂
∂t zm(t) = −∑i≠m

2
zm−zi

,m = 1, … ,n

P(z, t) = (z − z1)(z − z2) ⋯ (z − zn)

∂P
∂z = (z − z1)′(z − z2) ⋯ (z − zn) + (z − z1)(z − z2)′⋯ (z − zn) + ⋯ + (z − z1)(z − z2) ⋯ (z − zn)′

= 1 ⋅ (z − z2)(z − z3) ⋯ (z − zn) + ⋯ + (z − z1)(z − z2) ⋯ (z − zn−1) ⋅ 1
= ∑n

i=1 ∏k≠i(z − zk).

∂ 2P

∂z2 = ∑n
i=1 ∑j≠i∏k≠i,k≠j(z − zk)

zm→z i

∏k≠i(zm − zk)

i≠m,∏k≠i (zm-zk)=0 (zm-zm)

i=m,∏k≠i (zm-zk)=0 (zm-zm)

∂
∂z P(zm) = ∏k≠m(zm − zk)

∂ 2

∂z2 P(zm)

n⋅(n-1) i,j

∏k≠i,j(zm − zk)

∏k≠i,j(zm − zk)
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is obtained by dropping out 2 chosen components    
(3) If     or    ,     survives as the zero term     is dropped.
(4) If     and    ,    .
Thus,

(21)

At the beginning of this subsection, we used the chain rule and deformation assumptions to get the following implicit
differentiation:

(22)

Therefore,

(23)

Corollary 3.4 (Attraction of real roots). Suppose there exist     such that for any    , the functions     are the
simple real roots of the polynomial:

(24)

then each term     represents a first-order attraction in the dynamics between     and    . Proof. From Theorem 4, we
know

(25)

Consider the case where we have only two roots,     and    . In this scenario,

(26)

If     , then     . Conversely,     . Thus, as      increases,      will increase, and      will decrease.

Consequently, they exhibit attraction-like behavior. The same reasoning applies if     , as the indices can be exchanged
symmetrically.

In the general case, assume we have at least two distinct simple real roots. Define

(27)

For any     , it holds that     . So     . From the above observation,      and    
exhibit attraction-like behavior as     increases.

Moreover, if we remove either     or     from consideration, we can repeat the process with the remaining roots to identify a
new attraction relationship between two real roots. This iterative process ensures that all real roots are eventually paired in
attraction-like relationships

3.2. Plot of root movement

Figure 1 shows the movement of the roots of    , as     varies.

(zm-zi),(zm-zj).

i=m j=m ∏k≠i,j (zm-zk) (zm-zm)

i≠m j≠m ∏k≠i,j (zm-zk)=0

∂ 2

∂z2 P(zm) = ∑i≠m∏k≠i,m(zm − zk) +∑j≠m∏k≠m,j(zm − zk) = 2∑i≠m∏k≠i,m(zm − zk)

∂zzP(t, zm(t)) + ∂tzm(t) ∂zP(t, zm(t)) = 0

∂
∂t zm = −

∂2

∂z2 P(zm)

∂
∂z

P(zm)
= −2

∑i≠m∏k≠i,m(zm−zk)

∏k≠m(zm−zk) = −∑i≠m
2

zm−zi

a,b>0 t∈[a,b] zm(t)

P(t, z) = ∑∞
j=0

tj

j! ∂ j
zzP(z)

2
zm-zi

zi zm

∂
∂t zm = ∑i≠m

2
zi−zm

zm zi

∂
∂zm

= 2
zi−zm

≠ 0

zi>zm
∂
∂t zm>0 ∂

∂t zi=
2

zm-zi
<0 t zm zi

zi<zm

zs = max(zi),  zt = min(zi),  with zs > zt

j≠s,t 2
zj-zs

<0 and  2
zj-zt

>0 ∂
∂t zs<0 and  ∂

∂t zt>0 zs zt

t
zs zt

P(z,t)=z2+bz+c+2t t
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Figure 1. Movement of roots for P(z,t)=z2+bz+c+2t as t varies

3.3. Polynomial deformations and root movement

Using the heat flow equation, we explored how polynomial roots evolve under deformation. Three examples were analyzed and
visualized:

3.3.1. Example 1: a quadratic polynomial

For     , roots transitioned from real to complex as t increased. The trajectories were smooth,
with collision points determined analytically.

3.3.2. Example 2: a cubic polynomial

For    , root interactions led to sharp transitions and bifurcations in trajectories.

3.3.3. Example 3: extreme coefficients

The extreme case      revealed dramatic root behaviors, with visible jumps and deviations
from smooth trajectories.

3.4. Conclusion

The dynamic behavior of polynomial roots under heat flow provided intuition for complex deformations, while orthogonal
polynomials showcased the depth of classical mathematical structures. Future work may involve extending these techniques to
higher-degree polynomials or exploring numerical stability in root motion algorithms.

4. Exploring heat flow, orthogonal polynomials, and deformations of polynomials

4.1. Orthogonal polynomials: definitions and classical families. a weight function

    on     is a nonegative function with finite moments of every order:

(28)

Asequence of orhtogonal polynomials     satisfies:

(29)

P(t,z)=z3+z2+(6t+2)z+(1+2t)

P(t,z)=z3+2z2+(6t-5)z+(4t+4)

P(t,z)=z3+5z2+(6t-20)z+(4t+10)

w(x) [a,b]

∫ b

a
xnw(x)dx < ∞

P(n)

∫ b

a
Pn(x)Pm(x)w(x) dx = 0 for n ≠ m
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Note that functions     ensure convergence of the integral and define classical families of orthogonal polynomials. The
Classical Families are (Figure 2):

•Hermite Polynomials: Orthogonal on     with    .
• Laguerre Polynomials: Orthogonal on     with   .
• Chebyshev Polynomials: Orthogonal on     with weight functions depending on the family    .

Figure 2. Movement of roots for example 1

4.2. Three-term recurrence relation and some consequences

Theorem 4.1. (Three-Term Recurrence Relation) Orthogonal polynomials     satisfy

(30)

(31)

with     real constants and    . Also,

(32)

Remarks:
(1) For orthonormal polynomials, the recurrence relation becomes:

(33)

(34)

(2) If the orthogonality measure is even    , then    , and     Examples include Legendre
and Hermite polynomials.

(3) The recurrence relation determines the polynomials      uniquely up to a constant factor (depending on the
normalization).

(4) The orthogonality measure for a system of orthogonal polynomials may not be unique.
(5) If the orthogonality measure has bounded support, then it is unique. (Figure 3)

w(x)>0

(-∞,∞) w(x)=e-x2

[0,∞)  w(x)=e-xxα, α>-1
[-1,1] (Tn or Un)

pn

xpn(x) = an+1pn+1(x) + bnpn(x) + cnpn−1(x),  (n > 0)

xp0(x)=a0p1(x)+b0p0(x)

an,bn,cn ancn+1>0

an = kn
kn+1

, cn+1
hn+1

= an
hn

xπn(x) = an+1πn+1(x) + bnπn(x) + an−1πn−1(x),  (n > 0),

xπ0(x) = a0π1(x) + b0π0(x),

(μ(-x)=μ(x)) pn(-x)=(-1)npn(x) bn=0.

pn(x)
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Figure 3. Movement of roots for example 2

4.3. Zeros of orthogonal polynomials

Let     be an orthogonal polynomial of degree    . If     has support within the interval    , then:
(1)     has     distinct zeros in    .
(2) The zeros of     and     alternate.

4.4. Hermite polynomials

Definition 4.2. The Hermite polynomials      are a classical family of orthogonal polynomials defined by the Rodrigues’
formula:

(35)

Proposition 4.3. (Orthogonality) Hermite polynomials are orthogonal on the interval      with respect to the weight
function     . The orthogonality condition is given by:

(36)

where     is the Kronecker delta.

pn(x) n μ [a,b]

pn(x) n (a,b)
pn(x) pn-1(x)

Hn(x)

Hn(x) = (−1)nex
2 dn

dxn
(e−x2

),  n = 0, 1, 2, …

(-∞,∞)

w(x)=e-x2

∫ ∞
−∞ Hn(x)Hm(x)e−x2

dx = √π2nη!δnm

δnm
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Figure 4. Movement of roots for example 3

Figure 4 shows the movement of the Roots for Example 3 as mentioned in 3.3.3.
Proposition 4.4. (Recurrence Relation) The Hermite polynomials satisfy the following recurrence relation:

(37)

with initial conditions:    ,    
Proposition 4.5. (Generating Function) The generating function for Hermite polynomials is:

(38)

Proposition 4.6. (Other key properties)
• Symmetry:

(39)

• Differential Equation: Hermite polynomials satisfy the second-order differential equation:

(40)

• Explicit Formula:

(41)

• First derivative:

(42)

5. Deformation of hermite polynomial

5.1. Original hermite polynomials

The Hermite polynomials     for     are shown in Figure 5, with their polynomial expressions displayed.

Hn+1(x) = 2xHn(x) − 2nHn−1(x),  n ≥ 1,

H0(x)=1 H1(x)=2x

∑∞
n=0

tn

n! Hn(x) = e2xt−t2

Hn(−x) = (−1)nHn(x)

H ′′
n (x) − 2xH ′

n(x) + 2nHn(x) = 0

Hn(x) = ∑[n/2]
k=0

(−1)kn!
k!(n−2k)! (2x)n−2k

H ′
n(x) = 2nHn−1(x)

Hn(x) n=1,2,3
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Figure 5. Hermite polynomials Hn(x) for n=1,2,3

5.2. Formula for Hermite polynomial after deformation

Theorem 5.1. The formula for Hermite polynomial of degree     after deformation is the following

(43)

Proof. We know the original formula for deformation is

(44)

By the property of Hermite polynomial we know

(45)

So we can claim that

(46)

We can prove it by induction, tha basic case we have shown before. So suppose it is true for    . Then

(47)

By induction hypothesis we have

(48)

By induction we have done.

5.3. Deformation even degree Hermite polynomial

By theorem 5.1 every even degree

n

Hn(z, t) = ∑∞
j=0

tj

j! 22j n!
(n−2j)! Hn−2j(z)

Hn(z, t) = ∑∞
j=0

tj

j! ∂zzHn(z)

H ′
n(z) = 2nHn−1(z) ⇒ H ′′

n (z) = 4(n − 1)nHn−2(z)

∂ j
zzHn(z) = 4j n!

(n−2j)! Hn−2j(z)

j=k

∂ j+1
zz Hn(z) = ∂zz(∂ j

zzHn(z))

∂zz(4j n!
(n−2j)! Hn−2j(z))

= 4j n!
(n−2j)! ∂zzHn−2j(z)

= 4j n!
(n−2j)! 4(n − 2j − 1)(n − 2j)Hn−2(j+1)(z)

= 4j+1 n!
(n−2j−2)!(n−2j−1)(n−2j) (n − 2j − 1)(n − 2j)Hn−2(j+1)(z)

= 4j+1 n!
(n−2(j+1))! Hn−2(j+1)(z).
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Hermite polynomial can be written as this following form.

(49)

To prove the following lemma we need the definition of hypergeometric series and the relation between it and Hermite
polynomial.

Definition 5.2. For natural number p and q the hypergeometric series is

(50)

where the Pochhammer symbol (rising factorial) is

(51)

And    
And here is the formula to write Hermite polynomial by hypergeometric series, We won’t prove it here. Formal proof can be

found in here: [2]
Theorem 5.3. Give Hermite polynomial of degree    .

(52)

Lemma 5.4. The following formula for even degree Hermite polynomial is true, Given s, a natural number

(53)

Where

(54)

Proof. By theorem 5.3 we know take    ,     natural number,    

(55)

Notice that    , by the definition of pochhammer symbol we know     for every    . So we have

(56)

Recall we know

(57)

H2s(z, t) = ∑s
j=0

tj

j! 22j 2s!
(2s−2j)! H2(s−j)(z)

pFq( ; z) = ∑∞
n=0

(a1)n(a2)n⋯(ap)n
(b1)n(b2)n⋯(bq)n

zn

n! ,
a1, a2, … , ap
b1, b2, … , bq

(a)n = a (a + 1) (a + 2)  ⋯  (a + n − 1) =
Γ(a+n)

Γ(a)

(a)0=1

n

Hn(z) = (2z)n2F0( ; − 1
z2 )

− n
2 , − (n−1)

2

−

−

H2s(z, t) = ∑s
j=0

tj

j!
(2s)!

(2s−2j)! 22s∑s−j
k=0

(−s+j)k(−s+j+ 1
2 )k

k! (−1)kz−2k+2s−2j

(x)j = x(x + 1) … (x + j − 1)

s j j<s

H2(s−j)(z) = (2z)2(s−j)
2 F0( ; − 1

z2 )

= (2z)2(s−j) ∑∞
k

(−s+j)k(−s+j+ 1
2 )k

k! (− 1
z2 )k

−s + j, −s + j + 1
2

−

-s+j<0 (-s+j)k=0 k>s-j

H2(s−j)(z) = (2z)2(s−j) ∑s−j
k

(−s+j)k(−s+j+ 1
2 )k

k! (− 1
z2 )k

= 22(s−j)z2s−2j∑s−j
k

(−s+j)k(−s+j+ 1
2 )k

k! (−1)kz−2k

= 22(s−j) ∑s−j
k

(−s+j)k(−s+j+ 1
2 )k

k! (−1)kz−2k+2s−2j

H2s(z, t) = ∑s
j=0

tj

j! 22j 2s!
(2s−2j)! H2(s−j)(z)
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Substitute     term in our formula we have done
From lemma 5.4 we know if we consider     as an polynomial of     and denote     the
coefficient of     . Then since the degree of     is always even,
we know     for all    . In the following lemma we will see the coefficient of even term.
Theorem 5.5. Denote     coefficient of     in the polynomial    , Then

(58)

Proof. From lemma 5.4 we know

(59)

Here we denote     For fixed    , We know     is determined by     and    . Now we want to
study the coefficient of    which means that     is also given when we look at the formula of    . Thus once we know the value
of     or    , then we know the value of another one. The double sums become a single sum, here we choose     as variable. Also
notice that     Thus we have

(60)

Notice that

(61)

Also notice that

(62)

For the same reason

(63)

Combine them together we have

(64)

And since    . If    . By the def of Pochhammer symbol

(65)

Then for     then we have

(66)

H2(s-j)(z)

Hzs(z,t) z ak

zk z
a2n+1=0 n∈N.

a2n z2n H2s(z,t)

a2n = 4s(n + 1)s−n(n + 1
2 )s−n

(4t−1)s−n

(s−n)!

H2s(z, t) = ∑s
j=0

tj

j!
(2s)!

(2s−2j)! 22s∑s−j
k=0

(−s+j)k(−s+j+ 1
2 )k

k! (−1)kz−2k+2s−2j

2n=2(s-j-k)⇒n=s-j-k⇒k=s-j-n. s k j n
zn n a2n

k j j
j+k=s-n.

a2n = ∑s−n
j=0 4s tj

j!
(2s)!

(2s−2j)!

(−s+j)s−n−j(−s+j+ 1
2 )s−n−j

(s−n−j)! (−1)s−n−j

= ∑s−n
j=0 4j tj

j!(s−n−j)! (−1)s−n−j4s−j (2s)!(−s+j)s−n−j(−s+j+ 1
2 )s−n−j
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So it is true for all proper    . Also notice that

(67)

Putting all together we have

(68)

Going back to the original formula for    , we have

(69)

By the equation of binomial form.
Actually we can write the result as another Hermite polynomial with different argument. Here is the corollary.
Corollary 5.6. Suppose     is an natural number then

(70)

Proof. From prop 5.6 we know the explicit formula for     is

(71)

Denote     since     from 0 to     then     from     to 0.

(72)

It is obvious all the degree of     is even. So we only need to study the coefficient of    . Denote     the coefficient of    
in    , from above we know

(73)

From theorem 5.5 we know     the coefficient of     in     is the following
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(76)

So

(77)

(78)

Notice that we know

(79)

Since it is true for every    , then we have done.

5.4. Deformation odd degree Hermite polynomial and generalization

Now we know the formula in the even degree case, we can prove the odd degree case and get a general result.
Theorem 5.7. Given s natural number then the Hermite polynomial of odd degree after deformation is

(80)

Proof. The proof is using the induction on    
Base:    
We know     By the formula for deformation(Theorem 2.2) we know

(81)

And

(82)

So the base case is true.
Hypo: For fixed s suppose the following is true

(83)

Step: By theorem 3.2 we know

(84)

Recall from Prop 4.4 we state the three terms recurrence relation of Hermite polynomial, so we know

(85)

(86)

By the general Leibniz rule
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(87)

So

(88)

And we consider the right sum we have

(89)

Combine them together and by theorem 2.2 we have

(90)

Again by the three terms recurrence relation we know

(91)

(92)

Summary the even degree case and odd degree case we have the following result.
Lemma 5.8. Given     is a natural number,     is the Hermite polynomial of degree    . We have the following equation of it

after heat flow deformation

(93)

Proof. Simply using the result of Corollary 5.6 and Theorem 5.7
Corollary 5.9. The zero of the deformation polynomial is real iff t is smaller than 1/4. And if     then the zero will by

multiply of imaginary number.

6. Heat deformation of matrix value orthogonal polynomials

6.1. Introduction to matrix orthogonal polynomials

In this section we mainly introduce the matrix valued orthogonal polynomials. The main references for this section are [3-5] The
ideal of the orthogonal polynomials is given a inner-product, we apply the Gram-Schmidt algorithm on the standard simple
sequence of polynomials.    .

Definition 6.1. Matrix value polynomial A matrix valued polynomial P in the variable x of degree     is

(94)

where     for every    
Also notice that the polynomials don’t commute.
Definition 6.2. Matrix valued inner product A matrix valued inner product on the space of matrix valued polynomial  

  is a function

(95)
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satisfies
(1)    
(2)    
(3)     is non-negative matrix for every    
Definition 6.3. An inner product is degenerate if    
Definition 6.4. Simple sequence     is a sequence of matrix valued polynomial such that
(1)    
(2) the leading coefficient of     is invertible for every    , then this sequence is called simple
It is obvious that any degree n matrix coefficient polynomial can be represented by sum of polynomials in a simple sequence.
Here is an example of inner product:
Example 6.5. For     define

(96)

where     is also an     and the inner product is an matrix and the    th entry is

(97)

The     is called weighted matrix

6.2. Examples of deformed hermite polynomial

In the following section we have the following example as the weighted matrix
Example 6.6.

(98)

And the corresponding inner product is

(99)

The monic orthogonal polynomials     can be written as a matrix linear combination of scalar Hermite polynomial as

(100)

where     is the Hermite polynomial
Proposition 6.7. For the     defined as above

(101)

In the following, we apply the heat flow deformation on     with respect to    . Recall from lemma 5.8 we have the
following relationship of deformation of Hermite polynomial

(102)

Since we can derivative term by term so we have the equation for the deformed    

(103)
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(104)

6.3. Conjugation of the roots of deformed polynomial

Definition 6.8. For a matrix polynomial    , the zeros of this polynomial is the zeros of the determinant of it
The behavior of roots of the deformed polynomial     can be considered in some situations with respect to the value

of    . First we consider    .

Figure 6. Roots of P6(x,t,z) with a=1,t=0,z=0.3

Figure 7. Roots of P6(x,t,z) with several z≥0.25
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0 2
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1 0
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0 0
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From Figure 6 and Figure 7, we can guess that each root has one more conjugate root with respect to the real part, and the
absolute values of the real parts of the roots are very similar.

Also we found that the mean absolute real parts of all the roots in a fixed degree exhibit a kind of conjugation, as shown in
Figure 8.

Figure 8. Conjugation behavior of mean absolute value of roots a=1,t=0

Also we can have a guess that if z is small enough then we have all real roots. Figure 9 is an example for    

Figure 9. Roots of P5 when z<0.25 (a=1,t=0)

7. Conclusion

This study aimed to investigate how Hermite polynomials—both scalar and matrix‑valued—deform under the heat‑flow partial
differential equation    , and the findings indicate that this evolution admits closed‑form descriptions connecting PDE
dynamics, explicit formulas, and zero trajectories. The analysis revealed: (i) a Taylor‑series solution    ;

(ii) an ODE for the zeros    , which explains short‑range repulsion and collective motion; and (iii) a scaling

law for Hermite polynomials,     , which supports the initial hypothesis that the heat flow

organizes the deformation through a simple argument rescaling together with a degree‑dependent amplitude. We further

P5

∂t P= ∂zzP

P(t,z)=∑j≥0
tj

j! ∂ j
zzP(z)

żm = −∑i≠m
2

zm−zi

Hn(z, t) = Hn ( z
√1−4t

)(1 − 4t)n/2
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identified a reality threshold      for the zeros and outlined explicit even‑degree coefficient behavior; in the matrix‑valued
setting, we observed structured conjugation patterns in deformed spectra.

This research contributes to the existing body of knowledge by unifying the PDE‑based deformation view with classical
Hermite representations (including hypergeometric forms) and by giving a transparent, analytic derivation of the deformation
formula that treats even/odd degrees in a single framework. The findings extend previous theories by providing evidence that the
pairwise     interaction law offers a coherent mechanism for collision, complexification, and the sharp reality barrier
at    , and by showing that the same heat‑flow principle can organize certain matrix‑valued orthogonal systems constructed
from Hermite blocks.

This study has practical significance for spectral methods and numerical analysis. The closed-form scaling    
and the factor     yields a stable parametrization of heat‑regularized Hermite bases, informs the choice of t to preserve
real quadrature nodes, and supports continuation algorithms that track zeros as      varies. In matrix problems, the observed
conjugation structure suggests computational strategies for locating determinant zeros and designing weights that maintain
spectral symmetry.

This study is limited by its focus on the Hermite family and by analyzing one representative matrix weight; the matrix‑zero
conjugation behavior is empirical here and not proved in full generality. One potential limitation is the assumption of simple
zeros and reliance on local ODE analysis near the     threshold, which may affect the generalizability to other orthogonal
families or to weights with different analytic properties.

Future study could focus on extending the analytic deformation law and zero dynamics to Laguerre, Jacobi/Chebyshev, and
other classical families; establishing rigorous proofs of the matrix conjugation phenomenon; and deriving large‑n asymptotics for
zero distributions under the     scaling. In the future, the author will also pursue structure‑preserving numerical schemes
for zero evolution, stability analysis beyond first collisions, and operator‑theoretic approaches (via generating‑function PDEs and
factorizations) to obtain uniform estimates near    .

Overall, this study provides new insights into how heat flow interweaves with orthogonal polynomial structure—linking PDE
evolution, explicit formulas, and zero dynamics—and highlights the importance of deformation‑invariant descriptions (scaling
and interaction laws) as a unifying lens for both scalar and matrix‑valued settings. By shedding light on the interplay between
diffusion, algebraic structure, and spectral geometry, this research paves the way for broader applications in approximation
theory and computational mathematics.
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