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Abstract. With the improvement and maturity of China's capital markets, data-driven quantitative trading, known for its objectivity, 

high frequency, and automation, has gradually developed into an important trading method in the financial market. This paper 

addresses the overfitting phenomenon in quantitative trading, quantifying the overfitting rate using the concept of information 

coefficient. By applying the overfitting rate to optimize the Kelly formula extended to continuous time, the paper derives the 

overfitting rate-improved Kelly score. Finally, a specific order placement application example is provided based on the theory of 

linear regression, and a comparative analysis with the fractional Kelly criterion is conducted. 
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1. Introduction 

Quantitative trading primarily employs mathematical models, statistical methods, and computer algorithms to analyze market data, 

formulating, executing, and managing trading decisions. This approach systematically and automatically executes trades, 

minimizing human intervention, and often covers multiple financial instruments and markets. The advantage of quantitative trading 

lies in its elimination of emotional biases, turning investment strategies into systematic rules, and striving for stable returns through 

data and models. 

Due to its strong performance in fund allocation management, the Kelly formula has found widespread use in fields such as 

statistical arbitrage and trend-following quantitative trading. The Kelly formula helps quantitative investors manage positions and 

control risk by adjusting investment proportions according to market conditions, thus maximizing long-term investment returns. 

However, since the Kelly formula assumes that traders can accurately estimate win probabilities and returns, which is often difficult 

to achieve in practice, relying entirely on the Kelly formula for fund allocation can lead to overly aggressive strategies, resulting 

in high return volatility and, in extreme cases, substantial short-term losses. Therefore, this paper introduces the concept of the 

overfitting rate to improve the Kelly formula, overcoming the issues that may arise during long-term quantitative trading 

investments, and optimizing quantitative trading strategies. 

In the field of portfolio management, many scholars have focused on optimizing asset allocation using the Kelly formula to 

achieve the maximum growth of wealth. Markowitz, in his Modern Portfolio Theory, first proposed using portfolio variance as a 

measure of risk, emphasizing the importance of risk control in investment [1]. In 1956, American scholar J. Kelly first introduced 

the Kelly formula, which provides a scientific method for selecting the optimal bet ratio in gambling and investment situations to 

achieve the long-term maximization of wealth [2]. When researchers applied the Kelly model to the securities investment market, 

Thorp and Rotando proved that under continuous distributions, the wealth growth rate has a unique maximum value [3]. MacLean, 

Thorp, and Ziemba conducted a comprehensive analysis of the Kelly optimization model, demonstrating that the Kelly formula 

not only has significant theoretical advantages but also proves capable of delivering returns that surpass traditional investment 

strategies in practical applications [4]. However, despite its outstanding performance in long-term investments, the high risk 

associated with the Kelly formula presents a significant challenge in practical use, particularly during times of severe market 

fluctuations. To address this, MacLean, Ziemba, and Blazenko proposed a partial Kelly strategy, where part of the Kelly score is 

allocated to risky investments and the rest to risk-free investments, thereby reducing risk while maintaining a solid growth rate [5]. 

Jacquier and Polson integrated the Kelly criterion into a unified statistical inference framework using Bayesian methods, further 

correcting the errors in the Kelly criterion under non-normal conditions [6]. Wu M. E., Tsai H. H., and Chung W. H. utilized 
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Kullback-Leibler divergence to describe the relationship between actual profits, losses, and expected values, further demonstrating 

that the Kelly criterion can be used to obtain the optimal betting solution under a limited number of gambling trials [7]. Additionally, 

Carta and Conversano developed and designed a framework for applying the Kelly criterion in the stock market, using Monte 

Carlo simulations in different scenarios to show that the Kelly criterion maximizes the expected growth rate and median terminal 

wealth compared to other investment methods [8]. 

Based on the above research, this paper applies the Kelly criterion in continuous time to the quantitative trading market and 

improves the Kelly formula in response to the overfitting problem in quantitative trading. By using a sliding window method to 

update the Kelly score in real-time, the strategy more rationally determines the order ratio, effectively hedges risks, and achieves 

stable long-term expected return maximization. 

2. Model Setup 

2.1. Discrete Distribution 

The original model of the Kelly formula is based on discrete distributions: 

1. Consider an investor making multiple independent bets (such as a coin toss experiment). 

2. Assume the coin is biased, with a win probability of 𝑝 > 1 2⁄ , and a failure probability of 𝑞 = 1 − 𝑝. 

3. The initial wealth is 𝑊0, and for each win, the invested amount is doubled, while for each loss, the invested amount is zeroed 

out. 

4. The objective is to determine the optimal betting fraction that maximizes long-term wealth growth. 

Let 𝑊𝑛 denote the wealth after the n-th investment, and 𝐵𝑘 the amount invested on the k-th bet. If the k-th bet is a win, then 

𝑇𝑘 = 1, and if it is a loss, 𝑇𝑘 = −1. The expected value of 𝑊𝑛 is: 

𝐸(𝑊𝑛) = 𝑊0 +∑𝐸

𝑛

𝑘=1

(𝐵𝑘𝑇𝑘) = 𝑊0 +∑(𝑝 − 𝑞)𝐸

𝑛

𝑘=1

(𝐵𝑘) 

Assume there is a parameter 0 < 𝑓 < 1 such that the investment on the k-th bet is 𝐵𝑘 = 𝑓𝑊𝑖−1. After n bets, the wealth 

becomes: 

𝑊𝑛 = (1 + 𝑓)𝑆 ∙ (1 − 𝑓)𝐹 

Where S and F represent the number of successes and failures, respectively, with 𝑆 + 𝐹 = 𝑛.  

Thus, the expected logarithmic growth rate of total wealth is: 

𝐺(𝑓) = 𝐸{ln [
𝑊𝑛

𝑊0

]

1
𝑛⁄

} = 𝐸{
𝑆

𝑛
ln(1 + 𝑓) +

𝐹

𝑛
ln(1 − 𝑓)} = 𝑝 ln(1 + 𝑓) + 𝑞 ln(1 − 𝑓) 

Taking the derivative of 𝐺(𝑓): 

𝐺′(𝑓) =
𝑝

1 + 𝑓
−

𝑞

1 − 𝑓
=

𝑝 − 𝑞 − 𝑓

(1 + 𝑓)(1 − 𝑓)
 

Taking the second derivative: 

𝐺′′(𝑓) =
−𝑓2 + 2𝑓(𝑝 − 𝑞) − 1

(1 − 𝑓2)2
< 0 

Therefore, the logarithmic growth rate reaches its maximum when 𝑓∗ = 𝑝 − 𝑞. When the odds are 𝑏, the optimal Kelly score 

is: 

𝑓∗ =
𝑏𝑝 − 𝑞

𝑏
 

 

Figure 1. Relationship between logarithmic growth rate and betting fraction under discrete distribution for the Kelly formula. 
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2.2. Continuous Distribution 

In the stock market, stock prices can be approximated as continuous variables, and holding a stock is a continuous action. To apply 

the Kelly formula to the stock market, we need to approximate the original formula for continuous distributions. 

Let X represent the random variable for unit investment return, where 𝐸(𝑋) = 𝜇 and 𝑉𝑎𝑟(𝑋) = 𝜎2. Suppose the initial capital 

𝑉0 is invested in 𝑋 at a fraction 𝑓, then the total capital after one investment cycle is given by: 

𝑉(𝑓) = 𝑉0(1 + (1 − 𝑓)𝑟 + 𝑓𝑋) 
Where r is the risk-free return rate on the remaining capital. If we divide one investment cycle into n independent and equally-

sized investments, while maintaining the overall return and variance, then after n investments, the return rate is: 

𝐺𝑛(𝑓) =
𝑉𝑛(𝑓)

𝑉0
=∏(1 + (1 − 𝑓)

𝑟

𝑛
+ 𝑓𝑋𝑖)

𝑛

𝑖=1

 

Taking the expected logarithm on both sides yields 𝑔𝑛(𝑓): 

𝑔𝑛(𝑓) =∑𝐸[ln(1 + (1 − 𝑓)
𝑟

𝑛
+ 𝑓𝑋𝑖)]

𝑛

𝑖=1

 

=∑
1

2

𝑛

𝑖=1

ln(1 +
𝑟

𝑛
+ 𝑓(

𝜇

𝑛
−
𝑟

𝑛
+

𝜎

√𝑛
)) +

1

2
ln(1 +

𝑟

𝑛
+ 𝑓(

𝜇

𝑛
−
𝑟

𝑛
−

𝜎

√𝑛
)) 

=
𝑛

2
∗ [ln(1 +

𝑟

𝑛
+ 𝑓(

𝜇

𝑛
−
𝑟

𝑛
+

𝜎

√𝑛
)) +

1

2
ln(1 +

𝑟

𝑛
+ 𝑓(

𝜇

𝑛
−
𝑟

𝑛
−

𝜎

√𝑛
))] 

Using a Taylor expansion: 

ln(1 + 𝑥) = 𝑥 −
𝑥2

2
+
𝑥3

3
− ⋯ 

To simplify the calculations, let: 

𝑥 =
𝑟

𝑛
+ 𝑓(

𝜇

𝑛
−
𝑟

𝑛
+

𝜎

√𝑛
) 

and 

𝑦 =
𝑟

𝑛
+ 𝑓(

𝜇

𝑛
−
𝑟

𝑛
−

𝜎

√𝑛
) 

Substituting these into the equation: 

𝑔𝑛(𝑓) =
𝑛

2
∗ [𝑥 + 𝑦 −

𝑥2

2
−
𝑦2

2
+ 𝑂(𝑛−2)] 

Notice: 

𝑥 + 𝑦 = 2(
𝑟

𝑛
+ 𝑓(

𝜇

𝑛
−
𝑟

𝑛
)) 

and 

𝑥2

2
+
𝑦2

2
= 𝑓2

𝜎2

𝑛
+ 𝑂(𝑛−

2
3) 

Substituting these into the equation: 

𝑔𝑛(𝑓) = 𝑟 + 𝑓(𝜇 − 𝑟) −
𝑓2𝜎2

2
+ 𝑂(𝑛−

1
2) 

Taking the limit as 𝑛 → ∞, we get: 

𝑔∞(𝑓) = 𝑟 + 𝑓(𝜇 − 𝑟) −
𝑓2𝜎2

2
 

To maximize this expression, we can find the optimal investment fraction: 

𝑓∗ =
𝜇 − 𝑟

𝜎2
 

3. Model Optimization 

Overfitting is an important and common problem in the field of machine learning. It refers to the scenario where a model performs 

well on the training data but struggles to maintain the same level of performance on new, unseen data. In quantitative trading, 

various mathematical models and computer programs are used to guide investment decisions, which inevitably leads to the issue 

of overfitting. Overfitting may cause investment models to become overly dependent on historical data, thus affecting the accuracy 

of predictions. This is particularly true in financial markets, where financial data itself is noisy, causing machine learning models 

to overfit the random fluctuations in historical data and fail to generalize well to future data. Therefore, the concept of overfitting 

rate is introduced, and it is used to adjust the optimal Kelly fraction to reduce the risk associated with model overfitting, thus 

balancing returns and risks. 
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The overfitting rate α(0 ≤ α ≤ 1) represents the degree of overfitting of the quantitative trading prediction model. When α=0, 

there is no overfitting, and when α=1, the model is fully overfitted. By using the overfitting rate α to adjust the Kelly leverage, we 

multiply the Kelly fraction by a conservative factor. This reduces the betting amount on the investment side to counteract potential 

model errors. The formula is expressed as: 

𝑓𝑎
∗ = (1 − 𝛼) ∙ 𝑓∗ 

Where 𝑓𝑎
∗ represents the adjusted Kelly leverage, and α is the overfitting rate. The higher the overfitting rate, the lower the 

adjusted Kelly leverage, resulting in a more conservative betting fraction. Depending on the model’s degree of overfitting, the 

optimal Kelly leverage can be adjusted continually to effectively reduce the investment fraction and meet the goal of lowering risk 

while maximizing long-term returns. 

In the financial field, the Information Coefficient (IC) is a commonly used indicator to measure the predictive power of a model, 

especially the correlation between predicted signals and actual returns. It is often used in portfolio management, risk-adjusted 

returns, and quantitative strategy evaluation. We can quantify the overfitting rate α using the Information Coefficient. 

The IC is calculated using the following formula: 

𝐼𝐶 =
𝐶𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
 

Where: 

X is the predicted return, Y is the actual return, 𝐶𝑜𝑣(𝑋, 𝑌) is the covariance between the predicted and actual returns, 𝜎𝑋 and 

𝜎𝑌 are the standard deviations of the predicted and actual returns, respectively. 

Steps to calculate IC: 

1. Collect time series data for predicted returns and actual returns. 

2. Calculate the mean of predicted returns X and actual returns Y. 

3. Calculate the covariance between X and Y. 

4. Calculate the standard deviations 𝜎𝑋 and 𝜎𝑌. 

5. Calculate the Information Coefficient. 

In the context of a quantitative trading training model, let 𝐼𝐶𝑡𝑟𝑎𝑖𝑛 be the Information Coefficient of the training set, and 𝐼𝐶𝑣𝑎𝑙  
be the Information Coefficient of the validation (test) set. The difference between the Information Coefficients of the training and 

test sets can reflect the degree of overfitting of the model. Typically, 𝐼𝐶𝑡𝑟𝑎𝑖𝑛 > 𝐼𝐶𝑣𝑎𝑙 , and the larger the difference, the greater the 

overfitting of the model. 

We can quantify the overfitting rate α based on the difference between the two ICs: 

𝛼 =
𝐼𝐶𝑡𝑟𝑎𝑖𝑛 − 𝐼𝐶𝑣𝑎𝑙

𝐼𝐶𝑡𝑟𝑎𝑖𝑛
 

Therefore, we can derive the overfitting rate based on the Information Coefficient difference and apply it to adjust the optimal 

Kelly fraction. 

The optimized optimal Kelly fraction can be expressed as: 

𝑓𝑎
∗ = (1 − 𝛼) ∙ 𝑓∗ = (1 −

𝐼𝐶𝑡𝑟𝑎𝑖𝑛 − 𝐼𝐶𝑣𝑎𝑙
𝐼𝐶𝑡𝑟𝑎𝑖𝑛

) ∙
𝜇 − 𝑟

𝜎2
=

𝐼𝐶𝑣𝑎𝑙
𝐼𝐶𝑡𝑟𝑎𝑖𝑛

∙
𝜇 − 𝑟

𝜎2
 

Example (based on Linear Regression Model): 

1. Suppose we have a dataset for a particular stock over several days (e.g., 100 days) including features such as open price, 

close price, and trading volume. Using a linear regression model, we predict future stock prices based on these input features. 

2. The linear regression formula is established as follows: 

ŷ = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝜖 

Where: 

ŷ is the predicted unit investment return, 𝑋1, 𝑋2 and 𝑋3 are the feature variables, 𝛽0 is the intercept, 𝛽1, 𝛽2 and 𝛽3 are the 

regression coefficients. 

3. Split the data into a training set and a test set. The first 80 days are used for training, and the remaining 20 days are used for 

testing. Use the regression model for prediction and testing, then calculate the initial Information Coefficient and overfitting rate 

based on the difference between predicted returns and actual returns. 

3. Using the formula 𝑓𝑎
∗ =

𝐼𝐶𝑣𝑎𝑙

𝐼𝐶𝑡𝑟𝑎𝑖𝑛
∙
𝜇−𝑟

𝜎2
 , calculate the initial optimal Kelly fraction, where 𝜇 is the predicted unit investment 

return ŷ, and 𝜎2 =
1

𝑛−𝑘
∑ (𝑦𝑡 − ŷt)

2𝑛
𝑡=1 , with k being the number of features in the regression model. 

4. Based on the calculated optimal Kelly fraction, invest on day 1. Collect the predicted and actual returns for day 1, add them 

to the dataset, remove the oldest day's data, and repeat the process of calculating the optimal Kelly fraction, investing, and updating 

the data as described above. 

This method ensures that the training and test sets are continuously updated, maintaining the real-time accuracy of the 

Information Coefficient and overfitting rate. It prevents potential losses from excessive risk aversion due to fixed proportions, and 

allows for maximizing long-term returns while mitigating risk. 
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Figure 2. Model Optimization Flowchart 

4. Strategy Analysis 

The Kelly formula is used to calculate the optimal betting fraction or investment fraction to maximize the long-term growth rate 

of capital. The goal of the Kelly formula is to maximize the logarithmic growth of capital, that is, to maximize the geometric mean 

growth rate of the investment portfolio. Logarithmic growth has an additive property, which means that each investment seeks to 

use as much capital as possible to achieve long-term compounding effects. To achieve this, the Kelly formula tends to recommend 

a higher investment fraction, especially when both the odds and probability of success are high. This makes the Kelly formula's 

investment strategy inherently aggressive, potentially leading to significant volatility and investment risk. 

The Fractional Kelly formula is the most commonly used risk control method based on the Kelly formula. It is a conservative 

variation derived from the original Kelly formula to address the volatility and investment risks associated with the original formula. 

The aim is to reduce investment risk, particularly when the market is highly uncertain. The Fractional Kelly formula reduces the 

investment fraction by multiplying the Kelly fraction by a fixed factor less than 1 (e.g., 0.5). By reducing the fixed investment 

fraction, the Fractional Kelly formula can help avoid investment losses due to market fluctuations. While more robust in uncertain 

markets, it still ignores prediction model errors and the incompleteness of market changes. In highly uncertain market environments, 

the Fractional Kelly formula may fail to fully capitalize on potential market opportunities, often sacrificing long-term returns. 

On the other hand, introducing an overfitting rate adjustment to the Kelly formula can effectively address these shortcomings 

and enhance the overall risk control ability. 

Table 1. Comparison of Fractional Kelly Formula and Overfitting Rate-Adjusted Kelly Formula 

Feature Fractional Kelly Formula Overfitting Rate-Adjusted Kelly Formula 

Risk Control 
Stronger, reduces risk by limiting investment 

fraction 

Stronger, adapts to model errors and reduces risk 

from overfitting 

Return Potential 
Returns may be limited due to reduced 

investment fraction 

May slightly decrease returns, but avoids potential 

losses from over-investing 

Computational 

Complexity 
Simple, suitable for most scenarios 

More complex, requires dynamic evaluation of 

overfitting rate 

Long-Term 

Performance 

Conservative but stable, suitable for avoiding 

extreme volatility 

More robust, provides better risk-adjusted returns 

in uncertain markets 

5. Conclusion and Recommendations 

In practical investment markets, particularly in the stock market, quantitative trading models are often affected by overfitting. By 

incorporating the overfitting rate adjustment into the Kelly formula, we can represent the overfitting factor in quantitative trading 

as the overfitting coefficient α, which influences the final investment fraction with the help of the Information Coefficient . 

Additionally, the use of a sliding window approach in calculating the overfitting rate allows for timely updates of daily data. This 

ensures that the data is constantly refreshed, meeting the real-time data requirements of quantitative trading and ensuring that the 
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trades executed each day are in alignment with the latest market conditions. As a result, this improves the adaptability and risk 

control capabilities of the Kelly formula in dynamic markets. 

The overfitting-adjusted Kelly formula not only maintains a high expected return but also reduces the potential for loss by 

lowering the investment fraction. This approach not only considers risk control but also strives to maintain high investment returns, 

thereby achieving a more robust investment strategy. In theory, the adjusted Kelly formula offers better risk-adjusted returns in 

dynamic markets, which is particularly crucial for investors facing market uncertainty. 
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