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Abstract. Credit risk is one of the main risks faced by commercial banks. Credit risk management includes risk identification, 

assessment, and early warning, among which risk assessment is fundamental and key. Currently, research on credit risk assessment 

in China is still in its developing stage, and the precision of measuring credit risk needs improvement. Among various evaluation 

methods, the KMV model has shown good practical application and is relatively suitable for the national conditions of China. 

However, it still has some flaws. To address the issue of insufficient external validity in the default point parameter settings of the 

KMV model, the PSO algorithm is used to optimize these parameters, and the PSO-GWO algorithm is integrated to construct the 

APSO-KMV model and the PSO-GWO-KMV model. Based on an empirical study comparing real data from 5,234 companies, it 

was found that the original KMV model had an AUC value of 0.7362, accuracy of 0.2610, and binary cross-entropy loss of 0.7006; 

the PSO-KMV model had a short-term debt coefficient 𝛼 of 0.0496, a long-term debt coefficient 𝛽 of 0.2508, an AUC value of 

0.9994, accuracy of 0.9996, and binary cross-entropy loss of 4.1990; the PSO-GWO-KMV model had a coefficient 𝛼 of 0.0496 

and a value 𝛽 of 0.2690, an AUC value of 0.9987, accuracy of 0.7603, and binary cross-entropy loss of 4.0804. The optimized 

KMV model showed a significant improvement in predictive accuracy. 
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1. Introduction 

Credit risk is one of the oldest and most far-reaching financial risks. In modern society, as the business of commercial banks 

evolves, credit risk in commercial banks is divided into narrow and broad senses. Broadly, credit risk includes the credit risk of 

commercial banks, investment risk, and the risks associated with the commercial banks themselves [1]. Narrowly, credit risk refers 

solely to credit risk. This paper focuses on this type of credit risk. Credit risk management is the core business of commercial 

banks, including risk identification, assessment, and management. Identification is the preliminary work of assessment, while 

management is the subsequent result of assessment. Credit risk assessment is the core and key of credit risk management. To 

effectively study commercial bank credit risk, it is crucial to conduct research on credit risk assessment. 

Scholars both domestically and internationally have made substantial progress in the study of credit risk assessment methods. 

From the early expert system method based on empirical judgment and the analytic hierarchy process to statistical analysis-based 

models such as the Z-score model, Logistic model, and KMV model, and then to the use of big data era models like SVM, neural 

networks, and XGBoost models, there is a clear trend of moving from subjective to objective, and from empirical to intelligent 

methods. Based on existing research, this paper selects the KMV model as the main evaluation model and considers applying 

intelligent optimization algorithms to optimize the default point parameter setting of this model. The paper first introduces and 

reviews relevant theoretical methods, including the KMV model and the two main intelligent optimization algorithms, PSO and 

GWO. It then analyzes the strengths and weaknesses of each model and algorithm and, based on this, conducts fusion experiments 

to combine the strengths of the methods. Using the GWO algorithm as an example, the integrated PSO-GWO algorithm shows a 

significant improvement in search efficiency and convergence speed. Finally, the paper applies the optimized algorithm to modify 

the KMV model and optimizes its parameter settings. 



22	|	Journal	of	Applied	Economics	and	Policy	Studies	|	Vol.18	|	Issue	3
 

 

2. Literature review 

Currently, both academic and industry circles have developed a large number of credit risk assessment methods, which can be 

classified according to the models used [2]. Summarizing the relevant literature, credit risk assessment models can be divided into 

the following four categories: classical models, statistical models, modern models, and artificial intelligence models. 

Classical models are essentially scoring systems based on subjective judgment by experts, including expert judgment methods 

represented by the 5C method, credit scoring methods, and the five-level loan classification method commonly adopted by Chinese 

commercial banks [3]. These evaluation models are highly subjective and require a significant number of experts. Moreover, due 

to the late start of private enterprises in China, factors such as quality, capital, and collateral in the 5C method differ from those of 

large foreign enterprises, which may lead to misjudgments in the scoring system. 

Statistical models are based on multivariate statistical analysis, with the basic idea of categorizing and summarizing the patterns 

in historical samples and establishing relevant discriminant formulas to classify new samples [4]. Scholars in foreign countries 

began research in this area earlier. Beaver (1966) selected 30 financial ratio indicators to establish a univariate decision model and 

predicted financial crises for 158 companies [5]. Ohlson (1980) used Logit regression analysis to study bankruptcy enterprise 

samples, distinguishing three types of predictor variables: positive, negative, and indeterminate, to analyze the bankruptcy 

enterprise samples [6]. In China, research on statistical methods for financial risk warning models began in the late 1990s. Chen 

Jing (1999) used Beaver (1966) and Altman (1968)’s statistical prediction models for empirical analysis of ST companies in the 

domestic securities market and found that the decision model composed of multiple financial ratios such as asset-liability ratio and 

current ratio had a predictive capability up to three years in advance [7]. Statistical models have good explanatory power and 

applicability in corporate default prediction, but due to strict mathematical assumptions, real-world data often fail to meet the 

requirements. In addition, the construction of the indicator system and the selection of the model’s applicability still require further 

research and optimization. 

In the corporate world, as the financial system becomes increasingly complex, many modern models for credit risk evaluation 

have gradually emerged. In 1997, J.P. Morgan introduced the CreditMetrics model, aiming to provide financial institutions with a 

comprehensive framework for evaluating and managing credit risk. Building on this, in 2004, Mark Kealhofer and Richard 

McQuown proposed the KMV model to address the limitations of traditional credit scoring models in handling extreme credit risk 

events (such as defaults). The KMV model predicts the default probability by calculating a company’s default point using its 

market value and stock price volatility. Subsequently, the Basel Committee on Banking Supervision (1999), Derbali and Hallara 

(2012) [8], among others, conducted in-depth comparative analyses on the accuracy, effectiveness, and applicability of several 

modern credit risk measurement models such as CreditMetrics, CreditRisk+, and KMV, enhancing the objectivity and dynamics 

of these models, making them capable of reflecting the real market conditions of most countries, and further aligning with the 

regulatory requirements of various countries. 

With the development of information technology, a large number of artificial intelligence models have been applied to risk 

assessment and management optimization. Currently, widely used models include support vector machines (SVM) and BP neural 

networks. Support vector machines, a supervised learning algorithm first proposed by Vapnik and Chervonenkis in 1963, were 

further developed in the 1990s. Compared to traditional statistical methods, SVM does not rely on prior knowledge of the problem, 

offering excellent generalization ability [9]. Liu Min and Lin Chengde (2005) established a commercial bank credit risk assessment 

model based on the general learning algorithm SVM, confirming the effectiveness and superiority of this method for risk 

assessment [10]. BP neural networks, a type of multilayer feedforward neural network, are primarily used to construct credit 

scoring models to predict the probability of borrower default. Li and Chen (2007) used the ratio of listed companies failing to 

repay loans on time as a measure of credit risk, combining independent sample t-tests and principal component analysis to construct 

a commercial bank credit risk identification model based on BP neural network technology. Empirical results showed that the BP 

neural network model has strong identification capability for commercial bank credit risk and can achieve compatibility between 

memory and generalization abilities [11]. 

Overall, classical models are relatively subjective, and the related research has been quite extensive. Machine learning methods 

in statistical and artificial intelligence models often face the dilemma of “choosing between interpretability and precision.” Among 

modern models, although the KMV model still has some flaws, it is relatively well-suited to the national conditions of China. With 

the gradual improvement of the equity trading system in China, the stock prices of enterprises can more accurately reflect their 

operational status. As listed companies in China’s banking industry, nationwide joint-stock commercial banks have relatively 

transparent and publicly available information. The data required by the KMV model is easily accessible, and the model is simple 

to operate and practical. Therefore, China is basically equipped with the practical application conditions for the KMV model, and 

it can be well-suited for evaluating the credit risk of nationwide joint-stock commercial banks. It is worth noting that, although the 

KMV model can output the distance to default, due to the small sample size of defaults in China, the model cannot output the 

default probability for bonds. 

The development of intelligent optimization algorithms has provided new ideas for the credit risk assessment of commercial 

banks. Intelligent optimization algorithms are a class of optimization methods that simulate the operating mechanisms of human 

intelligence, biological groups, and natural phenomena. The numerous adaptive optimization phenomena in nature inspire 

strategies for solving complex optimization problems across various disciplines such as management science, computer science, 

and economics. With a wide range of types and flexibility, intelligent optimization algorithms have significant potential in the 
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field of credit risk assessment. Therefore, selecting relevant intelligent optimization algorithms to modify the KMV model to more 

accurately measure the credit risk of China’s commercial banks is a feasible and effective approach for better measuring the credit 

risk of China’s commercial banks. 

In recent years, the research direction of using intelligent optimization algorithms to modify the KMV model for better credit 

risk measurement has gained significant attention both domestically and internationally. Lee (2011) used the genetic algorithm 

(GA) to encode variables and redefine the optimal default point of the KMV model. The results showed that the GA-KMV model 

had a higher accuracy than the KMV model, improving the default prediction performance [12]. Yaojie Zhang et al. (2016) applied 

the particle swarm optimization (PSO) algorithm, maximum likelihood estimation (MLE) method, and fuzzy clustering (FC) to 

modify the KMV model, obtaining the optimal default point and effective market price for non-tradable shares using the PSO-

KMV model, and using FC to classify liabilities into different clusters. This hybrid KMV model significantly improved the 

performance of the KMV model [13]. Ye (2023) constructed a GWO-KMV-XGBoost hybrid model, using the traditional KMV 

credit evaluation model as the main framework, adding GWO and XGBoost models, and applying it to the credit bond evaluation 

of listed companies in China. The use of these three models effectively solved the problems of few default samples, sample 

imbalance, and prediction accuracy, significantly improving the model’s prediction accuracy and enhancing its interpretability 

[14]. 

3. Model construction 

3.1. KMV model 

The KMV model is developed based on the Black-Scholes (BS) option pricing theory. The core idea is that a company’s default 

probability depends on the difference between its liabilities and asset value. The basic concept is that if, at the maturity of the debt, 

the value of liabilities exceeds the value of assets, the company is considered to have defaulted. The default distance is used to 

represent how far the company’s asset value is from the default point. The derivation process consists of three steps: estimating 

the company’s asset value 𝑉, asset volatility 𝜎𝑉, and default point 𝐷𝑃; calculating the default distance 𝐷𝐷; and outputting the 

default probability 𝐸𝐷𝐹. Firstly, the asset value 𝑉 and volatility 𝜎𝑉 can be solved using the following system of equations: 

{
𝐸𝑇 = 𝑉𝑇Φ(𝑑1) − 𝐷𝑒−𝑟𝑇Φ(𝑑2)

σ𝐸𝐸𝑇 = Φ(𝑑1)𝑉𝑇σ𝑉

(1) 

Where T is the debt maturity date, and 𝐸𝑇 = 𝑚𝑎𝑥( 0, 𝑉𝑇 − 𝐷𝑇) is the company’s equity value. 𝐸𝑇 is treated as a call option. 

According to the BS formula, it is assumed that the company’s asset value 𝑉𝑇 follows a geometric Brownian motion, i.e., 𝑑𝑉𝑇 =
𝜇𝑉𝑇𝑑𝑇 − 𝜎𝑉𝑑𝑊𝑇 , where 𝜇 represents the expected asset growth rate, and 𝑊𝑇  represents the volatility. By combining the BS 

formula, the company’s equity value satisfies: 𝐸𝑇 = 𝑉𝑇𝛷(𝑑1) − 𝐷𝑒−𝑟𝑇𝛷(𝑑2). Where 𝑑1 =
𝑙𝑛(

𝑉𝑇
𝐷

)+(𝑟+
𝜎2

𝑉
2

)𝑇

𝜎𝑉√𝑇
 and 𝑑2 = 𝑑1 − 𝜎𝑉√𝑇 

are calculated based on the BS formula, 𝑟 is the cumulative standard normal distribution, and 𝛷(𝑋) represents the debt value, 

which is the amount of debt due at maturity. According to Itô’s Lemma, the company’s stock price 𝐸𝑇 also follows a geometric 

Brownian motion, i.e., 𝜎𝐸𝐸𝑇 =
𝜕𝐸𝑇

𝜕𝑉𝑇
𝑉𝑇𝜎𝑉, where 

𝜕𝐸𝑇

𝜕𝑉𝑇
= 𝛷(𝑑1). Both stock prices 𝐸𝑇 and their volatility 𝜎𝐸 are publicly available 

data. 

Regarding the calculation of the default point, based on extensive case analysis, KMV assumes that the default point consists 

of the company’s short-term debt (with a maturity of less than one year) plus half of its long-term debt, i.e., 𝐷𝑃 = 𝑆𝑇𝐷 + 0.5𝐿𝑇𝐷. 

Next, the default distance is defined as the distance between the company’s asset value and the default point, and it is 

standardized as follows: 𝐷𝐷 =
𝑉−𝐷𝑃

𝑉𝜎𝑉
. 

Finally, by assuming that the company’s asset market value follows a normal distribution, the default probability can be 

estimated as: 

𝐸𝐷𝐹 = 𝑃[𝐸(𝑉) ≤ 𝐷𝑃] = Φ (−
𝑉 − 𝐷𝑃

𝑉σ𝑉

) = Φ(−𝐷𝐷) (2) 

Clearly, the default distance and the expected default probability are negatively correlated. The KMV model links the asset 

value to the stock price, enabling it to reasonably predict future risks. As a dynamic model, it can provide real-time updates of the 

company’s default probability. However, it is important to note that the default point parameters in the KMV model, specifically 

the coefficients for short-term and long-term debt, are calculated based on foreign data. Therefore, the external validity of these 

parameters should be questioned. Using intelligent optimization algorithms to adjust these parameters is a reasonable and feasible 

approach. 
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3.2. Introduction to intelligent optimization algorithms 

3.2.1. PSO and APSO algorithms 

Inspired by the intelligent behavior of bird flocks, in 1995, American scholars Eberhart and Kennedy proposed the Particle Swarm 

Optimization (PSO) algorithm [15]. During the foraging process, each bird searches in a direction it has determined and, while 

searching, records and shares the best foraging locations it has found with the flock. By combining individual memory with shared 

experiences from the flock, the birds eventually find the position in the forest with the most food, which corresponds to the global 

optimum solution for the problem at hand. Based on biological principles, the PSO algorithm is expressed as follows: 

Let the position of the 𝑖 th particle be denoted as  𝑋𝑖𝑑 = (𝑥𝑖1, 𝑥𝑖1 , … , 𝑥𝑖𝐷) , the velocity of the 𝑖 th particle as 𝑉𝑖𝑑 =
(𝑣𝑖1, 𝑣𝑖1, … , 𝑣𝑖𝐷), the individual best solution of the 𝑖th particle as 𝑃𝑖𝑑,𝑝𝑏𝑒𝑠𝑡 = (𝑝𝑖1, 𝑝𝑖1, … , 𝑝𝑖𝐷), the global best solution found by 

the swarm as 𝑃𝑑,𝑔𝑏𝑒𝑠𝑡 = (𝑝1,𝑔𝑏𝑒𝑠𝑡 , 𝑝2,𝑔𝑏𝑒𝑠𝑡 , … , 𝑝3,𝑔𝑏𝑒𝑠𝑡) , the fitness value of the best position found by the ith particle as 𝑓𝑝, and 

the fitness value of the best position found by the swarm as 𝑓𝑔. The velocity update formula is then given by: 𝑣𝑖𝑑
𝑡+1 = 𝑤𝑣𝑖𝑑

𝑡 +

𝑐1𝑟1(𝑝𝑖𝑑,𝑝𝑏𝑒𝑠𝑡
𝑡 − 𝑥𝑖𝑑

𝑡 ) + 𝑐2𝑟2(𝑝𝑑,𝑔𝑏𝑒𝑠𝑡
𝑡 − 𝑥𝑖𝑑

𝑡 ). The position update formula is: 𝑥𝑖𝑑
𝑡+1 = 𝑥𝑖𝑑

𝑡 + 𝑣𝑖𝑑
𝑡+1. The velocity update formula 

consists of three components. The first is the inertia part 𝑤𝑣𝑖𝑑
𝑡 , which is composed of the inertia weight and the particle′s own 

velocity, representing the particle′s trust in its previous state of motion. The second is the cognitive part 𝑐1𝑟1(𝑝𝑖𝑑,𝑝𝑏𝑒𝑠𝑡
𝑡 − 𝑥𝑖𝑑

𝑡 ), 

which represents the particle’s own thinking, i.e., the distance and direction between the particle’s current position and its 

individual best position. The third is the social part 𝑐2𝑟2(𝑝𝑑,𝑔𝑏𝑒𝑠𝑡
𝑡 − 𝑥𝑖𝑑

𝑡 ), which represents the information sharing and cooperation 

between particles, i.e., the experience from other superior particles in the swarm, and can be understood as the distance and 

direction between the particle’s current position and the swarm’s best position. 

To make the PSO algorithm achieve a balance between seeking the global optimum and the local optimum as much as possible, 

and to maintain a balance between convergence speed and search effectiveness, the key lies in optimizing parameter settings, 

including the inertia weight 𝑤 and learning factors 𝑐1 and 𝑐2. 

The inertia weight 𝑤 represents the influence of the velocity of the previous generation of particles on the velocity of the current 

particles, or in other words, the particle’s trust in its current state of motion. The larger the value of 𝑤, the stronger the ability to 

explore new areas and the better the global search ability, but the weaker the local search ability, and vice versa. In solving practical 

optimization problems, it is often desirable to first perform a global search to rapidly converge the search space to a certain area, 

then use a local fine search to obtain a high-precision solution. To address this need, an adaptive adjustment strategy can be 

introduced, where the value of 𝑤 is linearly reduced as the iterations progress. The learning factor, also known as the acceleration 

coefficient or acceleration factor, is represented by 𝑐1 and 𝑐2. 𝑐1 represents the weight of the particle′s next action coming from its 

own experience, which accelerates the particle towards its individual best position 𝑃𝑖𝑑,𝑝𝑏𝑒𝑠𝑡 . 𝑐2  represents the weight of the 

particle’s next action coming from the experience of other particles, which accelerates the particle towards the swarm’s global best 

position 𝑝𝑑,𝑔𝑏𝑒𝑠𝑡
𝑡 . When 𝑐1 = 0, PSO degenerates into a selfish particle swarm algorithm, losing diversity within the swarm, and 

is prone to getting stuck in a local optimum. When 𝑐2 = 0, PSO degenerates into a self-cognitive particle swarm algorithm with 

no information sharing, leading to slow convergence. When neither 𝑐1 nor 𝑐2 equals 0, it becomes a fully functional particle swarm 

algorithm, which is better at maintaining a balance between convergence speed and search effectiveness and is the optimal choice. 

The adaptive particle swarm optimization algorithm (APSO) with optimized parameter settings is expressed as follows: 

𝑣𝑖𝑑
𝑡+1 = 𝑤𝑣𝑖𝑑

𝑡 + 𝑐1𝑟1(𝑝𝑖𝑑,𝑝𝑏𝑒𝑠𝑡
𝑡 − 𝑥𝑖𝑑

𝑡 ) + 𝑐2𝑟2(𝑝𝑑,𝑔𝑏𝑒𝑠𝑡
𝑡 − 𝑥𝑖𝑑

𝑡 ), 𝑐1 ≠ 0, 𝑐2 ≠ 0 (3) 

𝑥𝑖𝑑
𝑡+1 = 𝑥𝑖𝑑

𝑡 + 𝑣𝑖𝑑
𝑡+1 (4) 

𝑤 = 𝑤𝑚𝑎𝑥 − (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛)
𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥

(5) 

Where 𝑤𝑚𝑎𝑥  is the maximum inertia weight, 𝑤𝑚𝑖𝑛 is the minimum inertia weight. 𝑖𝑡𝑒𝑟 represents the current iteration number, 

and 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 represents the maximum number of iterations. 

3.2.2. Grey wolf optimization algorithm 

The Grey Wolf Optimization (GWO) algorithm was first introduced in 2014 [16], achieving a balance of accuracy and speed by 

simulating the collective hunting behavior of grey wolves. In the design of the GWO algorithm, an effective solution corresponds 

to an individual grey wolf in the pack, and the degree of the solution’s fitness corresponds to the wolf’s rank in the social hierarchy, 

which ranges from 𝛼, 𝛽, 𝛿, 𝜔; the optimal solution is considered as 𝛼. In the GWO algorithm, the hunting process is guided by the 

first three ranks, with 𝜔 wolves following these three types of wolves. Similar to the wolf pack hunting process, the solving process 

in GWO includes encirclement, hunting, and attack. 

In the encirclement process, let 𝑡 represent the iteration number, the position vector of the prey be �⃗�𝑝, and the position vector 

of the grey wolf be �⃗�, then the distance between them is �⃗⃗⃗� = 𝐶 ⋅ �⃗�𝑃(𝑡) − �⃗�(𝑡), and the wolf’s position is updated as �⃗�(𝑡 + 1) =
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�⃗�𝑃(𝑡) − 𝐴 ⋅ �⃗⃗⃗� . Here, 𝐴 = 2�⃗� ⋅ 𝑟1 − �⃗�, 𝐶 = 2𝑟2  and 𝑟1  and 𝑟2 are taken from random numbers within the range [0,1]. The 

randomness plays a crucial role in avoiding local optima, especially in the final iterations where the global optimal solution is 

sought. The convergence factor �⃗� is defined as �⃗� = 2 −
2𝑡

𝑇𝑚𝑎𝑥
, where 𝑇𝑚𝑎𝑥  is the maximum number of iterations. 

Once the prey is encircled, the 𝛼 wolf leads the pack in guiding the hunting process. The prey′s position is actually the 

optimal solution, and the grey wolves track and approach the prey in the hunting process to arrive at the optimal solution. Assuming 

that 𝛼, 𝛽, 𝛿 wolves have better knowledge of the prey’s potential location, other grey wolves update their positions based on the 

optimal wolves, gradually getting closer to the prey. The distance between the remaining grey wolves and 𝛼, 𝛽, 𝛿 wolves is denoted 

as �⃗⃗⃗�𝛼,𝛽,𝛿 = |𝐶 ⋅ �⃗�𝛼,𝛽,𝛿 − �⃗�|. The random vector 𝐶is taken from random numbers within [0,2]; the larger the magnitude, the more 

the wolves move towards the leader or prey, reflecting a higher level of trust, which promotes exploration in the algorithm. The 

smaller the magnitude, the more cautious and slight the wolves’ movement will be, indicating that the algorithm will search for 

the optimal solution within the current region. Under the guidance of higher-ranked wolves, the 𝜔 wolves advance towards 𝛼, 𝛽, 𝛿 

with steps and directions represented as �⃗�1,2,3 = �⃗�𝛼,𝛽,𝛿 − 𝐴1,2,3 ⋅ �⃗⃗⃗�𝛼,𝛽,𝛿, with the final position being �⃗�𝑡+1 =
�⃗⃗�1+�⃗⃗�2+�⃗⃗�3

3
. 

The grey wolves complete the hunting process through an attack. The process of decreasing the value of 𝑎 corresponds to the 

process of approaching the prey, with the fluctuation range of 𝐴 decreasing as 𝑎 decreases. When |𝐴| < 1, the wolves attack the 

prey (falling into local optima). When |𝐴| > 1, the grey wolves separate from the prey and seek a more suitable target (global 

optimum). In the algorithm, this can be reflected as follows: after several iterations, the selected 𝛼, 𝛽, 𝛿 wolves (the best three 

solutions) remain almost unchanged, or their fitness values change very little, indicating that the algorithm has fallen into a local 

optimum. Additionally, if the algorithm reaches the preset maximum number of iterations or the improvement in the solution (such 

as an increase in fitness value) is below a threshold, the prey is considered captured, meaning the algorithm has found a satisfactory 

solution. 

3.3. Fusion model construction 

3.3.1. PSO-GWO algorithm 

The PSO algorithm tends to converge quickly and can effectively search for the global optimal solution, but in certain cases, it 

may become trapped in local optima. In contrast, the GWO algorithm demonstrates better exploration capabilities, enabling it to 

explore different regions of the search space. Combining these two algorithms can increase population diversity, improve the 

comprehensiveness of the search, reduce the risk of getting trapped in local optima [17], and enhance the algorithm’s search 

efficiency and convergence speed. Furthermore, the social ranking mechanism and hunting strategy of the GWO algorithm provide 

strong adaptability, while the speed and position update rules of PSO can enhance the stability and robustness of the algorithm. 

This combination is capable of addressing a broader range of optimization problems, including high-dimensional, multi-modal, 

and dynamic optimization issues. 

Therefore, it is worth considering using the GWO algorithm’s exploration capability to quickly locate potential optimal regions 

in the early stages and then utilizing PSO’s fast convergence feature to refine the search in the later stages, rapidly approaching 

the global optimum. The process for constructing the PSO-GWO fusion algorithm is as follows: 

Initialization of 𝛼, 𝛽, 𝛿 positions and scores. The social ranking setup of GWO is retained to avoid premature convergence of 

the algorithm, promote effective information sharing, and enable other search agents to quickly learn and approach better solutions. 

Let the number of search agents be 𝑁, the search space dimension be 𝑑𝑖𝑚, and the initial positions and velocities of the search 

agents be �⃗�𝑖
0 and �⃗⃗�𝑖

0, respectively. 𝑖 = 1,2, . . . , 𝑁. Initialize three optimal solutions: �⃗�𝛼,𝛽,𝛿 = 0⃗⃗1×𝑑𝑖𝑚, with corresponding fitness 

values 𝛼_𝑠𝑐𝑜𝑟𝑒, 𝛽_𝑠𝑐𝑜𝑟𝑒, 𝛿_𝑠𝑐𝑜𝑟𝑒. For minimization problems, set the initial scores to infinity, and for maximization problems, 

set the initial scores to negative infinity. 

Introducing PSO’s velocity and position update mechanism. The position update of each search agent �⃗�𝑖 is influenced not only 

by the guidance from �⃗�𝛼,𝛽,𝛿 (GWO) but also by its own velocity (PSO), providing the search agent with better dynamic adaptability, 

allowing it to adjust its search behavior based on the current search environment. The velocity update formula for each search 

agent 𝑖 in the 𝑗 -th dimension is given by: 

�⃗⃗�𝑡+1
𝑖,𝑗 = 𝑤 ⋅ [�⃗⃗�𝑡

𝑖,𝑗 + 𝐶1𝑟1(�⃗�𝛼 − �⃗�𝑖,𝑗
𝑡 ) + 𝐶2𝑟2(�⃗�𝛽 − �⃗�𝑖,𝑗

𝑡 ) + 𝐶3𝑟3(�⃗�𝛿 − �⃗�𝑖,𝑗
𝑡 )] (6) 

where 𝑤 =
1+𝜁

2
,𝜁 ∈ [0,1] and 𝑤 ∈ [0.5,1]. The inertia weight 𝑤 is used to adjust the velocity update, helping to balance the global 

and local search capabilities. Additionally, the individual best position and the global best position are replaced by �⃗�𝛼,𝛽,𝛿 , which 

helps to avoid the search process from being trapped in local optima, as it encourages exploration of different regions indicated by 

the current best three solutions. The position update formula is �⃗�𝑖,𝑗
𝑡+1 = �⃗�𝑖,𝑗

𝑡 + �⃗⃗�𝑖,𝑗
𝑡+1 , which incorporates the influence of velocity 
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while converging toward �⃗�𝛼,𝛽,𝛿 . The distance formulas between the other wolves and the 𝛼, 𝛽, 𝛿 wolves are denoted as �⃗⃗⃗�𝛼 = |𝐶1 ⋅

�⃗�𝛼𝑗
− 𝑤 ⋅ �⃗�𝑖,𝑗|, �⃗⃗⃗�𝛽 = |𝐶2 ⋅ �⃗�𝛽𝑗

− 𝑤 ⋅ �⃗�𝑖,𝑗|, and �⃗⃗⃗�𝛿 = |𝐶3 ⋅ �⃗�𝛿𝑗
− 𝑤 ⋅ �⃗�𝑖,𝑗|. 

According to the above iteration mechanism, in each iteration 𝑡, the optimal three solutions 𝛼, 𝛽, 𝛿  are selected from the 

population based on the current positions �⃗�𝑖
𝑡 and fitness functions 𝑓(�⃗�𝑖

𝑡) of all search agents. The position corresponding to the 

best fitness is �⃗�𝛼, 𝛼_𝑠𝑐𝑜𝑟𝑒 = 𝑚𝑖𝑛{ 𝑓(�⃗�𝑖
𝑡)}. This process is repeated until the maximum number of iterations is reached or the 

fitness value converges to a certain threshold. 

The fused PSO-GWO algorithm is then compared with the original GWO algorithm in the Matlab environment. Both 

algorithms are tested on various fitness functions, including convex functions, non-convex functions, non-differentiable functions, 

non-separable functions, and multi-modal functions. After testing, it was found that the fused algorithm converges more quickly, 

and while enhancing the global search ability of the algorithm, it also reduces the risk of being trapped in local optima. 

3.3.2. APSO-KMV model 

First, consider attempting to use the APSO algorithm to update the coefficients 𝛼and 𝛽before LTD and STD, i.e., 𝐷𝑃 = 𝛼𝑆𝑇𝐷 +
𝛽𝐿𝑇𝐷. The default probability output by the KMV model is unified as the following formula: 

𝐸𝐷𝐹 = Φ(−𝐷𝐷) = Φ (−
𝑉 − 𝐷𝑃

𝑉σ𝑉

) = Φ {− [
𝐸 + 𝐷𝑒−𝑟𝑇Φ(𝑑2) − 𝛼𝑆𝑇𝐷Φ(𝑑1) − 𝛽𝐿𝑇𝐷Φ(𝑑1)

𝐸𝜎𝐸

]} , 𝑑1

=
𝑙𝑛 (

𝑉
𝐷

) + (𝑟 +
σ2

𝑉

2
) 𝑇

σ𝑉√𝑇
, 𝑑2 = 𝑑1 − σ𝑉√𝑇 (7)

 

Next, use the APSO algorithm to adjust this. In many financial risk management studies, the values of 𝛼and 𝛽are typically 

neither too large nor too small, generally ranging between 0.01 and 0.5, which can encompass the financial characteristics of most 

companies. Therefore, based on past experience, the initial range of the parameters is set as α, β ∈ [0.01,0.5], a range that provides 

sufficient flexibility while avoiding extreme parameter values, ensuring the model’s interpretability and stability. To facilitate the 

training of the classification model, the third quartile is introduced as the threshold. The reason for this is that in default risk 

prediction, default probabilities often have a right-skewed distribution, with a few companies having a high default risk. Using the 

third quartile as a threshold can effectively distinguish between the majority of low-risk companies and the few high-risk 

companies, thereby preventing the model from being overly biased toward the few extremely high-risk companies. The prediction 

of default categories is determined by comparing the EDF and the threshold: 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = {
1, 𝐸𝐷𝐹 ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(8) 

The goal of the algorithm is to maximize the AUC value, so the objective function is in the form of maximize 

maximizeAUC(α, β). Since the PSO algorithm is usually designed to minimize a function value, the negative value of the AUC is 

returned as the objective in the function to achieve maximization. The characteristic of the algorithm is that the larger the particle 

swarm, the broader the search space, but the computational cost will also increase. To achieve a good balance between accuracy 

and computational overhead, the number of particles is set to 200, while the maximum number of iterations is set to 200, ensuring 

that the PSO can fully explore the parameter space while avoiding excessive iterations that may lead to overfitting or excessive 

time costs. Finally, to prevent the algorithm from converging too quickly or getting trapped in a local optimum in the early stages, 

an improved adaptive inertia weight algorithm is introduced to dynamically adjust the weight value to enhance the efficiency and 

stability of the optimization process. After the model outputs the default probability, accuracy and cross-entropy are selected as 

evaluation metrics: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(9) 

𝑐𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −
1

𝑁
∑[𝑦𝑖 𝑙𝑜𝑔( 𝐸𝐷𝐹𝑖) + (1 − 𝑦𝑖) 𝑙𝑜𝑔( 1 − 𝐸𝐷𝐹𝑖)]

𝑁

𝑖=1

(10) 

Where 𝑦𝑖  (0,1) is the actual default status, 𝐸𝐷𝐹𝑖 is the predicted default probability, and 𝑁 is the total number of samples. 

3.3.3. PSO-GWO-KMV model 

Based on the PSO-KMV model, the GWO algorithm is added for optimization. The first step of the model is to use the PSO 

algorithm to output the global optimal parameters 𝛼𝑃𝑆𝑂  and 𝛽𝑃𝑆𝑂. The second step is to use 𝛼𝑃𝑆𝑂  and 𝛽𝑃𝑆𝑂  as the initial points and 

apply GWO for local optimization to obtain the final parameters 𝛼 ∗ and 𝛽 ∗. 
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Initialization settings: The number of search agents is 𝑛𝑎𝑔𝑒𝑛𝑡𝑠 = 20, the dimensionality is 𝑑𝑖𝑚 = 2, the initial positions are 

𝑋𝑖
0 ∼ 𝑈([0.01,0.01], [0.5,0.5]), 𝑖 = 1,2, . . . , 𝑛𝑎𝑔𝑒𝑛𝑡𝑠, the optimal solution is �⃗�𝛼,𝛽,𝛿 , and the initial score is infinity. 

Iterative update: In each iteration 𝑡 = 1,2, . . . , 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟, the following steps are performed: Evaluate the fitness, and for each 

search agent 𝑖, calculate the objective function 𝑓(𝑥𝑖
𝑡) = −𝐴𝑈𝐶(𝑥𝑖

𝑡), where 𝐴𝑈𝐶 is based on 𝐸𝐷𝐹 and the actual default labels; 

Update 𝛼, 𝛽, 𝛿. The mechanism is: 

 𝑖𝑓 𝑓(𝑥𝑖
𝑡) < 𝛼𝑠𝑐𝑜𝑟𝑒 , then 𝛼𝑠𝑐𝑜𝑟𝑒 = 𝑓(𝑥𝑖

𝑡), �⃗�𝛼 = 𝑥𝑖
𝑡  

else if  𝑓(𝑥𝑖
𝑡) < 𝛽𝑠𝑐𝑜𝑟𝑒 , then 𝛽𝑠𝑐𝑜𝑟𝑒 = 𝑓(𝑥𝑖

𝑡), �⃗�𝛽 = 𝑥𝑖
𝑡 (11) 

 else if  𝑓(𝑥𝑖
𝑡) < 𝛿_𝑠𝑐𝑜𝑟𝑒, then 𝛿_𝑠𝑐𝑜𝑟𝑒 = 𝑓(𝑥𝑖

𝑡), �⃗�𝛿 = 𝑥𝑖
𝑡  

Update the search agent position: For each agent 𝑖 and dimension 𝑗(𝑗 = 1,2), �⃗�1 = �⃗�𝛼𝑗
− 𝐴 ⋅ �⃗⃗⃗�𝛼 , �⃗�2 = �⃗�𝛽𝑗

− 𝐴 ⋅ �⃗⃗⃗�𝛽 ,�⃗�3 =

�⃗�𝛿𝑗
− 𝐴 ⋅ �⃗⃗⃗�𝛿 , where �⃗⃗⃗�𝛼,𝛽,𝛿 = |𝐶 ⋅ �⃗�𝛼,𝛽,𝛿 − �⃗�𝑖,𝑗

𝑡 | , 𝐴 = 2�⃗� ⋅ 𝑟1 − �⃗�, 𝐶 = 2𝑟2 , �⃗� = 2 −
2𝑡

𝑚𝑎𝑥_𝑖𝑡𝑒𝑟
, 𝑟1, 𝑟2 ∼ 𝑈(0,1) . Then, �⃗�𝑖,𝑗

𝑡+1 =

�⃗⃗�1+�⃗⃗�2+�⃗⃗�3

3
, the position is clipped as �⃗�𝑖,𝑗

𝑡+1 = 𝑚𝑎𝑥( 𝑚𝑖𝑛( �⃗�𝑖,𝑗
𝑡+1, 0.5),0.01) to ensure the values are within the allowed bounds. The 

algorithm stops after reaching the maximum number of iterations. 

4. Empirical analysis 

4.1. Data sources and description 

The data used in this experiment comes from the CSMAR database. The dataset includes financial indicators such as the market 

value of the company, debt market value, equity market value, equity volatility, and the risk-free interest rate. The assumption is 

made that the debt maturity time 𝑇=1 year, and the risk-free interest rate is selected as the 10-year government bond yield of 1.81%.  

4.2. Data preprocessing 

The following steps were taken to preprocess the raw data: 

Missing Value Handling: Rows with missing values were removed, and data from 5,234 companies were ultimately used. 

Normalization: To make different variables comparable and suitable for model training and parameter optimization, 

normalization was applied. Given that the absolute values of variables such as market value and debt market value play a significant 

role in calculating the default probability in the KMV model, normalization is more reasonable than standardization. The formula 

for normalization is: 𝑋𝑛𝑜𝑟𝑚 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
. Standardization converts data to a distribution with a mean of 0 and a standard deviation 

of 1, while normalization preserves the relative magnitude relationships between variables, which is more helpful for the 

calculation of default distance in the KMV model. Additionally, normalization ensures that companies of different sizes are 

comparable in terms of risk evaluation within the KMV model. For default judgment, after calculating the default probability using 

the KMV model, the third quartile is used as the threshold, i.e., Threshold = 2.23E − 11. This approach helps the model better 

capture the distribution characteristics of default risk and provides more reasonable label division standards for the classification 

model. Specifically, companies with a default probability less than this threshold are considered non-default, labeled as 0; those 

with a default probability greater than or equal to this value are considered default, labeled as 1. 

4.3. Calculation results and comparison 

4.3.1. Comparison between the APSO-KMV model and the original KMV model 

As the number of iterations increases, the outputs of the APSO-KMV model converge to 𝛼  =0.0496 and 𝛽  =0.2508. After 

optimization, the values of 𝛼 and 𝛽 were tested on the test set, and the AUC value improved from 0.7362 to 0.9994. By plotting 

the ROC curve, it was found that the optimized model significantly improved the true positive rate while maintaining a low false 

positive rate. This indicates that the PSO-optimized model has stronger discriminatory power in classifying whether a company 

defaults. Especially in the region with low false positive rates, the optimized model can more accurately distinguish between 

defaulting and non-defaulting companies, thereby reducing the false alarm rate in practical applications. The loss function 

𝜆(𝛼2|𝑤1) is defined as the cost of Type I error (predicting a defaulting borrower as normal), and 𝜆(𝛼1|𝑤2) is defined as the cost 

of Type II error (predicting a normal borrower as default). Research shows that the cost of Type I error is much higher than that 

of Type II error, so it is stipulated that −1 < 𝜆(𝛼1|𝑤2) < 𝜆(𝛼2|𝑤1) < 0. Under this premise, the optimized model effectively 

reduces the Type I error rate, which is significant for prediction models in this context. 
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After comparing the accuracy and binary cross-entropy loss, it was found that the accuracy of the APSO-KMV model improved 

from 0.2610 before optimization to 0.9996, while the binary cross-entropy loss increased from 0.7006 to 4.1990. From the results, 

it can be seen that the accuracy of the PSO-optimized model is close to 100%, indicating excellent data fitting. In contrast, the 

accuracy of the original parameter model is relatively low, suggesting that the original parameters are not effective for predicting 

corporate defaults in Chinese data. Moreover, the cross-entropy loss of the APSO-optimized model is much higher than that of the 

original parameter model, which may be due to the model overfitting the data. Therefore, in practical applications, regularization 

techniques may need to be introduced to balance the model’s generalization performance. 

4.3.2. Comparison of PSO-GWO-KMV model with APSO-KMV and KMV models 

To ensure accuracy while reducing binary cross-entropy loss, a hybrid strategy combining PSO and GWO was introduced to 

optimize key parameters in the KMV model. Additionally, the decision threshold was further improved through automatic search 

to enhance the model’s accuracy and reliability. Furthermore, to address the overfitting issue in the PSO-KMV model, a 

regularization method was incorporated. The threshold optimization method involves setting the search range as Threshold ∈
[0.1,0.9] , with a step size of 0.01, while maintaining the classification rule. The objective function is 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∗=
𝑎𝑟𝑔 𝑚𝑎𝑥

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
𝐴𝑈𝐶, 𝐴𝑈𝐶 = 𝑟𝑜𝑐_𝑎𝑢𝑐_𝑠𝑐𝑜𝑟𝑒(𝑦, 𝐸𝐷𝐹), and the optimal threshold and corresponding 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∗ are output. The 

objective function with regularization added is 𝑓(𝑥𝑖
𝑡) = −(𝐴𝑈𝐶(𝑥𝑖

𝑡) − 𝜆(𝛼2 + 𝛽2)), where 𝜆 is the regularization coefficient, 

defaulted to 0.01. By running the PSO-GWO algorithm, the parameters of the PSO-GWO-KMV model were compared with those 

of other models: 

Table 1. Comparison of three major model indicators 

Model Comparison PSO-GWO-KMV PSO-KMV KMV 

Model Parameters 
𝛼 0.0496 0.0496 1 

𝛽 0.2690 0.2508 0.5 

AUC 0.9987 0.9994 0.7362 

Accuracy 0.7603 0.9996 0.2610 

Binary Cross-Entropy Loss 4.0717 4.1990 0.7006 

 

The optimized model output values for 𝛼 were essentially consistent, with only slight adjustments made to  𝛽. From the 

perspective of key indicators in the PSO-GWO-KMV model, the AUC (Area Under the Curve) remains close to 1, indicating that 

the model has a strong ability to distinguish default risks. In terms of accuracy and binary cross-entropy loss, the PSO-GWO-

KMV model has not fully resolved the overfitting problem observed in the PSO-KMV model. The model’s accuracy suggests that 

approximately 76% of default predictions are correct on the current dataset, which is still much higher than the original KMV 

model but lower than the PSO-KMV model. The binary cross-entropy value remains relatively high, indicating that the model’s 

performance in handling extreme cases is still not ideal, though extreme situations are not common in practical applications. The 

model still has room for further optimization when processing complex financial data. 

5. Conclusion and suggestions 

Banks play a dominant role in China’s financial system, and credit risk management is the core business of commercial bank 

operations. This research focuses on the narrow sense of credit risk in commercial banks, specifically assessing the credit risk of 

enterprises that have business dealings with commercial banks. The KMV model is a mature model in the industry for evaluating 

the credit risk of listed companies, but its default point parameters are based on calculations from foreign databases, which may 

lack external validity. To address this, this paper uses particle swarm optimization (PSO) and grey wolf optimization (GWO) 

algorithms to correct the KMV model and output optimized parameters. The study found that the combined APSO-KMV model 

and PSO-GWO-KMV model provide a more accurate measurement of default risk in listed companies compared to the original 

KMV model. 

Based on the empirical research findings, the adjusted KMV model’s calculation of the default distance and default probability 

can serve as reference indicators for commercial banks when assessing the credit risk of listed companies, assisting managers in 

making loan decisions. Of course, aside from listed companies, there are also many non-listed companies that apply for loans from 

banks. However, since the KMV model uses stock prices as a substitute for company asset values, it is not suitable for evaluating 

non-listed companies. To address this, various intelligent optimization algorithms can be utilized to analyze the implicit 

relationships between the asset values of non-listed companies and their publicly disclosed financial data. Additionally, the growth 

rate of enterprise asset value has been neglected. Therefore, it is worth considering the integration of various dividend growth 

models to improve the evaluation model and more accurately measure risk. 
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