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Abstract. Green innovation plays a crucial role in promoting high-quality regional development. Enhancing green innovation 

efficiency is of great significance for implementing the innovation-driven development strategy and improving urban green 

development. Based on panel data from 277 prefecture-level and above cities in China from 2011 to 2021, this paper uses a super-

efficiency SBM model to measure green innovation efficiency. The Kernel density estimation method and Dagum Gini coefficient 

are adopted to analyze the dynamic evolution trend and regional disparities of green innovation efficiency. Furthermore, spatial 

convergence models are constructed to explore its convergence characteristics. The findings are as follows: (1) Overall, green 

innovation efficiency in China shows a fluctuating upward trend, entering a stable growth phase after 2017. (2) In terms of dynamic 

evolution, from 2011 to 2021, urban green innovation efficiency is mainly concentrated at a medium level, showing a rightward 

trend and a certain degree of convergence. The eastern region shows a transition from a bimodal to a unimodal distribution, 

indicating a weakening polarization; the central region has the weakest agglomeration and the most severe polarization; while the 

western region shows some agglomeration but with a pronounced left tail. (3) In terms of regional differences, the regional 

disparities in green innovation efficiency among Chinese cities exhibit a fluctuating downward trend, reflecting spatial imbalance 

and relatively slow overall development. The eastern region has the largest internal disparities, while the central and western 

regions differ most from each other. Hypervariable density is the main source of regional disparities. (4) Regarding convergence, 

green innovation efficiency across the country and in the three major regions exhibits significant σ convergence, absolute β spatial 

convergence, and conditional β spatial convergence. Influencing factors vary across regions. 
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1. Introduction 

Over the past four decades of reform and opening-up, China’s economic development has made historic strides. Gross Domestic 

Product (GDP) soared from 451.78 billion yuan in 1980 to 141 trillion yuan in 2024, making China the world’s second-largest 

economy and the primary engine of global economic recovery with a contribution rate exceeding 30% for many years. However, 

the traditional development model driven by factor inputs such as capital and labor now faces dual constraints: tightening 

environmental regulations and increasing regional imbalances. Against this backdrop, building a synergistic mechanism that 

balances economic development with ecological protection—and promoting regional coordination through innovation—has 

become central to achieving high-quality development. As an institutional innovation that breaks through the constraints of 

traditional development paths, green innovation integrates eco-friendly concepts with technological innovation systems, 

stimulating both technological and institutional innovation as well as the coordination of economic and environmental 

development. It is increasingly becoming a key pathway to sustainable development. 

Green innovation is a critical driver of high-quality economic growth. It possesses dual positive externalities—promoting both 

technological progress and economic benefits while significantly improving environmental quality. Achieving high-quality 

regional green development is inseparable from improving green innovation efficiency. Specifically, it requires strengthening 

regional innovation capacity, forming new patterns of rational allocation of innovation resources and orderly flow of production 

factors, and advancing the industrialization and scaling-up of green technologies. The goal is to achieve a low input-output ratio 

with minimal environmental cost, thereby narrowing regional economic gaps and providing continuous momentum for sustainable 

economic development. However, several questions remain unresolved: What is the current state of green innovation efficiency 
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in Chinese cities? Are there regional disparities? Is there evidence of convergence? In-depth exploration of these issues and the 

formulation of localized and effective policy measures are of great significance for promoting China’s high-quality development. 

Green innovation efficiency refers to the maximum innovation output achievable with a given set of innovation resource inputs 

in a specific region [1]. It is the core driver of green innovation [2]. Scholars have conducted extensive research in this area, 

focusing mainly on the measurement methods of green innovation efficiency, spatial characteristics, and influencing factors. In 

terms of measurement, the methodology has shifted from traditional indicator systems and stochastic frontier analysis to non-

parametric Data Envelopment Analysis (DEA) methods [3-5]. Regarding spatial characteristics, Lü employed Moran’s I and 

convergence models 𝛽 to empirically reveal the spatiotemporal evolution and convergence of regional green innovation efficiency 

in China [6]. Hu and others investigated the effects of industrial coupling and spatial agglomeration on green innovation from the 

perspectives of industrial synergy and spatial co-location [7]. In terms of influencing factors, existing research suggests that 

environmental regulation, technological advancement, factor mobility, digital inclusive finance, energy consumption, and financial 

support significantly affect green innovation efficiency [8-12]. 

In summary, existing literature provides a solid theoretical foundation by addressing the measurement, spatial characteristics, 

and influencing factors of green innovation efficiency. However, there remain areas for further exploration: First, in terms of 

indicator selection, most studies focus on the “innovation-driven” aspect of green innovation efficiency, with limited attention to 

the “green development” dimension. Second, regarding research content, there is insufficient investigation into the spatial 

convergence characteristics of green innovation efficiency at the city level, and the spatial spillover effects have not been 

adequately considered. Given the geographical connections among cities, spatial interactions in green innovation are likely. Third, 

concerning research scale, most studies focus on the national, provincial, or urban agglomeration level, with few studies targeting 

the municipal level—an essential scale for observing spatial heterogeneity in green innovation efficiency. These macro-level 

results often lack demonstrative and practical guidance. 

Based on these gaps, this paper systematically reviews the concept of green innovation and, from the perspectives of eco-

friendliness and innovation-driven development, constructs an evaluation index system for green innovation efficiency. Using 

panel data from 277 prefecture-level and above cities in China between 2011 and 2021, the super-efficiency SBM-DEA model is 

employed to measure green innovation efficiency. Furthermore, the Kernel density estimation method and the Dagum Gini 

coefficient are used to analyze its dynamic evolution and regional disparities. Finally, spatial β convergence models—both absolute 

and conditional—are introduced to examine convergence characteristics and propose policy recommendations for coordinated 

development of urban green innovation efficiency. 

2. Construction of the indicator system, data sources, and research methods 

(1) Construction of the urban green innovation efficiency evaluation index system 

As a development strategy that organically integrates environmental protection with economic growth, green innovation is a 

key approach to addressing the current challenges facing urban development. It combines innovation theory with ecological 

principles, emphasizing environmental protection throughout the innovation process while aiming to maximize resource 

conservation and pollution reduction. In terms of innovation inputs, it is essential to systematically include urban investments in 

labor, capital, and energy to comprehensively reflect resource allocation capacity and the level of long-term accumulation. 

Innovation outputs should reflect the effectiveness of innovation, economic performance, and environmental benefits, while also 

accounting for the environmental costs generated in green innovation activities. Based on these considerations, this paper 

constructs an input–output indicator system for evaluating urban green innovation efficiency in China, as shown in Table 1. 

To address the limitations of traditional DEA models, this study adopts an improved super-efficiency SBM-DEA model. This 

approach overcomes three major drawbacks of conventional DEA by introducing a non-radial and non-angular treatment to capture 

slack variables in inputs and outputs, and by setting an independent weight vector (λ) to achieve more precise efficiency 

measurements for each Decision-Making Unit (DMU). 

Table 1. Construction of the evaluation index system for urban green innovation efficiency 

Indicator Type Primary Indicator Secondary Indicator 

Input 

Labor Input Number of R&D personnel in industrial enterprises above designated size 

Capital Input 
Internal R&D expenditure of industrial enterprises above designated size 

Environmental Governance Input 

Energy Input Total electricity consumption across society 

Desired Output 

Economic Benefit GDP per capita 

Innovation Output Number of authorized patents 

Green Development Green coverage rate of built-up areas 

Undesired 

Output 
Environmental Pollution 

Volume of industrial wastewater discharge 

Volume of industrial sulfur dioxide emissions 

Volume of industrial smoke and dust emissions 

 

(2) Data sources and notes 
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Due to the absence of some indicators in certain cities, this paper selects panel data from 277 prefecture-level cities in China 

from 2012 to 2021, based on the availability of relevant data. Data are primarily sourced from the statistical yearbooks of each 

city for the years 2011 to 2021. Missing values are supplemented using linear interpolation. 

(3) Research methods 

This study employs a non-parametric Kernel density estimation method, treating the green innovation efficiency of each city 

as a continuous probability distribution to depict spatial distribution patterns and polarization characteristics. To further assess 

regional disparities in green innovation efficiency, the Dagum Gini coefficient is utilized for decomposing and analyzing spatial 

inequality. Furthermore, by combining σ convergence and 𝛽 convergence models, the temporal evolution and convergence trends 

of green innovation efficiency are systematically examined. To better capture spatial dependencies and interactions between 

regions, spatial convergence models are constructed, which improve the explanatory power of regional disparities and convergence 

mechanisms in green innovation efficiency. This study constructs a Spatial Lag Model and a Spatial Error Model to analyze spatial 

convergence. The forms of the absolute β-convergence Spatial Lag Model and Spatial Error Model are as follows: 

 𝑙𝑛( 𝐸𝐹𝐹𝑖𝑡+1/𝐸𝐹𝐹𝑖𝑡) = 𝛼 + 𝛽 𝑙𝑛 𝐸 𝐹𝐹𝑖𝑡 + 𝜌𝑊(𝑙𝑛( 𝐸𝐹𝐹𝑖𝑡+1/𝐸𝐹𝐹𝑖𝑡)) + 𝜀𝑖𝑡 (1) 

 𝑙𝑛( 𝐸𝐹𝐹𝑖𝑡+1/𝐸𝐹𝐹𝑖𝑡) = 𝛼 + 𝛽 𝑙𝑛 𝐸 𝐹𝐹𝑖𝑡 + (𝐼 − 𝜆𝑊)−1𝜇𝑖𝑡 (2) 

Where: 𝑊is an 𝑛 × 𝑛 spatial weight matrix,𝜌 is the spatial lag coefficient, 𝜀𝑖𝑡 is the random error term, 𝜆 is the spatial error 

coefficient, and 𝜇𝑖𝑡 is a normally distributed random error term. 

3. Analysis of the dynamic evolution and regional disparities of green innovation efficiency 

3.1. Analysis of the dynamic evolution characteristics of green innovation efficiency 

Based on data from prefecture-level cities and three major regions in China, this study calculates green innovation efficiency 

from 2011 to 2021. Figure 1 illustrates the changes in the national average of green innovation efficiency during this period. 

At the national level, green innovation efficiency showed a fluctuating upward trend from 2011 to 2020. The national average 

rose from 0.667 in 2011 to 0.764 in 2020, reflecting a 14.54% increase. The year-on-year growth rates for the eastern, central, and 

western regions were 27.05%, 0.21%, and 17.22%, respectively. A temporary decline was observed from 2015 to 2017, likely 

influenced by national policy developments. Specifically, the introduction of the "Five Major Development Concepts" and the 

implementation of the new Environmental Protection Law in 2015 marked the beginning of a new era of environmental governance 

in China. This new law mandated that governments at all levels strengthen environmental protection, uphold citizens’ 

environmental rights, and impose stricter penalties for environmental violations. While stringent environmental regulations may 

have temporarily suppressed green innovation efficiency in the short term, they contributed to long-term improvements. 

At the regional level, the average green innovation efficiency scores for the eastern, central, and western regions were 0.8462, 

0.6482, and 0.7494, respectively, with the national average at 0.7483. This suggests that the eastern region had the highest 

efficiency, followed by the western region, while the central region lagged behind. Further analysis indicates that the disparity 

between the eastern and central regions is significantly larger than that between the central and western regions. In the western 

region, a mismatch between technological advancement and economic development hindered the effective transformation of 

innovation into growth. In contrast, the eastern region demonstrated superior resource allocation and operational efficiency, which 

stimulated innovation and boosted regional vitality. This underscores the need for the central and western regions to further 

enhance the coordination between technology and economic development to improve efficiency. In terms of trend changes, green 

innovation efficiency improved in both the eastern and western regions after the implementation of the new Environmental 

Protection Law between 2018 and 2020. However, the central region experienced relatively slow growth. This can be attributed 

to its economic structure, which is dominated by high-energy-consuming, high-pollution, and low-efficiency industries, as well as 

its lagging pace of industrial transformation and upgrading. Overall, most Chinese cities still need to improve their input–output 

efficiency, highlighting the importance of optimizing resource allocation and avoiding inefficient investments to effectively 

enhance green innovation efficiency. 
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Figure 1. Changes in the average green innovation efficiency in China (2011–2021) 

3.2. Analysis of the spatial pattern characteristics of green innovation efficiency 

Based on the calculated levels of green innovation efficiency, this paper plots Kernel density estimation curves for China as a 

whole and its three major regions from 2011 to 2021, in order to analyze the spatial distribution patterns and temporal trends of 

green innovation efficiency. These are shown in Figure 2. 

At the national level, the Kernel density curves demonstrate the dynamic distribution of green innovation efficiency across 

China. Except for 2016, when the curve’s center shifted slightly to the left compared with the baseline year, the centers in other 

years moved rightward, indicating a general trend of first increasing, then decreasing, and then increasing again in green innovation 

efficiency. This suggests that disparities initially widened but subsequently narrowed and continued to improve. Regarding curve 

shape, the height of the peak follows an inverted U-shaped pattern and gradually transitions from a multi-peaked to a single-peaked 

distribution, indicating a weakening of the multi-polar differentiation in green innovation efficiency across regions. At the same 

time, the tails of the distribution curves narrowed, peaks flattened, and widths shrank over time. These patterns reflect a rightward 

shift in the Kernel density curves and imply the presence of dynamic convergence in green innovation efficiency. 

At the regional level, the eastern region’s curve centers clearly shifted to the right over time, whereas those for the central and 

western regions shifted leftward. Meanwhile, the central and western regions saw increasingly prominent peaks, suggesting that 

although significant disparities persisted in those regions, the situation improved year by year, reflecting positive outcomes from 

China’s development strategies and regulatory frameworks. From the perspective of distribution width and peak height, the curves 

for all three regions narrowed while their peaks increased, signaling regional convergence trends that are consistent with the 

national pattern. However, the central region exhibited a long and persistent left tail and a leftward-shifting peak, indicating a 

stepwise distribution and pronounced polarization. The variation in resource endowments across provinces contributed to uneven 

improvements in green innovation efficiency, resulting in short-term expansion of absolute regional disparities. In contrast, the 

eastern region showed a clear transition from a bimodal to a unimodal distribution, with a weakening left tail over time. This 

demonstrates that eastern cities have taken local conditions and development environments into full account when advancing green 

innovation, successfully coordinating regional development and achieving notable progress. In summary, the analysis of the 

dynamic evolution and spatial distribution of green innovation efficiency indicates that China’s policies and practical efforts in 

green innovation have yielded substantial achievements. Moving forward, it is essential to continue optimizing development 

strategies, further narrow regional gaps, and enhance green innovation across the board. 
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Figure 2. Kernel density estimation curves of green innovation efficiency in China and its major regions (2011–2021) 

3.3. Regional disparities and sources of green innovation efficiency 

The Dagum Gini coefficient is a powerful tool for analyzing both regional disparities in efficiency and the sources of such 

disparities. To clarify the regional differences and their origins in China’s green innovation efficiency, this study presents figures 

and tables showing intra- and inter-regional disparities across the nation and its three major regions from 2011 to 2021, as well as 

the decomposition and contribution rates of the Gini coefficient (see Table 2 and Table 3). 

(i) Overall disparities 

Table 2 reports that during the observation period, the national Gini coefficient for green innovation efficiency exhibited a 

fluctuating, inverted U-shaped trend. By 2016, the overall Gini coefficient had decreased steadily, followed by a two-year plateau 

and then an upward trend. This pattern suggests that spatial imbalance persists in the development of green innovation efficiency 

in China, with overall progress being slow and complex. Hence, it is urgent to optimize resource allocation and improve 

coordination between market mechanisms and government regulation to enhance efficiency. 

(ii) Intra-regional disparities 

From Table 2, the average intra-regional Gini coefficients for the country, eastern, central, and western regions are 0.12151, 

0.1352, 0.1136, and 0.1244, respectively. Notably, the central and western regions' average Gini coefficients are lower than the 

national average, suggesting that intra-regional disparities are more pronounced than inter-regional ones in driving the overall gap 

in green innovation efficiency. This reflects how region-specific innovation strategies are foundational to progress, while cross-

region integration plays a supporting role. Specifically, intra-regional disparities in the eastern and western regions increased 

notably, exacerbating internal gaps. In contrast, disparities in the central region declined by about 17.59%, largely due to national 

strategies such as the “Rise of Central China,” which bolstered manufacturing bases, revitalized old industrial zones, and 

transformed resource-dependent cities—thereby strengthening innovation activity among central cities. 

(iii) Inter-regional disparities 

According to Table 2, the average inter-regional Gini coefficients between eastern–central, eastern–western, and central–

western regions are 0.0379, 0.0582, and 0.0619, respectively. This indicates that gaps between the western region and the other 

two remain significant, due to its weaker infrastructure and higher costs. Strengthening the western region by addressing its 

shortcomings is essential for elevating national green innovation efficiency. Additionally, the reductions in Gini coefficients 

between eastern–central, eastern–western, and central–western regions were 79.14%, 53.86%, and 56.38%, respectively, 

suggesting the central region plays a pivotal role in China’s spatial strategy and national development frameworks. Its development 

enhances coordination among the eastern, central, and western regions, narrowing inter-regional disparities. 

Table 2. Dagum Gini coefficient results (2011–2021) 

Year National Gini Intra-Regional Disparities Inter-Regional Disparities 

Eastern Region Central Region Western Region East-Central East-West Central-West 

2011 0.1428 0.1434 0.1383 0.1455 0.0278 0.0776 0.1066 

2012 0.1462 0.1522 0.1373 0.1466 0.1048 0.1386 0.0395 
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2013 0.1273 0.1393 0.1196 0.1210 0.1302 0.1317 0.1210 

2014 0.1062 0.1196 0.0929 0.1037 0.0012 0.0752 0.0874 

2015 0.1070 0.1143 0.1017 0.1034 0.0038 0.1005 0.1114 

2016 0.1066 0.1199 0.0940 0.1039 0.0380 0.0189 0.0201 

2017 0.1299 0.1421 0.1192 0.1270 0.0292 0.0097 0.0205 

2018 0.1267 0.1336 0.1160 0.1290 0.0264 0.0173 0.0454 

2019 0.1120 0.1243 0.1022 0.1067 0.0556 0.0230 0.0361 

2020 0.1187 0.1315 0.1013 0.1202 0.0316 0.0116 0.0466 

2021 0.1526 0.1673 0.1266 0.1609 0.0058 0.0358 0.0465 

Avg. 0.1251 0.1352 0.1136 0.1244 0.0379 0.0582 0.0619 

 

(iv) Sources of disparities and contribution rates 

Table 3 decomposes the Dagum Gini coefficient into intra-regional disparities, inter-regional disparities, and transvariation 

(overlapping). On average, 𝐺𝑤 , 𝐺𝑛𝑏 and 𝐺𝑡  contributed 33.15%, 3.16%, and 63.69%, respectively. This indicates that 

transvariation—or cross-regional overlap—is the primary source of disparity in green innovation efficiency. This is largely due to 

significant gaps between individual provinces and regional averages, leading to a high degree of overlap in inter-regional 

distributions. From a temporal perspective (2011–2021), the contribution of intra-regional disparities decreased slightly by 0.36%, 

while the net contribution of inter-regional disparities declined by about 58.18%. By contrast, transvariation increased by 

approximately 4.12% over the period. These findings suggest that the main source of disparities is shifting from transvariation to 

direct inter-regional gaps. The stable contribution of intra-regional disparities suggests robust trade cooperation and synergistic 

mechanisms among provinces. Therefore, to enhance green innovation efficiency, China should focus on reducing both intra- and 

inter-regional disparities and promote balanced regional development and collaborative innovation. 

Table 3. Sources and contribution rates of Dagum Gini coefficient decomposition  

Year Contribution Contribution Rate (%) 

𝐺𝑤 𝐺𝑛𝑏 𝐺𝑡 𝐺𝑤 𝐺𝑛𝑏 𝐺𝑡 

2011 0.0475 0.0067 0.0886 33.2355 4.7189 62.0456 

2012 0.0485 0.0093 0.0884 33.1607 6.3856 60.4537 

2013 0.0422 0.0048 0.0802 33.1561 3.8363 63.0075 

2014 0.0351 0.0038 0.0672 33.0935 3.6021 63.3044 

2015 0.0355 0.0051 0.0664 33.1795 4.7546 62.0659 

2016 0.0353 0.0018 0.0695 33.1268 1.7200 65.1532 

2017 0.0431 0.0017 0.0850 33.2157 1.3173 65.4669 

2018 0.0421 0.0025 0.0821 33.2169 1.9659 64.8172 

2019 0.0370 0.0029 0.0721 33.0559 2.5681 64.3760 

2020 0.0392 0.0023 0.0772 33.0409 1.9572 65.0019 

2021 0.0505 0.0030 0.0991 33.1158 1.9733 64.9109 

Avg. 0.0415 0.0039 0.0796 33.1452 3.1636 63.6912 

 

An analysis of the trends in the Gini coefficient reveals significant disparities in green innovation efficiency across different 

regions in China. This imbalance has hindered the overall pace of development. The government should increase support for 

technological research and development as well as industrial upgrading, and guide each region to formulate differentiated 

development strategies in order to gradually eliminate regional gaps and achieve high-quality, sustainable development. Improving 

green innovation efficiency requires a focus on coordinated regional development by optimizing policies and resource allocation. 

It is essential to encourage regions to engage in innovation activities that align with their unique characteristics, thereby promoting 

overall improvement. At the same time, interregional cooperation should be strengthened to facilitate the transfer of innovation 

achievements from the eastern region to the central and western regions, promoting balanced development and narrowing regional 

disparities. Future policies should emphasize coordinated planning in the central region, leveraging its role as a strategic hub to 

drive coordinated development among eastern, central, and western China, and thereby comprehensively enhance the efficiency 

of green innovation nationwide. 

Table 2. Continued 
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4. Convergence analysis of green innovation efficiency 

Building on the analysis of regional disparities in green innovation efficiency, this section further explores the trend of narrowing 

gaps—namely, how less-developed regions catch up with more-developed ones—and the factors influencing convergence. Two 

approaches are employed: σ-convergence and β-convergence, to reveal regional patterns and evolution in green innovation 

efficiency and to provide policy recommendations. 

4.1. σ-Convergence 

Table 4 presents the σ-convergence results, using the coefficient of variation to measure regional disparities. Between 2011 

and 2021, although fluctuations occurred, the overall coefficient of variation at the national level showed a slight downward trend, 

indicating weak national-level σ-convergence. At the regional level: The eastern and western regions showed significant declines 

in their coefficients of variation, decreasing by 12.14% and 30.36%, respectively—evidence of σ-convergence in these areas. In 

contrast, the central region displayed instability and no clear convergence trend. This is likely due to its relatively weak economic 

scale and consumption capacity, as well as unbalanced industrial structures. To achieve stronger convergence in the central region, 

there is a need to optimize its economic structure and enhance productive and consumption capabilities. 

Table 4. σ-Convergence test of green innovation efficiency in China and its major regions 

Year National Eastern Central Western 

2011 0.1703 0.1468 0.1461 0.2117 

2012 0.1789 0.1503 0.1661 0.2126 

2013 0.1640 0.1643 0.1593 0.1439 

2014 0.1483 0.1330 0.1458 0.1288 

2015 0.1521 0.1308 0.1479 0.1567 

2016 0.1420 0.1181 0.1372 0.1404 

2017 0.1687 0.1192 0.1517 0.1375 

2018 0.1674 0.1109 0.1523 0.1326 

2019 0.1549 0.1004 0.1448 0.1301 

2020 0.1589 0.1127 0.1326 0.1343 

2021 0.1613 0.1290 0.1444 0.1474 

 

4.2. Spatial autocorrelation test 

Table 5 reports the results of the Moran’s I test using three types of spatial weight matrices: adjacency, economic distance, and 

geographic distance. Across most years and matrices, Moran’s I values are significantly positive, indicating that green innovation 

efficiency is spatially clustered. However, under the economic distance matrix, the Moran’s I index is not significant for the years 

2013–2016. In contrast, geographic and adjacency-based matrices consistently show strong spatial correlation, confirming the 

importance of spatial factors. 

Table 5. Spatial autocorrelation test of green innovation efficiency 

Year 
Adjacency Weight Matrix 

Economic Distance Weight 

Matrix 

Geographic Distance Weight 

Matrix 

Moran’s I Z-value Moran’s I Z-value Moran’s I Z-value 

2011 0.166*** 4.272 0.037* 1.340 0.041*** 8.642 

2012 0.193*** 4.937 0.049** 1.751 0.041*** 8.732 

2013 0.172*** 4.422 0.032 1.179 0.031*** 6.847 

2014 0.179*** 4.603 0.027 1.037 0.034*** 7.444 

2015 0.199*** 5.111 0.028 1.048 0.036*** 7.749 

2016 0.148*** 3.828 0.012 0.517 0.026*** 5.792 

2017 0.307** 7.826 0.061** 2.159 0.071*** 14.709 

2018 0.307*** 7.815 0.108*** 3.741 0.070*** 14.350 
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2019 0.244*** 6.241 0.085*** 2.961 0.052*** 10.844 

2020 0.273*** 6.983 0.105*** 3.634 0.050*** 10.587 

2021 0.142*** 3.681 0.033* 1.422 0.028*** 6.226 

 

4.3.  Spatial convergence analysis 

This study employs the Lagrange Multiplier (LM) test, the Likelihood Ratio (LR) test, and the Hausman test to determine the 

optimal regression model for the convergence analysis. The results of the LM test show that, regardless of the spatial weight matrix 

used, both spatial error effects and spatial lag effects are statistically significant. The LR test results indicate that the Spatial Durbin 

Model (SDM) can be simplified to either a Spatial Autoregressive Model (SAR) or a Spatial Error Model (SEM). The Hausman 

test rejects the null hypothesis at the 1% significance level, indicating that a fixed effects model is more appropriate. Considering 

the long panel structure of the dataset used in this study, and the critical role of individual effects, a two-way fixed effects model—

accounting for both individual and time effects—is employed to avoid excessive loss of degrees of freedom. 

4.3.1. Absolute β-convergence analysis. 

 Given the significant spatial correlation characteristics of regional green innovation efficiency in China, this study first applies 

a traditional β-convergence model, followed by an extended model that incorporates spatial effects to examine absolute β-

convergence. First, a panel regression model is used to simulate regional green innovation efficiency without spatial effects, and 

the spatial correlation of the regression residuals is tested to determine the appropriate spatial econometric model (see Table 6). 

Second, a spatial econometric model is constructed to analyze the absolute β-convergence trend of China’s regional green 

innovation efficiency while accounting for spatial dependence (see Table 7). 

As shown in Table 6, the β coefficients for the national level and for the eastern, central, and western regions are all negative 

and significant at the 1% level, indicating that in the absence of spatial effects, regions with lower green innovation efficiency tend 

to grow faster, thus converging toward a steady state. The shorter the half-life, the less time it takes for a region to reach its steady 

state in green innovation efficiency. Specifically: The national average half-life is 34.8209 years; For the eastern, central, and 

western regions, the half-lives are 34.4614, 34.3361, and 18.6873 years, respectively. This suggests that the eastern and central 

regions take longer to reach equilibrium, while the western region converges more quickly, reflecting a relatively faster 

improvement in its green innovation efficiency. 

Table 6. Parameter estimates and test results of the traditional absolute β-convergence model 

Variable National Eastern Region Central Region Western Region 

α 
-0.0476*** 

(0.043) 

-0.0177*** 

(0.0044) 

-0.0834*** 

(0.0099) 

-0.0844*** 

(0.0091) 

β 
-0.1805*** 

(0.0107) 

-0.1822*** 

(0.0152) 

-0.1828*** 

(0.0206) 

-0.3099*** 

(0.2165) 

s 0.0199 0.0201 0.0202 0.0371 

τ(year) 34.8209 34.4614 34.3361 18.6873 

R2 0.0931 0.1285 0.1475 0.2106 

Log(L) 1566.5000 927.6579 495.8831 349.5472 

LM(LAG) 33.202*** 13.519*** 10.424*** 6.878*** 

R-LM(LAG) 0.352 8.386*** 1.086 3.876* 

LM(ERR) 36.961*** 8.283*** 9.459*** 12.441*** 

R-LM(ERR) 4.111* 3.150* 0.121 9.439*** 

N 2,770 980 1,000 790 

Note: Values in parentheses are standard errors. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively. 

Table 7. Absolute β-space convergence model parameter estimation and test results 

Variable 
National Eastern Region Central Region Western Region 

SEM SAR SEM SAR SEM SAR SEM SAR 

Table 5. Continued 
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β 
-0.5193*** 

(0.1795) 

-0.4972*** 

(0.0175) 

-0.4219*** 

(0.0266) 

-0.4088*** 

(0.0263) 
-0.5308***(0.0329) 

-0.5256*** 

(0.0325) 

-0.6179*** 

(0.0329) 

-0.6176*** 

(0.000) 

ρ or λ 
0.1930*** 

(0.0249) 

0.1374*** 

(0.023) 

0.2029*** 

(0.0399) 

0.1707*** 

(0.0384) 

0.0155* 

(0.0006) 

0.0171* 

(0.0430) 

-0.0067 

(0.0449) 

-0.0029 

(0.0395) 

s 0.0655 0.0699 0.0863 0.0895 0.0633 0.0643 0.0481 0.0482 

τ(year) 10.5780 9.9196 8.0320 7.7487 10.9438 10.7763 14.3977 14.3832 

R2 0.2570 0.2518 0.2386 0.2291 0.1984 0.1978 0.3468 0.3467 

Log(L) 2069.433 2057.134 1149.482 1146.105 665.033 664.201 511.0149 510.9892 

N 2,770 2,770 980 980 1,000 1,000 790 790 

Note: Values in parentheses are standard errors. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively. 

 

The results of the LM test indicate that both LM (LAG) and LM (ERR) statistics for the national level and the eastern, central, 

and western regions are statistically significant, confirming the presence of strong spatial effects in all areas. Model selection 

follows the decision rule proposed by Anselin et al. (1996) [27]. At the national level, both LM (LAG) and LM (ERR) are 

significant; however, since the test statistic for LM (LAG) is smaller than that for LM (ERR), the Spatial Lag Model (SAR) is 

considered more appropriate. For the eastern region, although both LM statistics are significant, the LM (LAG) statistic is larger 

than LM (ERR), making the Spatial Error Model (SEM) the preferred choice. In the central region, both statistics are significant, 

and the LM (LAG) statistic is smaller, indicating that the Spatial Lag Model is more suitable. Similarly, for the western region, 

the SAR model is deemed more appropriate based on the same criteria. 

After incorporating spatial effects into the absolute β-convergence model, the results are presented in Table 7. The β-

convergence coefficients for the national level and the eastern, central, and western regions are all negative and statistically 

significant at the 1% level, indicating that even after accounting for spatial dependence, regions continue to exhibit a significant 

trend of absolute β-convergence in green innovation efficiency. In addition, improvements in log-likelihood (Log(L)) and R² values 

suggest that the spatial models perform better than traditional models, further validating the importance of including spatial effects. 

Specifically, the half-life values (τ) for the national level, eastern, central, and western regions are 9.9196, 7.7487, 10.9438, and 

14.3832 years, respectively. This implies that, after accounting for spatial effects, the speed of convergence in green innovation 

efficiency has increased across all regions—particularly in the eastern and western regions, which now reach steady states in a 

shorter time. This reflects the promoting role of spatial effects in regional convergence. Furthermore, the spatial lag coefficients 

(ρ) and spatial error coefficients (λ) are significantly positive in the national, eastern, and central regions (but not significant in the 

western region), indicating that spatial effects have a positive impact on the convergence of green innovation efficiency in these 

areas. Additionally, the spatial correlation in response to common external shocks among regions exhibits a complementary 

relationship, further emphasizing the interconnected nature of regional development. 

4.3.2. Conditional β-convergence analysis 

Conditional β-convergence refers to the analysis of convergence trends after accounting for the influence of external factors 

on the narrowing of regional gaps. In examining the conditional β-convergence trend of green innovation efficiency in China, this 

study introduces control variables from three dimensions: economic, institutional, and technological.  

At the economic level, we select Outward Foreign Direct Investment (OFDI) and Financial Agglomeration (FA) as control 

variables. OFDI facilitates technology transfer and knowledge diffusion, thereby enhancing regional innovation capacity and 

efficiency and accelerating regional convergence. It is measured as the ratio of foreign direct investment to regional GDP. Financial 

agglomeration provides abundant capital and innovation resources that support R&D and technology application, particularly 

helping underdeveloped areas to improve green innovation efficiency through financing and mature technology transfer. It is 

measured using the location quotient of financial sector employment. At the institutional level, we include Environmental 

Regulation (ER) and Green Finance (GF). Environmental regulation encourages firms to improve technologies and optimize 

resource utilization, boosting their green innovation capacity. Stringent regulation not only promotes technological progress but 

also enhances firms’ abilities to cope with environmental challenges, thereby significantly affecting convergence. ER is measured 

through an index synthesized using the entropy method, based on industrial wastewater, SO₂, and particulate emissions. Green 

finance motivates enterprises to engage in green innovation by providing specialized funding and favorable policies. Indicators 

such as green credit, green investment, green bonds, green funds, and green equity reflect a city’s green financial capacity. This 

study uses the entropy method to synthesize these indicators into a composite green finance index. At the technological level, the 

study uses Human Capital (HC) and Technological Innovation (TI) as control variables. High levels of human capital and 

innovation are key drivers of urban green innovation. HC is measured by the proportion of university students in the total 

population, while TI is measured by the amount of scientific and technological investment in each city. 

Table 7. Continued 
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Table 8. Parameter estimates and test results of the traditional conditional β-convergence model 

Variable National Eastern Region Central Region Western Region 

α 
-0.0825*** 

(0.0148) 

-0.0190*** 

(0.0299) 

-0.0938*** 

(0.0300) 

-0.0705*** 

(0.0259) 

β 
-0.1868** 

(0.0140) 

-0.1870** 

(0.0172) 

-0.1903*** 

(0.0213) 

-0.3320*** 

(0.0222) 

FA 
0.0030 

(0.0057) 

-0.0097 

(0.0061) 

0.0143 

(0.0107) 

-0.0028 

(0.0137) 

GF 
0.0110* 

(0.0270) 

-0.2044*** 

(0.0616) 

0.0143* 

(0.0107) 

-0.0309 

(0.0459) 

ER 
0.2621** 

(0.0115) 

0.0526*** 

(0.0157) 

0.0182** 

(0.0214) 

-0.0031 

(0.0213) 

HC 
0.0018 

(0.0013) 

0.0032** 

(0.0014) 

0.0048 

(0.0031) 

-0.0695 

(0.0164) 

TI 
0.0041* 

(0.0030) 

0.0023 

(0.0021) 

-0.0402 

(0.0175) 

-0.0695*** 

(0.0164) 

OFDI 
-0.0007 

(0.0019) 

-0.0079 

(0.0160) 

0.0537 

(0.0777) 

0.3004*** 

(0.0830) 

s 0.0207 0.0207 0.0211 0.0403 

τ(year) 33.5213 33.4815 32.8363 17.1798 

R2 0.1983 0.1604 0.1469 0.2322 

Log(L) 1574.3646 945.9561 502.6205 360.2497 

LM(LAG) 37.405*** 8.445*** 4.974** 5.779** 

R-LM(LAG) 0.027 6.775*** 1.025 2.906* 

LM(ERR) 39.194*** 4.509** 6.482** 10.747*** 

R-LM(ERR) 1.816*** 2.840* 2.533 7.874*** 

N 2770 980 1000 790 

Note: Values in parentheses are standard errors. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively. 

Table 9. Parameter estimates and test results of the spatial conditional β-convergence model 

Variable 
National Eastern Region Central Region Western Region 

SAR SEM SAR SAR 

β 
-0.5117*** 

(0.0178) 

-0.4309*** 

(0.0277) 

-0.5486*** 

(0.0331) 

-0.6396*** 

(0.0335) 

FA 
-0.1003 

(0.0087) 

-0.0148** 

(0.0094) 

0.0012 

(0.0170) 

-0.0303* 

(0.0181) 

GF 
-0.1160** 

(0.1038) 

-0.0883** 

(0.1241) 

0.0987 

(0.1905) 

-0.0297 

(0.2015) 

ER 
-0.0061* 

(0.0180) 

0.0288 

(0.0241) 

-0.0850*** 

(0.0296) 

0.0324 

(0.0367) 

HC 
-0.0028 

(0.0029) 

0.0008 

(0.0027) 

-0.0032 

(0.0049) 

-0.0067 

(0.0068) 

TI 
0.0137*** 

(0.0035) 

0.0042** 

(0.0027) 

0.0418* 

(0.0216) 

-0.0067** 

(0.0068) 

OFDI 
-0.0134 

(0.0353) 

0.0041** 

(0.0225) 

0.0482 

(0.1220) 

0.0275 

(0.1300) 

ρ or λ 
0.1355*** 

(0.0231) 

0.2006*** 

(0.0405) 

0.0153*** 

(0.0006) 

0.0049 

(0.0392) 

s 0.0717 0.0564 0.0795 0.1021 

τ(year) 9.6697 12.2964 8.7144 6.7920 

R2 0.2452 0.2410 0.1734 0.3457 

Log(L) 2066.894 1152.834 671.5424 518.6903 

N 2770 980 1000 790 

Note: Values in parentheses are standard errors. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively. 
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As shown in Table 8, after accounting for external factors, the significance test results remain consistent with those in Table 6. 

Specifically, the half-life values for the national, eastern, central, and western regions are 33.5213, 33.4815, 32.8363, and 17.1798 

years, respectively. This indicates that the time required to reach a steady state under the traditional conditional β-convergence 

model is significantly shorter than under the traditional absolute β-convergence model, suggesting that control variables play a 

positive role in promoting convergence of regional green innovation efficiency. 

Further incorporating spatial effects and selecting appropriate spatial convergence models, the analysis results of conditional 

β spatial convergence are presented in Table 9. The β coefficients for the national level and the eastern, central, and western regions 

are all less than zero and statistically significant at the 1% level, confirming the presence of significant conditional β-convergence 

in all regions. Moreover, except for the western region, the spatial lag coefficients (ρ) and spatial error coefficients (λ) for the other 

regions are significantly positive, indicating that spatial effects significantly facilitate the convergence of green innovation 

efficiency. By comparing the half-life values across the conditional β spatial convergence model (Table 9), the absolute β spatial 

convergence model (Table 7), and the traditional conditional β-convergence model (Table 8), the study further confirms the 

importance of spatial effects and control variables in promoting the convergence of green innovation efficiency across regions. 

In terms of control variables, the national-level results show that green finance, environmental regulation, and technological 

innovation pass the significance tests at the 10%, 5%, and 1% levels, respectively. This demonstrates that a well-developed green 

financial system, sound environmental regulations, and continuous technological innovation all have positive impacts on 

enhancing green innovation efficiency. At the regional level, the significance of control variables varies across different regions. 

This suggests the need for region-specific and localized policy measures to promote coordinated regional development, thereby 

improving green innovation efficiency nationwide. 

Regarding the impact of green finance, environmental regulation, and technological innovation: Green finance plays a key role 

in supporting innovation activities, especially for newly established private enterprises and innovative micro-, small-, and medium-

sized technology-based firms that require substantial funding. Establishing a sound and rational legal and regulatory framework 

and strictly overseeing the innovation process may impose short-term constraints on urban green innovation, but in the long term, 

robust legal systems serve as a crucial guarantee for sustained improvements in green innovation efficiency. As the most direct 

embodiment of urban innovation activities, technological innovation exerts a significantly positive effect on green innovation 

efficiency. 

5. Conclusion and implications 

Based on data from 277 prefecture-level cities and above in China from 2011 to 2021, this paper employs the super-efficiency 

SBM model to measure regional green innovation efficiency. It further utilizes kernel density estimation, the Dagum Gini 

coefficient, and spatial convergence models to investigate the dynamic evolution, regional disparities, and convergence 

characteristics of green innovation efficiency. The findings are as follows: 

First, China's overall green innovation efficiency exhibits a fluctuating upward trend, particularly entering a phase of steady 

growth after 2017. The eastern region generally demonstrates higher levels of green innovation efficiency than the central and 

western regions, displaying a stepwise distribution pattern that decreases from east to west. The disparity between the eastern and 

central regions is greater than that between the central and western regions, but these gaps have gradually narrowed over time. 

Second, kernel density estimation results from 2011 to 2021 indicate that green innovation efficiency among cities is mainly 

concentrated at a moderate level and shows a rightward shift overall, suggesting a certain degree of convergence. Specifically, the 

eastern region’s green innovation efficiency has transitioned from a bimodal to a unimodal distribution, with reduced polarization. 

The central region exhibits a weaker clustering trend but a more pronounced polarization. The western region shows signs of 

clustering, although a noticeable left-tail phenomenon persists. According to the Dagum Gini coefficient, significant disparities in 

green innovation efficiency exist among regions, though these disparities show a fluctuating downward trend, indicating spatial 

imbalance and a slow, complex developmental trajectory. In terms of intra-regional differences, the eastern region exhibits the 

greatest disparity, while the average Gini coefficients in the central and western regions are lower than the national average. 

Regarding inter-regional disparities, the gap between the western region and the eastern and central regions remains significant. 

The gap between the eastern and central regions has narrowed the most, followed by that between the central and western regions, 

reflecting initial success in China’s coordinated and inclusive development strategies. In terms of sources of disparity, inter-

regional overlapping is the main contributor to the differences in green innovation efficiency, with its share gradually shifting 

toward net inter-regional contributions. The stable contribution rate of intra-regional disparities reflects close trade cooperation 

and effective coordination mechanisms among provinces. 

Third, the Moran’s I index test shows a growing spatial correlation in regional green innovation efficiency, indicating 

increasing policy and resource alignment. The Moran’s I exhibits an inverted “U” shaped fluctuation, implying that spatial factors 

significantly influence green innovation efficiency, with some regions potentially experiencing differentiation or resource 

redistribution. In the convergence analysis, although the coefficient of variation fluctuates, it shows a slight downward trend overall, 

and σ-convergence is not apparent. Nevertheless, there is significant evidence of absolute β-convergence and conditional β-

convergence across regions. At the national level, green finance and environmental regulation-driven technological innovation 

have significant positive effects on green innovation efficiency convergence. At the regional level, significant differences in the 

effects of control variables suggest the need for region-specific policies to promote coordinated development. 
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Given the current state of green innovation efficiency in China, it is urgent to further optimize factor allocation and reasonably 

regulate resources to realize the synergistic effects of market mechanisms and government regulation. These measures aim to 

reduce inter-regional disparities in green innovation efficiency and promote regionally coordinated and sustainable development. 

Based on the empirical findings, the following policy recommendations are proposed: 

(i) Implement targeted policies to promote regional green innovation 

To effectively drive regional green innovation, targeted policy measures are essential. Due to spatial imbalances in green 

innovation efficiency and significant differences in regional control variables, the government should increase support for the 

eastern region—characterized by a favorable external environment and proximity to the efficiency frontier—by promoting 

technological R&D and industrial upgrading. Policymakers should guide the development of differentiated strategies across 

regions to gradually eliminate regional disparities and achieve high-quality, sustainable development. As a key hub in China’s 

"Four Major Plates" layout and "Three Major Strategies," the central region should prioritize coordinated regional development, 

optimize policy and resource allocation, and encourage region-specific innovation efforts. Meanwhile, strengthening interregional 

cooperation and facilitating the transfer of innovative outcomes from the east to the central and western regions can promote 

balanced development. Future policies should enhance top-level planning for the central region, leverage its hub role, and foster 

coordinated development across eastern, central, and western regions to comprehensively improve green innovation efficiency. 

(ii) Recognize spatial correlation and inequality in green innovation and harness spatial spillover effects 

First, strengthen cooperation among neighboring regions and establish cross-regional green innovation platforms to promote 

resource sharing and optimize the spatial layout of green innovation, thereby avoiding industrial homogeneity and vicious 

competition. Second, focus on low-efficiency provinces to prevent path dependency, cultivate potential cities, and develop green 

innovation growth poles that can drive surrounding cities through dominant and diffusion effects. Lastly, for highly polarized 

provinces, deepen reforms and implement support measures for neighboring areas. Through regional collaborative innovation and 

specialized industrial cooperation, siphoning effects can be transformed into radiation effects, enhancing overall green innovation 

efficiency and promoting balanced regional development. 

(iii) Transform government functions and implement precision-guided policies to enhance green innovation efficiency 

The government must undertake functional transformation and adopt tailored policy interventions. In the eastern region, efforts 

should focus on promoting indigenous innovation as well as the absorption and re-innovation of imported technologies. This 

includes setting up dedicated innovation funds to support high-tech enterprises and research institutions, implementing stringent 

environmental regulations, and establishing green technology demonstration zones. In the western region, it is vital to increase 

investment in infrastructure and green technologies, improve education and research capabilities, build science parks and 

innovation incubators, and introduce supportive policies to encourage enterprises to invest in green technologies. For the central 

region, the government should strengthen technological innovation capacity, increase R&D funding, improve the business 

environment, and offer preferential policies to attract high-tech enterprises, thus facilitating industrial upgrading and green 

transformation. A regional development fund should also be established to support green projects. Additionally, the government 

should enhance regional collaboration to promote the flow of technology, capital, and talent, encouraging east-to-west technology 

transfer and cross-regional cooperation to jointly tackle green technology challenges. Finally, public awareness of green innovation 

should be raised through media, education, and training initiatives. Green innovation competitions and forums should be organized 

to promote resource integration and sharing. These measures will enable the government to effectively enhance green innovation 

efficiency, achieving a win-win outcome between economic development and environmental protection. 
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