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Abstract. Hyperlipidemia, a significant contributor to cardiovascular ailments, have a close association with obesity, is closely 

linked to obesity. Traditional anthropometric indices (BMI, WHR, WHtR) are widely used to assess obesity, but their nonlinear 

relationships with hyperlipidemia and gender-specific risk thresholds remain poorly understood. Leveraging data from 2,739 

participants in the NHANES 2007–2020, this research utilized multivariable logistic regression analysis along with restricted cubic 

splines (RCS) to investigate both linear and nonlinear relationships between various obesity indices and the presence of 

hyperlipidemia. Nonlinear dose-response relationships were observed for BMI, WHR, and WHtR with hyperlipidemia (P for 

nonlinear < 0.001). Gender-specific risk thresholds were identified: males: WHR > 0.94, WHtR > 0.76, BMI >28.0; Females: 

WHR 0.91–0.99, WHtR 0.61–0.69, BMI 29.4–34.39. Gender differences in effect sizes were significant (e.g., WHR β: males 

6.986, P<0.001 vs. females 5.666, P=0.023). Subgroup analysis showed stronger associations in younger individuals (≤50 years) 

without hypertension or diabetes. WHR remained an independent predictor in metabolic comorbidities, while BMI and WHtR 

were confounded by metabolic disturbances. This study highlights the importance of gender-specific risk thresholds for obesity 

indices, particularly WHR, in predicting hyperlipidemia. The results demonstrate that WHR serves as a more reliable predictor for 

metabolic disorder risks compared to other anthropometric indices, particularly highlighting the importance of implementing 

preventive measures in populations under 50 years of age. Future research should focus on developing precision stratification 

models to optimize obesity management. 
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1. Introduction 

Hyperlipidemia is a major contributor to cardiovascular disease and has become increasingly prevalent worldwide, creating a 

substantial public health challenge [1]. Research indicates that obesity and related metabolic imbalances are strongly linked to 

dyslipidemia [2]. Common measures Like Body Mass Index (BMI), Waist-to-Hip Ratio (WHR), and Waist-to-Height Ratio 

(WHtR) are widely used to evaluate general and abdominal obesity, though their clinical effectiveness warrants further 

investigation [3]. Although BMI is a standard indicator of overall obesity, it does not differentiate fat distribution, especially 

visceral adiposity, which is more closely associated with metabolic and cardiovascular complications [4, 5]. On the other hand, 

WHR and WHtR offer more accurate assessments of abdominal obesity by accounting for fat accumulation around the 

midsection—a critical factor in hyperlipidemia and cardiovascular risk [6, 7]. Nevertheless, whether WHR and WHtR 

independently predict lipid metabolism disorders remains debated [8]. Additionally, earlier research has mostly assumed linear 

relationships, overlooking potential nonlinear trends (e.g., dose-response effects) between body measurements and disease 

likelihood, possibly resulting in skewed risk evaluations and suboptimal clinical thresholds. 

In recent years, the application of nonlinear association analysis in epidemiological research has gained prominence. Some 

scholars have proposed that the impact of BMI on hyperlipidemia may follow a “J-shaped” curve, where risk remains relatively 

stable below a certain threshold but increases exponentially beyond it. Research suggests a nonlinear dose-response association 

between BMI and hyperlipidemia, where each 1 kg/m² increase in BMI corresponds to a marked elevation in hyperlipidemia risk 

[9]. However, research on WHR and WHtR has largely been confined to linear association analyses, with insufficient exploration 

of their nonlinear effects [10, 11]. Therefore, identifying risk inflection points through nonlinear models such as Restricted Cubic 

Splines (RCS) may provide critical insights for optimizing clinical decision-making. 
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Sex-specific variations significantly influence the association between obesity and hyperlipidemia. Studies suggest sexual 

dimorphism in fat distribution, with males exhibiting higher visceral adiposity (linked to dyslipidemia and insulin resistance) 

compared to females who preferentially store subcutaneous fat - a pattern that confers relative metabolic protection until 

menopausal hormonal changes occur [12, 13]. These differences highlight the need for gender-specific analyses when evaluating 

the predictive power of anthropometric indices.  

This study, based on large-scale cross-sectional data, integrates linear and nonlinear analytical frameworks to comprehensively 

examine the association patterns of BMI, WHR, and WHtR with hyperlipidemia. The findings are expected to contribute to 

dynamic risk assessment tools for early screening of hyperlipidemia and facilitate more effective prevention strategies in high-risk 

populations. 

2. Methods 

2.1. Data source and study population 

This research utilized data collected from the National Health and Nutrition Examination Survey (NHANES) across cycles 

spanning 2007 to 2020. NHANES participant recruitment and data collection procedures underwent rigorous review and received 

ethical approval from an institutional review board. Written informed consent was obtained from all participants prior to their 

involvement, ensuring autonomy, confidentiality, and adherence to ethical standards. 

Participants aged 20 years or older were included in the study. Eligibility criteria required complete data on waist circumference, 

height, hip circumference, and lipid profiles. Individuals with liver or thyroid disorders, malignancies, or those receiving hormonal 

treatments (e.g., corticosteroids, sex hormones, or parathyroid hormones) were excluded to ensure sample representativeness and 

data accuracy. Ultimately, 2,739 eligible participants were included in the study. The participant selection and exclusion process 

are illustrated in Figure 1. 

2.2. Measurement of waist circumference, hip circumference, and lipid profiles 

WHR was calculated as waist/hip circumference, WHtR as waist/height, and BMI as weight(kg)/height²(m²). All measurements 

were recorded in centimeters except BMI (kg/m²). Participants fasted for 9-12 hours prior to venipuncture blood collection, with 

samples analyzed using enzymatic methods (Cobas 6000) for TC and TG measurement. LDL-C was calculated via the validated 

Friedewald equation (LDL-C=TC-HDL-C-TG/5; r=0.89 versus direct measurement), while HDL-C was measured directly [14]. 

Hyperlipidemia was defined as meeting any of the following criteria: TC ≥200 mg/dL, TG ≥150 mg/dL, HDL-C <40 mg/dL, LDL-

C ≥130 mg/dL, or current use of lipid-lowering medications (within 30 days) [15]. 

2.3. Covariates 

Based on previous studies [9, 16]. This study examined demographic and clinical variables including age, sex, ethnicity (Mexican 

American, other Hispanic, non-Hispanic White, non-Hispanic Black, and other races), education level (<high school, high 

school, >high school), hypertension and diabetes history (self-reported physician-diagnosed), smoking status (non-smoker: <100 

lifetime cigarettes; smoker: ≥100 cigarettes), and alcohol consumption (non-drinker: ≤12 lifetime drinks; moderate: ≤2 drinks/day 

for men or ≤1 for women; heavy: ≥3 drinks/day for men or ≥2 for women). Data were collected via the health history questionnaire. 

2.4. Statistical analysis 

NHANES used a carefully designed sampling approach with weighting adjustments to ensure the results represent the U.S. 

population. We summarized key characteristics of the participants. Normally distributed data are presented as weighted means ± 

standard deviations, non-normal data as medians (interquartile ranges), and categorical variables as weighted percentages. 

A multivariable logistic regression analysis was conducted to examine the associations between BMI, WHR, WHtR, and 

hyperlipidemia. Three separate models were developed to represent the entire population, as well as distinct subgroups for males 

and females, [1] an unadjusted model, [2] a partially adjusted model (taking into account age and education level, and ethnicity), 

along with [3] a completely adjusted model.  

RCS curves were utilized to test for nonlinear relationships and visualize dose-response associations under the fully adjusted 

model with weighting. The RCS curves were constructed with five knots placed at the 5th, 27.5th, 50th, 72.5th, and 95th percentiles 

as determined by the Akaike Information Criterion (AIC) for optimal model fit [17, 18]. Subgroup analysis was performed to 

explore the correlations among BMI, WHR, and WHtR. and hyperlipidemia in various population groups, such as age, presence 

of hypertension, diabetes history, and smoking habits. The influence of interaction between grouping factors and independent 

variables on the dependent variable was examined. The outcomes of the subgroup analyses were represented visually through 

forest plots.  
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All statistical analyses were performed using R software (version 4.3.1; R Foundation for Statistical Computing, Vienna, 

Austria). 

3. Results 

A total of 2,739 participants were ultimately included in the study. Compared to the excluded population, the included participants 

had a higher proportion of males (55.46% vs. 47.46%, P < 0.001) and a higher BMI (29.48 vs. 28.36, P < 0.001). However, there 

was no significant difference in age between the included and excluded populations (42.99 vs. 42.84, P = 0.051). As shown in 

Table 1, significant differences were observed between males and females in terms of BMI, poverty-to-income ratio (PIR), WHR, 

WHtR, racial distribution, prevalence of hyperlipidemia, prevalence of diabetes, alcohol consumption, and smoking behavior (all 

P < 0.05). Males had a significantly lower BMI (28.86 ± 0.28 kg/m²) compared to females (30.25 ± 0.37 kg/m², P = 0.002), while 

males had a significantly higher WHR (0.96 ± 0.00) than females (0.89 ± 0.00, P < 0.001). Additionally, the weighted prevalence 

of hyperlipidemia (60.75% vs. 54.06%), diabetes (13.54% vs. 9.65%), and smoking (48.57% vs. 33.49%) was significantly higher 

in males than in females (all P < 0.05). 

3.1. Associations of BMI, WHR, and WHtR with hyperlipidemia 

Table 2 presents the strength of associations between WHR, WHtR, BMI, and hyperlipidemia based on weighted logistic 

regression models. In the unadjusted Model 1, WHR (β = 8.805, P < 0.001), WHtR (β = 4.877, P < 0.001), and BMI (β = 0.043, 

P < 0.001) were all significantly positively associated with hyperlipidemia. After adjusting for age, gender, race, and education 

level (Model 2), the effect sizes of these indices decreased but remained statistically significant (WHR: β = 6.826, P < 0.001; 

WHtR: β = 4.058, P < 0.001; BMI: β = 0.049, P < 0.001). Further adjustment for income, hypertension, diabetes, smoking, and 

alcohol consumption (Model 3) revealed that WHR (β = 6.136, P < 0.001), WHtR (β = 3.753, P < 0.001), and BMI (β = 0.049, P 

< 0.001) remained independent risk factors for hyperlipidemia, indicating that their associations were not confounded by metabolic 

or behavioral factors. 

Gender-stratified analysis showed that the effect size of WHR was significantly higher in males than in females (Model 3: 

males β = 6.986, P < 0.001 vs. females β = 5.666, P = 0.023). Similarly, the gender difference in WHtR was significant (males β 

= 5.556, P<0.001 vs. females β = 2.925, P = 0.002). The association strength of BMI was also higher in males (males β = 0.077, 

P = 0.002 vs. females β = 0.037, P = 0.005), suggesting that the impact of abdominal fat distribution and overall obesity on 

hyperlipidemia exhibits gender heterogeneity. 

3.2. Nonlinear associations of BMI, WHR, and WHtR with hyperlipidemia 

The RCS model was used to analyze the nonlinear associations of BMI, WHR, and WHtR with hyperlipidemia risk (Figure 2, 

Supplemental Figure 1, Supplemental Figure 2). The results demonstrated significant nonlinear dose-response relationships 

between these anthropometric indices and hyperlipidemia risk in the overall population and gender subgroups (P for nonlinearity 

< 0.001). Specifically, WHR exhibited a threshold effect: in the overall population, hyperlipidemia risk significantly increased 

when WHR exceeded 0.94 (Figure 2). In males, risk similarly increased when WHR exceeded 0.94 (Supplemental Figure 1), while 

in females, WHR between 0.91 and 0.99 was positively associated with hyperlipidemia risk (Supplemental Figure 2). For WHtR, 

a positive association with hyperlipidemia risk was observed in the overall population when WHtR ranged from 0.59 to 0.67, 

indicating that risk increased progressively within this range (Figure 2). In males, risk significantly increased when WHtR 

exceeded 0.76 (Supplemental Figure 1), while in females, WHtR between 0.61 and 0.69 was positively associated with 

hyperlipidemia risk (Supplemental Figure 2). For BMI, a positive association with hyperlipidemia risk was observed in the overall 

population when BMI ranged from 28.6 to 32.69, indicating that risk increased significantly within this range (Figure 2). In males, 

BMI between 28.00 and 30.48 was positively associated with hyperlipidemia risk, and risk significantly increased when BMI 

exceeded 39.65 (Supplemental Figure 1). In females, BMI between 29.40 and 34.39 was positively associated with hyperlipidemia 

risk (Supplemental Figure 2). 

3.3. Subgroup analysis of BMI, WHR, and WHtR with hyperlipidemia 

Subgroup analysis revealed significant differences in the associations of BMI, WHR, and WHtR with hyperlipidemia risk across 

different populations (Figure 3). In individuals aged ≤ 50 years, the associations of WHR, WHtR, and BMI with hyperlipidemia 

risk were statistically significant (all P < 0.05), whereas no significant associations were observed in individuals aged > 50 years. 

For hypertension history, the association of WHR was significant in both hypertensive and non-hypertensive groups, while the 

associations of WHtR and BMI were significant only in the non-hypertensive group. For diabetes history, the associations of WHR, 

WHtR, and BMI were significant only in the non-diabetic group. Additionally, smoking status showed significant effects across 

all subgroups. These results suggest that the associations of BMI, WHR, and WHtR with hyperlipidemia risk are more pronounced 
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in younger individuals without hypertension or diabetes, indicating that interventions targeting these populations may be more 

effective. 

4. Discussion 

This study, based on data from the NHANES, systematically revealed the nonlinear association patterns of BMI, WHR, and WHtR 

with hyperlipidemia risk. The findings not only confirmed the clinical value of these indices as independent risk factors but also 

quantified risk thresholds through dose-response curves, providing valuable insights for the precise prevention and control of 

obesity-related metabolic abnormalities. 

From a pathophysiological perspective, this study elucidated the underlying connections between fat distribution indices and 

lipid abnormalities. Notably, hyperlipidemia risk increased when WHR exceeded 0.94 (in males) or fell within the range of 0.91–

0.99 (in females), when WHtR reached 0.76 (in males) or 0.61–0.69 (in females), and when BMI surpassed 28.6 (in males) or 29.4 

(in females). This nonlinear association may stem from the dynamic endocrine regulation of adipose tissue. Excessive 

accumulation of visceral fat triggers a cascade release of pro-inflammatory factors (e.g., TNF-α, IL-6, MCP-1), which act through 

two primary pathways: 1) activation of inflammatory pathways leading to insulin resistance, thereby disrupting lipoprotein 

metabolism [19]; and 2) imbalance in adipokines, resulting in a disproportionate ratio of adiponectin to leptin, which promotes 

excessive hepatic lipid synthesis and ultimately leads to abnormal lipid profiles [20]. 

Gender specificity emerged as one of the core findings of this study. The effect sizes of WHR (β = 6.986 vs. 5.666), WHtR (β 

= 5.556 vs. 2.925), and BMI (β = 0.077 vs. 0.037) were significantly higher in males than in females. This disparity may stem 

from three biological factors: First, males are more prone to visceral obesity, with adipocytes exhibiting higher lipolytic activity 

and greater secretion of inflammatory factors [21]. Second, estrogen enhances adipocyte differentiation capacity by modulating 

the PPARγ signaling pathway, thereby reducing the risk of ectopic lipid deposition in females [22]. Third, gender differences in 

androgen levels may influence lipid metabolism by regulating lipoprotein lipase activity [23, 24]. Additionally, postmenopausal 

women may experience a masculinized shift in fat distribution [25], underscoring the need for dynamic risk assessment across the 

lifespan. 

The nonlinear models provided in-depth insights into the clinical thresholds of anthropometric indices and their gender-specific 

variations. For males, high-risk intervals were identified when WHR exceeded 0.94, WHtR surpassed 0.76, or BMI was greater 

than 28. In contrast, the risk thresholds for females were more complex, encompassing WHR values of 0.91–0.99, WHtR values 

of 0.61–0.69, and BMI values of 29.4–34.39. These differences not only highlight the importance of gender-specific risk 

assessment but also offer two key implications for clinical practice: 1) for males, stricter and more precise body shape management 

is required; and 2) for females, more nuanced and individualized criteria are needed in the evaluation of central obesity. 

Subgroup analysis revealed important effect modifiers. In individuals aged ≤ 50 years, all anthropometric indices showed 

significant associations with hyperlipidemia risk, whereas these associations weakened in those aged > 50 years. This may be 

related to age-related muscle loss and fat redistribution [26]. Notably, among individuals with hypertension or diabetes, WHR 

retained its independent predictive value, while the effects of WHtR and BMI were partially masked by metabolic disturbances. 

This may be attributed to the superior ability of WHR to reflect visceral fat distribution, which is a key driver of metabolic 

abnormalities [27, 28]. In contrast, BMI and WHtR are more susceptible to confounding factors such as muscle mass loss, edema, 

or height changes, particularly in populations with metabolic comorbidities [29]. This suggests that WHR should be prioritized for 

risk assessment in patients with metabolic comorbidities. 

This study has both strengths and limitations. Its strengths include using NHANES data (a large U.S. national survey), 

combining different analysis methods to better understand body measurements and hyperlipidemia links, and finding gender-

specific risk levels. However, the study can't prove cause-and-effect due to its design, results may not apply to non-U.S. populations, 

and it didn't include newer body fat measurement methods that might provide more details. 

5. Conclusions and future perspectives 

By establishing nonlinear dose-response relationships between anthropometric indices and hyperlipidemia, this study provides 

quantitative evidence for the precise prevention and control of obesity-related metabolic diseases. The findings highlight the 

importance of the following in clinical practice: 1) adopting gender-specific risk assessment thresholds, 2) implementing early 

body shape interventions in younger populations, and 3) prioritizing WHR as a core monitoring indicator for patients with 

metabolic comorbidities. Future research could focus on developing intelligent risk prediction models and exploring gene-

environment interactions to advance obesity management from a "single BMI-oriented approach" to a "multidimensional precision 

stratification" model. 

Data Availability*: All data are available on the NHANES website (https://wwwn.cdc.gov/nchs/nhanes/default.aspx). 
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Appendix 

 

Figure 1. Inclusion exclusion flowchart 

Table 1. Weighted basic characteristics of the participants 

Variables 
Overall 

N=2739 

Male 

N=1446 

Female 

N=1293 
P between sex 

Age (years) 
42.99 (30.27, 

56.90) 

42.87 (30.13, 

56.99) 

43.13 (30.45, 

56.83) 
0.675 

Body mass index (kg/m2) 29.48±0.25 28.86±0.28 30.25±0.37 0.002 

PIR 3.10 (1.59, 4.98) 3.42 (1.77, 4.98) 2.74 (1.44, 4.98) 0.009 

WHR 0.93±0.00 0.96±0.00 0.89±0.00 < 0.001 

WHtR 0.59±0.00 0.58±0.00 0.61±0.01 < 0.001 

Race, n (weighted %)    0.001 

Mexican American 10.64 11.36 9.75  

Other Hispanic 6.90 6.21 7.77  

Non-Hispanic White 58.43 60.36 56.02  

Non-Hispanic Black 13.33 11.46 15.66  

Other Race 10.69 10.61 10.80  

Educational level, n (weighted %)    0.222 

< High school 11.28 12.40 9.90  

High school 25.95 26.47 25.31  

> High school 62.77 61.14 64.80  

Hyperlipidemia, n (weighted %)    0.017 

Yes 57.77 60.75 54.06  

No 42.23 39.25 45.94  

Hypertension, n (weighted %)    0.075 

Yes 28.55 30.11 26.60  

No 71.45 69.89 73.40  

Diabetes, n (weighted %)    < 0.001 

Yes 11.81 13.54 9.65  
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No 88.19 86.46 90.35  

Alcohol intake, n (weighted %)    < 0.001 

Never 7.57 4.98 10.91  

Moderate 45.25 55.60 31.97  

Heavy 47.17 39.43 57.12  

Smoking, n (weighted %)    < 0.001 

Yes 41.85 48.57 33.49  

No 58.15 51.43 66.51  

 

Weighted characteristics of the study population based on WHR quartiles. Continuous variables are expressed as mean ± SD, and 

P values were calculated from weighted linear regression models; Categorical variables are expressed as n (weight%), and P values 

were calculated by weighted chi-square tests. 

Table 2. Association of waist-to-hip ratio, waist-to-height ratio, BMI and hyperlipidemia 

Variables 
Overall Male Female 

β P β P β P 

Model 1 

WHR 8.805 < 0.001 11.314 < 0.001 8.246 < 0.001 

WHtR 4.877 < 0.001 8.112 < 0.001 3.455 < 0.001 

BMI 0.043 < 0.001 0.086 < 0.001 0.023 0.041 

Model 2 

WHR 6.826 < 0.001 8.785 < 0.001 5.790 0.002 

WHtR 4.058 < 0.001 6.371 < 0.001 2.869 0.004 

BMI 0.049 < 0.001 0.082 < 0.001 0.033 0.004 

Model 3 

WHR 6.136 < 0.001 6.986 < 0.001 5.666 0.023 

WHtR 3.753 < 0.001 5.556 0.002 2.925 0.012 

BMI 0.049 < 0.001 0.077 0.002 0.037 0.005 

 

Model 1: Unadjusted for covariates. 

Model 2: Adjusted for partial covariates (age, education level, race, and sex). 

Model 3: Fully adjusted for all covariates (age, sex, race, education level, PIR, history of hypertension, history of diabetes, 

smoking, and alcohol intake). 

 
 

 

(a) (b) (c) 

Table 1. Continued 
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Figure 2. Non-linear association between anthropometric indices (BMI, WHR, and WHtR) and hyperlipidemia 

The figures were fully adjusted for all covariates (age, sex, race, education level, PIR, history of hypertension, history of 

diabetes, smoking, and alcohol intake). The restricted cubic spline (RCS) curve was constructed with 5 knots placed at the 5th, 

27.5th, 50th, 72.5th, and 95th percentiles. 

 

 

 
(a) (b) 

Figure 3. Forest plot of subgroup analysis 

The figures were fully adjusted for all covariates (age, sex, race, education level, PIR, history of hypertension, history of 

diabetes, smoking, and alcohol intake), except for the subgroup variables. 


