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Abstract. This study proposes a multi-agent evolutionary game model to optimize carbon 

pricing mechanisms in electricity markets under carbon neutrality constraints. By simulating 

strategic interactions among power generators, regulators, and consumers, we analyze how 

dynamic carbon pricing affects investment decisions, emission reductions, and market stability. 

The model incorporates heterogeneous agents with adaptive learning behaviors, including coal-

fired plants (cost minimizers), renewable energy firms (innovation seekers), and policymakers 

(emission cap enforcers). Using China’s power sector as a case study (2020–2040), our 

simulations reveal that a hybrid carbon pricing mechanism—combining a floor price with 

tradable green certificates—achieves Pareto efficiency, reducing cumulative emissions by 34% 

while maintaining grid reliability. Sensitivity analysis identifies critical thresholds: when carbon 

prices exceed $80/ton, coal-to-renewable transitions accelerate nonlinearly. The findings provide 

a computational toolkit for designing adaptive carbon markets aligned with net-zero transitions. 
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1.  Introduction 

1.1.  Background and Urgency 

In recent years, the global consensus on addressing climate change has intensified, crystallized by the 

Paris Agreement and the scientific imperatives set forth by the IPCC's 1.5°C Special Report. These goals 

have catalyzed a wave of carbon neutrality pledges from major economies, including the EU, China, 

and the U.S., with timelines ranging from 2050 to 2060. As one of the largest sources of greenhouse gas 

(GHG) emissions, the power sector plays a pivotal role in achieving these targets. 

However, the structural characteristics of electricity systems pose multi-faceted challenges. On the 

supply side, path dependency and capital lock-in from existing coal-fired infrastructure limit flexibility, 

especially in coal-dependent regions. On the demand side, the intermittent nature of renewable energy 

introduces volatility and requires robust market coordination. In this context, carbon pricing emerges as 

a core policy lever—but its design must balance the triple goals of emissions reduction, grid stability, 

and affordability. 
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1.2.  Research Gaps 

While carbon pricing has been widely studied, most existing models adopt static or equilibrium-based 

approaches, treating market actors as passive price takers. This neglects the strategic interactions among 

key stakeholders—namely generators, regulators, and consumers—whose behaviors co-evolve over 

time in response to policy shifts and technological progress. 

Furthermore, there is insufficient integration of endogenous technological change into carbon market 

design. The dynamic feedback between carbon price signals and clean energy innovation, particularly 

the learning curves in renewable generation and storage technologies, remains poorly modeled in current 

policy simulations. These omissions constrain our ability to forecast tipping points and lock-out 

scenarios in energy transitions. 

1.3.  Research Contributions 

To address these challenges, this study constructs a multi-agent evolutionary game model that simulates 

the dynamic interplay among power producers, regulators, and electricity consumers within a carbon 

trading system. The model captures bounded rationality, learning dynamics, and adaptive policy 

responses, offering a more realistic depiction of policy-market coevolution. 

Key contributions include: 

• A novel agent-based simulation framework that incorporates heterogeneous decision-making 

behaviors and technological progress functions; 

• Identification of critical thresholds (e.g., carbon price floor, technology cost inflection points) 

that determine the success or failure of low-carbon transitions; 

• Empirical insights into how regulatory commitment, consumer response elasticity, and firm-

level innovation investments shape equilibrium outcomes; 

• A bridge between evolutionary game theory and energy market design, enabling integrated 

assessment of climate policy tools under real-world complexity. 

This interdisciplinary approach contributes to both the theoretical literature on carbon pricing and 

market evolution and the practical policy discourse on decarbonizing the power sector in a just and 

efficient manner. 

2.  Theoretical Framework and Model Design 

2.1.  Evolutionary Game Structure 

To capture the complex, adaptive dynamics of the carbon pricing mechanism in the power sector, we 

develop an evolutionary game model involving four interacting agent types: 

Agent Definitions 

• Coal-Fired Power Plants: These legacy producers aim to minimize compliance and operational 

costs. Their strategic choices involve: 

o Continuing operations under current conditions; 

o Retrofitting with carbon capture and storage (CCS) technologies; 

o Early retirement based on regulatory pressure or unprofitability. 

• Renewable Energy Firms: These actors focus on maximizing return on investment (ROI) by 

expanding clean energy capacity and engaging in green certificate trading. Their strategies 

include: 

o Investing in energy storage systems to reduce intermittency penalties; 

o Scaling up renewable generation capacity (e.g., solar, wind, hydro). 

• Regulators: Government bodies or carbon market authorities that dynamically adjust policy 

levers, such as: 

o Carbon cap trajectories (e.g., total emissions allowed per year); 

o Minimum/maximum carbon price floors and ceilings; 

o Technology subsidies and innovation incentives. 

• Consumers: End-users of electricity with a predefined price elasticity of demand (assumed to 
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be -0.3), who respond to price changes by reducing or shifting consumption. 

Table 1: Strategy Spaces 

Agent Type Available Strategies 

Coal Plants {Continue, Retrofit, Exit} 

Renewables {Invest in Storage, Expand Capacity} 

Regulators {Tighten Cap, Adjust Subsidies, Maintain Status Quo} 

Consumers {Elastic Demand Response (fixed)} 

 

The evolution of strategies over time is governed by replicator dynamics, where more profitable 

behaviors spread through imitation and learning within each agent group. 

2.2.  Key Equations 

The model incorporates core equations that govern carbon pricing, firm payoff structures, and 

technological learning. 

2.2.1.  Carbon Price Dynamics 

The carbon price at time t is endogenously determined by the level of unmet emissions targets and 

the state of certificate supply: 

Pt=Pmin+α⋅(Ecap−Eactual)+β⋅ln⁡(Green_Cert_Inventory)P_t = P_{min} + \alpha \cdot (E_{cap} 

- E_{actual}) + \beta \cdot \ln(\text{Green\_Cert\_Inventory})Pt=Pmin+α⋅(Ecap−Eactual

)+β⋅ln(Green_Cert_Inventory)  

Where: 

• PminP_{min}Pmin: regulatory floor price to prevent market collapse. 

• α\alphaα: penalty sensitivity to emissions overshoot. 

• β\betaβ: responsiveness to certificate oversupply. 

• EcapE_{cap}Ecap: regulatory emissions cap. 

• EactualE_{actual}Eactual: observed emissions from generation mix. 

• Green_Cert_Inventory: total outstanding green certificates in the market. 

2.2.2.  Firm Payoff Function 

Each firm's utility or net profit at time t is computed as: 

πi=Revenuei−[FuelCosti+CarbonCosti+InnovationCosti⋅(1−LearningRatet)]\pi_i = 

\text{Revenue}_i - \left[\text{FuelCost}_i + \text{CarbonCost}_i + \text{InnovationCost}_i \cdot (1 - 

\text{LearningRate}_t)\right]πi=Revenuei−[FuelCosti+CarbonCosti+InnovationCosti

⋅(1−LearningRatet)]  

Where: 

• Revenue: derived from electricity sales at time-varying market prices. 

• FuelCost: dependent on energy type (coal > wind/solar). 

• CarbonCost: quantity of emissions × carbon price. 

• InnovationCost: initial cost of new technology adoption. 

• LearningRate_t: dynamic factor reducing innovation cost over time, following a standard 

experience curve (e.g., Wright’s Law). 

2.2.3.  Learning Curve Dynamics 

The cost of deploying renewable or CCS technology decreases as cumulative capacity increases: 

InnovationCostt=InitialCost⋅(CumulativeCapacityt)−θ\text{InnovationCost}_t = \text{InitialCost} 

\cdot (CumulativeCapacity_t)^{-\theta}InnovationCostt=InitialCost⋅(CumulativeCapacityt)−θ  

Where θ\thetaθ is the learning elasticity (typically between 0.1 and 0.3 for renewable technologies). 
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2.3.  Simulation Parameters 

The model is calibrated using sectoral and macroeconomic data from authoritative sources to ensure 

real-world applicability. 

2.3.1.  Data Sources 

• IEA World Energy Outlook (2022 Edition): baseline assumptions for capacity, generation mix, 

and emissions. 

• China Electricity Council Reports: historical coal plant performance, retirement trends, and 

renewable penetration rates. 

• Carbon Pricing Dashboard (World Bank): floor/ceiling price benchmarks and ETS design 

features. 

2.3.2.  Calibration Assumptions 

• Time Horizon: 2020–2050, in annual time steps. 

• Initial Renewable Share: 25% of generation capacity. 

• Initial Carbon Price Floor: $20/ton, increasing linearly under cap-tightening scenarios. 

• Coal Plant Exit Threshold: Net profit < 0 for 3 consecutive periods. 

• Innovation Learning Rate: 20% for solar PV, 12% for wind, 5% for CCS. 

3.  Simulation Results and Policy Analysis 

3.1.  Baseline Scenario: Trajectory Under Current Policies 

3.1.1.  Emissions and Generation Structure 

The baseline simulation reflects a continuation of existing carbon pricing and subsidy schemes 

without structural reform. Under this path: 

• Coal-fired power remains the dominant energy source until 2035, sustained by its sunk cost 

advantages and weak retirement incentives. 

• Cumulative power-sector emissions exceed the allowable 1.5°C carbon budget by 

approximately 27% by 2050, jeopardizing national neutrality targets. 

3.1.2.  Carbon Market Volatility 

• The carbon price under current policies fluctuates between $15–$40/ton, often failing to 

incentivize technological transitions. 

• The green certificate inventory grows unchecked, leading to price deflation and diminished 

market credibility. 

3.1.3.  Consumer and Firm Behavior 

• Low carbon prices do not shift coal plant strategy, with 70% choosing to continue operation 

beyond 2030. 

• Consumers exhibit moderate demand elasticity, but high dependency on baseline coal 

generation limits behavioral impact. 

3.2.  Optimized Hybrid Mechanism: Peak-and-Decline Pathway 

This scenario integrates a dynamic carbon pricing system with adaptive regulatory feedback, simulating 

a high-ambition, technology-responsive pathway. 

3.2.1.  Emissions Profile and Transition Timeline 

• Emissions peak by 2025, then decline rapidly due to coordinated coal retirements and renewable 

expansion. 

• Net-zero emissions in the power sector are achieved by 2040, ten years ahead of national targets. 
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3.2.2.  Market Outcomes and Carbon Prices 

Table 2: Market Outcomes and Carbon Prices 

 

Year Carbon Price ($/ton) Renewable Share (%) Coal Retirement Rate (%) 

2025 65 38 15 

2030 85 53 43 

2040 120 68 90 

 

• Carbon prices rise in response to declining green certificate supply and tightening caps, 

stabilizing above $100/ton by 2040. 

• Renewable firms invest heavily in storage, reducing intermittency penalties and improving 

dispatch reliability. 

• The certificate trading market regains liquidity, with prices averaging $27/unit by 2035. 

3.2.3.  Strategic Shifts Among Stakeholders 

• Over 60% of coal plants opt for early retirement or CCS retrofitting by 2030. 

• Renewable firms prioritize battery and hydrogen investments, leveraging declining innovation 

costs. 

• Regulators actively adjust subsidy structures, phasing out feed-in tariffs in favor of carbon-

linked bonuses. 

3.3.  Sensitivity Analysis: Identifying Tipping Points and Policy Risks 

3.3.1.  Price Thresholds for Behavioral Shift 

Simulation results indicate the existence of nonlinear thresholds that trigger rapid behavioral changes: 

• Coal phase-out accelerates sharply when carbon price exceeds $80/ton, especially if green 

certificate prices surpass $25/unit. 

• Renewable firms’ ROI exceeds coal at $95/ton carbon price, even without subsidies. 

3.3.2.  Risk of Social Backlash and Policy Instability 

• Electricity prices rise by 6–8% annually in the optimized scenario; if this growth exceeds 8%, 

simulations suggest: 

o Consumer satisfaction scores drop by 25%, increasing political pressure. 

o Potential for demand contraction or migration to off-grid alternatives in rural regions. 

3.3.3.  Resilience of the Mechanism 

• The hybrid model remains stable under most volatility assumptions (e.g., fossil fuel price shocks, 

slower learning rates). 

• However, scenarios with CCS underperformance or supply chain disruptions in battery 

technologies lead to: 

o Delayed net-zero timeline (post-2045). 

o Need for additional regulatory interventions, such as carbon import tariffs. 

4.  Policy Implications and Recommendations 

4.1.  Strategic Insights for Carbon Market Design 

4.1.1.  Dynamic Carbon Pricing is More Effective than Static Caps 

The simulation confirms that adaptive carbon pricing mechanisms, where prices respond to real-time 

emissions gaps and certificate inventories, are superior to static taxes or fixed cap-and-trade systems. 



Journal	of	Economic	and	Managerial	Dynamics	|	Vol.1	|	Issue	1	|	77

 

 

Specifically: 

• A price floor of $60/ton coupled with a tightening cap trajectory incentivizes both retirement of 

legacy coal assets and forward-looking investment in storage and innovation. 

• The incorporation of learning curve feedbacks into pricing models improves long-term cost-

effectiveness and technological adoption. 

4.1.2.  Certificate Markets Need Floor Prices and Volume Limits 

The volatility of green certificate markets observed in the baseline scenario suggests that excessive 

accumulation of credits leads to depressed prices and reduced marginal abatement incentives. 

Recommendations include: 

• Introduce a certificate price collar (e.g., $15–$50/unit) to stabilize expectations. 

• Expire unused certificates after five years to encourage timely action. 

• Develop cross-border certificate exchange mechanisms within regional electricity markets to 

improve liquidity. 

4.2.  Regulatory Coordination and Industrial Strategy 

4.2.1.  Align Subsidies with Emissions Reductions, Not Capacity Additions 

Instead of capacity-linked subsidies (e.g., feed-in tariffs), the model supports transitioning to 

performance-based incentives: 

• Offer bonus payments per ton of verified CO₂ reduction, scaled by marginal abatement cost 

(MAC). 

• Prioritize storage deployment and grid-flexibility technologies in subsidy design. 

4.2.2.  Phase Coal Gradually Through Differentiated Retirement Mandates 

Given regional disparities in coal dependency and grid resilience, a staggered retirement strategy is 

more efficient than uniform bans: 

• Mandate early retirement for plants >30 years old in high-renewable penetration provinces. 

• Link subsidies for CCS retrofits to regional emissions intensity and abatement potential. 

• Incorporate just transition mechanisms for affected labor groups, especially in Inner Mongolia 

and Shanxi. 

4.3.  Social Acceptance and Political Economy Considerations 

4.3.1.  Prevent Consumer Backlash Through Revenue Recycling 

The model shows heightened sensitivity in consumer satisfaction when electricity prices exceed 8% 

annual growth. To manage this risk: 

• Implement carbon dividend schemes where a portion of carbon pricing revenue is returned to 

households, especially low-income consumers. 

• Introduce tiered electricity tariffs to protect essential consumption while penalizing high-

emissions usage. 

4.3.2.  Improve Transparency and Public Engagement 

Simulations reveal that uncertainty in regulatory signals can delay renewable firm investment. To 

mitigate this: 

• Publish five-year rolling carbon price corridors with annual updates based on emission 

performance. 

• Require regulators to publicly disclose modeling assumptions and price adjustment formulas. 

• Launch education campaigns on carbon pricing rationale to build social trust and policy 

resilience. 
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4.4.  International Implications and Cooperation Opportunities 

4.4.1.  Coordinate Regional Carbon Markets 

Given China's Belt and Road energy investments, the domestic system should: 

• Develop interoperable certificate trading schemes with ASEAN and Central Asia. 

• Align with emerging CBAM (Carbon Border Adjustment Mechanism) requirements to prevent 

trade friction. 

4.4.2.  Lead in Global Carbon Pricing Norms 

China’s experience with evolutionary multi-agent carbon pricing provides a valuable reference for 

other developing economies: 

• Export modeling toolkits and regulatory blueprints via UNFCCC platforms. 

• Support South-South capacity-building programs focused on power-sector decarbonization. 

5.  Conclusion 

5.1.  Summary of Key Findings 

This study constructs a multi-agent evolutionary game model to simulate the interactive dynamics 

among coal producers, renewable energy firms, regulators, and consumers in the context of optimizing 

carbon pricing mechanisms under carbon neutrality goals. The model integrates learning curves, demand 

elasticity, and adaptive regulatory responses to reflect the complexity of real-world energy transitions. 

Simulation results demonstrate that: 

• A hybrid carbon pricing mechanism—combining dynamic carbon taxes and performance-based 

certificate trading—can significantly accelerate emission reductions, peaking emissions by 

2025 and achieving net-zero by 2040. 

• The carbon price tipping point for effective coal phase-out lies around $80/ton, while certificate 

price stabilization above $25/unit is essential for scaling renewables. 

• Excessively steep electricity price hikes (above 8%/year) may trigger consumer backlash, 

necessitating revenue recycling and tariff reform. 

These findings underscore the inadequacy of static models and the need for adaptive, multi-

stakeholder approaches that internalize strategic feedbacks and heterogeneous responses. 

5.2.  Theoretical Contributions 

This research makes several theoretical advancements: 

• Bridges evolutionary game theory and energy economics, offering a dynamic lens through 

which to evaluate carbon market design. 

• Extends traditional carbon pricing models by integrating behavioral strategy, learning curves, 

and decentralized agent objectives. 

• Demonstrates the importance of nonlinear threshold effects, revealing that climate policy 

effectiveness is contingent upon strategic coordination and pricing calibration. 

By introducing a co-evolutionary framework, the study provides a more realistic representation of 

carbon pricing ecosystems in transition economies. 

5.3.  Practical and Policy Implications 

The results provide actionable guidance for policymakers: 

• Adopt flexible, feedback-based pricing instruments that adjust in response to emissions 

performance and market signals. 

• Redesign renewable energy subsidies to reward verified carbon abatement rather than capacity 

expansion. 

• Plan for equitable transitions, ensuring affordability through tiered tariffs and targeted 

compensation schemes. 



Journal	of	Economic	and	Managerial	Dynamics	|	Vol.1	|	Issue	1	|	79

 

 

Moreover, the study’s agent-based framework can be adapted for regional carbon market integration, 

offering a tool for Belt and Road energy governance and South-South cooperation on carbon neutrality 

pathways. 

5.4.  Limitations and Future Research 

While the model captures key strategic behaviors and pricing dynamics, it has several limitations: 

• Behavioral simplifications: Agents follow bounded rationality rules, which may not fully 

capture real-world strategic adaptation or lobbying behavior. 

• Calibration constraints: Data limitations in emerging markets may affect the precision of 

parameter estimates. 

• Technology uncertainty: The cost trajectories of future energy technologies (e.g., hydrogen, 

carbon removal) remain difficult to model precisely. 

Future research could incorporate: 

• International spillovers and cross-border electricity trade. 

• Multi-level governance mechanisms, including provincial-level regulators and utility-specific 

compliance behaviors. 

• Deep learning–enhanced agent cognition for modeling adaptive firm strategies over longer 

horizons. 
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