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Abstract. The volatility of financial markets has driven the diversification of investment instruments, encouraging investors to 

keep improving their portfolio-picking techniques. While numerous studies based on Modern Portfolio Theory (MPT) have 

developed accepted methods for determining optimal portfolios, not enough research has been done on the visual graphical analysis 

of risk preferences to accommodate diverse investors. Furthermore, by including risk-free assets in the analysis, this study presents 

an innovative methodology. This study's main goal is to find and analyze the risk portfolio frontier while examining the 

complementing of risk-free investments. Under idealized assumptions, portfolio returns and risks are formulated and solved as 

equality-constrained optimization problems, yielding frontier portfolios. The risk-efficient frontier and preference levels are 

depicted graphically, with explicit discussion of unfettered short-selling possibilities. The inclusion of risk-free assets further 

broadens the model’s practical applicability. The framework's viability is empirically validated using historical data from twelve 

stocks. These results illustrate investors can use the efficient frontier as a foundation to match portfolio selections to their own risk 

tolerances, providing practical guidance for adaptable wealth management. 
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1. Introduction 

Nowadays, identifying a beneficial portfolio attracts extraordinary attention, particularly in the context of increasingly volatile 

financial markets and diverse investment instruments. Joemon et al. [1] state that with the goal of optimizing returns while reducing 

risk exposure, portfolio diversification requires striking a balance between expected returns and return variance, as proposed by 

Modern Portfolio Theory (Markowitz, 1952). Prior to Markowitz's groundbreaking research, qualitative judgment was primarily 

used when making investment decisions. This was completely changed by the introduction of Modern Portfolio Theory (MPT), 

which established the concepts of diversification and risk-return optimization. MPT not only solidifies its role as the cornerstone 

of contemporary financial economics but also propels decades of groundbreaking theoretical and empirical advancements in the 

field, furthermore, extending its principles to diverse domains. For instance, its incorporation into programming serves as the 

foundation for algorithmic risk management solutions [2]. Additionally, MPT's cross-sector applications show how adaptable it is 

in tackling long-term capital allocation problems, like maximizing risk diversification in real estate through asset type and 

geographic allocations [3]. These illustrations show that MPT research and optimization are still crucial and beneficial today, 

especially for improving quantitative approaches and solving realistic resource allocation issues. 

Although the theoretical framework is well-established, there are several barriers to practical implementation, including (1) 

matrix invertibility is compromised by the covariance matrices' singularity under practical asset correlations; (2) the contradiction 

between real-world short-selling limits and theoretical presumptions of unlimited short-selling; and (3) inadequate consideration 

of risk-free assets within frameworks for portfolio optimization. This paper addresses these challenges with mathematical 

frameworks like symmetric matrix optimization, iterative weight elimination algorithms, and dynamic threshold analysis to 

balance practical circumstances with theoretical rigor. Furthermore, using historical data from twelve actual stocks offers 

actionable insights toward optimizing a portfolio under realistic limitations. 

To analyze portfolio optimization, this study gives two cases: (1) portfolios comprising exclusively risky assets, and (2) 

portfolios incorporating risk-free assets. This is addressed by setting up a condition-driven equality-constrained optimization 
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problem and then solving it with the Lagrange multiplier method. Four parts will be discussed in the rest of paper: (1) modeling 

extremum problems using idealized assumptions. (2) To identify effective frontier solutions, the Mean-Variance Optimization 

(MVO) model is consulted and improved. (3) Analyzing risk-return preferences with frontier graphics. (4) extending the 

framework by adding a risk-free asset and analyzing market-contingent portfolio strategies. 

2. Literature review 

By establishing a mathematical framework for optimizing portfolio allocation by maximizing returns for a given level of risk,  

Modern Portfolio Theory (MPT), which was developed in the middle of the 20th century, completely changed how investors 

thought about the tradeoff between risk and return [4]. This theory is based on two fundamental assumptions: first, that asset 

returns are distributed normally, and second, that diversification may effectively reduce risk. MPT, which initially was created for 

the financial markets, makes it possible to build a portfolio of financial assets [5]. A portfolio is an assortment of financial assets 

that are combined and rearranged to satisfy an investor's aims. Each investor's primary goal when building a portfolio is to 

minimize risk and maximize return [6]. The main benefit of creating such a portfolio is that it promotes diversification, which 

evens out the equity curve and yields a higher return per risk than trading individual assets [7]. Risk and return are the most critical 

elements for the construction of a portfolio. In this study, if a portfolio has the least amount of volatility among those with the 

same projected rate of return, it is considered a frontier portfolio. The efficient frontier consists of portfolios with positive returns 

located above the Minimum Variance Portfolio (MVP) point, where MVP represents the portfolio with the lowest achievable risk. 

This study extends previous work by showing that when a risk-free asset is included, the efficient frontier becomes a linear Capital 

Market Line (CML). Therefore, this extension aligns the theoretical framework with actual market dynamics and enables investors 

to achieve superior risk-return trade-offs. 

Markowitz (1952) defined the expected return of a portfolio as the weighted average expected return of each of the assets that 

make up the portfolio. The covariance between the returns of every pair in a portfolio affects its risk (as indicated by standard 

deviation), in addition to the risk of its individual assets [8]. A lot of information in the Markowitz Model needs to be estimated. 

Chakraborty and Patel [9] reveal that W.E. Sharpe therefore created a new and more straightforward model to analyze the portfolio 

in 1964. This concept states that the return on an asset is linked to a single index, typically a market index. The market index will 

include all equities traded on the exchange. In line with the hypothesis by previous research, the theoretical basis for the 

combination of a risk-free asset is further clarified in this paper, proving that the conventional hyperbolic efficient frontier becomes 

a linear Capital Market Line (CML). This change brings in the tangency portfolio, a crucial invention that helps investors attain 

higher risk-return trade-offs in a range of market circumstances. 

3. Key concepts and theoretical foundations 

3.1. Markowitz mean-variance optimization model 

3.1.1. Model assumptions 

Markowitz (1952) developed the mean-variance optimization paradigm, which quantifies the tradeoff between risk (variance of 

returns) and predicted return and serves as a foundation for portfolio selection. To thoroughly identify the efficient frontier—the 

collection of portfolios that deliver the highest return for certain levels of risk, this study makes three idealized assumptions. 

(1) Frictionless markets: no transaction costs and unlimited short selling. 

(2) Non-singular variance-covariance matrix: Ensuring invertibility for computational feasibility. 

(3) Normally distributed returns: Simplifying risk modeling despite empirical deviations. 

3.1.2. Formulation of the optimization problem 

The portfolio with the lowest variability among all the portfolios with an identical expected return is called a frontier portfolio. 

This is expressed mathematically as a constrained optimization problem (see formula 1): 

  {𝑤}
𝑚𝑖𝑛  

1

2
𝑤𝑇𝑉𝑤 (1) 

Subject to: wTe = E[r̃p] and  wT1 = 1 

Let p represent a frontier portfolio, w denotes the N-vector portfolio weights of p. V stands for the variance-covariance matrix 

of asset returns. e defines the vector of expected returns on the N risky assets. E[r̃p] denotes the target portfolio return and 1 is 

the unit vector. 

We use the Lagrange multipliers λ and γ to solve this limited optimization, which turns the problem into an unconstrained 

formula (2): 
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  {w,λ,γ}
  min  L =  

1

2
wTVw + λ(E[rp] − wTe) + γ(1 − wT1) (2) 

Taking partial derivatives of L with respect to w, λ, and γ, we derive a system of N+2 linear equations. Solving this system 

using Cramer's rule yields the following constants formula (3)-(6): 

 A = 1TV−1e (3) 

 B = eTV−1e (4) 

 C = 1TV−11 (5) 

 D = BC − A2 (6) 

The optimal portfolio weights are given by (see formula 7-9): 

 wp = g + hE[r̃p] (7) 

Where: 

 g =
1

D
[B(V−11) − A(V−1e)] (8) 

 h =
1

D
[C(V−1e) − A(V−11)] (9) 

3.2. Mathematical representation of frontier portfolios  

3.2.1. Derivation of portfolio weights 

(1) Vector g: This vector represents the optimal portfolio weights when the expected portfolio return E[r̃p] is zero. Mathematically, 

it satisfies the budget constraint  gT1 = 1, ensuring that the total investment allocation sums to unity. Conceptually, g serves as 

the baseline portfolio configuration under a risk-minimization objective without return targeting. 

(2) Vector h: The vector h acts as a scaling factor that adjusts portfolio weights in proportion to the target expected return 

E[r̃p]. It satisfies hT
1 = 0. 

(3) Frontier Characterization: Any frontier portfolio can be uniquely expressed as a linear combination in Equation (7) of these 

vectors: 

Equations (7) demonstrates that the entire set of efficient portfolios lies on the efficient frontier, a hyperbola in risk-return 

space. Conversely, all portfolios that fit this parametric description are necessarily frontier portfolios, thus a bijective relationship 

between target returns and ideal portfolio weights is established. 

3.2.2. Covariance analysis of frontier portfolios 

For any two frontier portfolios p and q, their return covariance is derived as equation (10): 

 Cov(r̃p, r̃q) = wp
TVwq =

C

D
(E[r̃p] − A/C)(E[r̃q] − A/C) + 1/C (10) 

Where parameters A, B, C and D are defined in Equations (3)-(6). 

Rearranging terms yields the variance expression for a single frontier portfolio p (see equation 11 and 12). 

 
σ2(r̃p)

1/C
 −

(E[r̃p]−A/C)2

D/C2 = 1 (11) 

 σ(r̃p)2 =
1

D
(C(E[r̃p])2 − 2AE[r̃p] + B) (12) 

This equation describes a hyperbola in the risk-return space, with standard deviation σ (r̃) as the horizontal axis and expected 

return E [r̃] as the vertical axis (Figure 1). 
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Figure 1. Portfolio frontier in the σ (r̃)-E [r̃] space 

(1) Feasible Region: The feasible set of portfolios consists of the hyperbola and the region on its right side. All frontier 

portfolios lie exactly on the hyperbola, while suboptimal portfolios reside to the right. 

(2) Minimum Variance Portfolio (MVP): The vertex of the hyperbola corresponds to the MVP, with coordinates: (√1/C, A/C) 

(3) Quadrant Analysis: Select an arbitrary point A within the feasible region, establish a Cartesian coordinate system with A 

as the origin, and carry out further analysis to assess portfolios' risk-return characteristics in comparison to A. 

Quadrant II: Portfolios exhibit higher returns and lower risk than portfolio A, representing superior choices. Quadrant IV: 

Portfolios yield lower returns and higher risk, deemed inferior to A. 

Quadrants I & III: Ambiguous dominance due to conflicting risk-return tradeoffs. This geometric approach provides sensitive 

insights into portfolio optimization strategies. 

3.2.3. Effective and inefficient frontiers 

The hyperbola bifurcates into two branches at the critical point E[r̃p]=A/C 

(1) Upper Branch (Effective Frontier): This area is dominated by portfolios with positive returns. Investors seeking profit 

maximization focus exclusively on this branch. 

(2) Lower Branch (Inefficient Frontier): Portfolios generate negative returns and for logical investors, portfolios are essentially 

meaningless. 

3.2.4. Marginal risk-return tradeoff and sharpe ratio 

(1) Marginal Risk-Return Tradeoff: Along the effective frontier, increasing the target return  E[r̃p]  necessitates accepting 

incremental marginal risk. Formally, the marginal risk per unit return is given by equation (13): 

 
∂σ(r̃p)

∂E[r̃p]
=

CE[r̃p]−A

Dσ(r̃p)
 (13) 

This convex relationship implies risk-taking returns decrease as E[r̃p] increases. 

(2) Investor Portfolio Optimization via Sharpe Ratio: The Sharpe ratio is a crucial psychological criterion for decision - making. 

It is the ratio of expected return to variance, which investors use when setting up investment portfolios. The optimal investment 

point is found where the Sharpe ratio line tangents the efficient frontier curve. This tangency point represents the portfolio that 

balances risk and expected gains to optimize risk-adjusted return. 

The Sharpe ratio serves as a numerical indicator of risk attitudes among investors that separates risk-averse from risk-seeking 

behavior. Risk-seeking behavior encourages allocations toward portfolios with higher expected returns and Sharpe Ratios. Risk 

aversion causes a movement in preferences toward assets with reduced risk. The Minimum Variance Portfolio (MVP) is the 

extreme risk aversion. It reduces portfolio variance without considering return expectations. 
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4. Empirical analysis with real data 

4.1. Data source and processing methods 

As an example, this study employs the closing prices of twelve constituent stocks (ADM, BA, CAT, DE, GIS, GOOGL, HSY, 

IBM, JPM, MSFT, PG, WMT) across 61 trading days spanning 2011-2016 to perform computational analysis for deriving Efficient 

Frontier portfolio strategies. 

4.2. Parameter calculation results 

The daily closing prices of the 12 constituent stocks (ADM, BA, CAT, DE, GIS, GOOGL, HSY, IBM, JPM, MSFT, PG, WMT) 

were first converted into daily returns by the formula (14): 

 Rt =
Pt−Pt−1

Pt−1
 (14) 

Where Rt denotes the return on day t, and Pt denotes the closing price on day t.  

The AVERAGE function in Excel was used to get the arithmetic mean of previous returns (see equation 15): 

 μt =
1

n
∑ (n

t=1 Rt)  (15) 

The computed expected Returns are: 0.01037382; 0.015851847; 0.003536989; 0.005454629; 0.011749253; 0.018502757; 

0.011681926; 0.000644734; 0.015450849; 0.017283281; 0.008708205; 0.007200771. 

The VAR.P function in Excel was used to get the variance of previous returns (see equation 16): 

 σt
2 =

1

n
∑ (n

t=1 Rt − μt)2 (16) 

The computed variances are: 0.004061708; 0.003260351; 0.0047144; 0.002722354; 0.001689157; 0.003858339; 0.002599377; 

0.00245572; 0.004644663; 0.004278525; 0.001467067; 0.002184394. 

Using Equation (3), the following parameters were calculated: A=16.37633796, B=0.286554408, C=1762.267088, 

D=236.8009569  

The vector g was derived as: [-0.035985486; -0.053072894; 0.088918614; 0.30046326; -0.062234704; 0.011189432; 

0.093150975; 0.531478028; -0.254858703; -0.098428447; 0.359263833; 0.120116093]. 

The vector h was derived as: [5.012589574; 10.05671428; -5.401246776; -11.79992089; 17.1117234; 12.30548103; 

1.604402092; -48.42679106; 23.25527376; 16.5214894; -28.73888364; 8.499168839]. 

The vector g satisfies the sum-to-unity constraint ∑ g = 1, while the vector h adheres to the zero-sum condition ∑ h = 0. 

Critical validation checks for computational consistency are provided by these properties. 

4.3. Efficient frontier analysis 

Given an expected return rate E[r̃p] , the optimal portfolio weights on the Efficient Frontier can be computed as: wp = g + hE[r̃p] 

by Equation (7) 

Where: wp denotes the vector of portfolio weights, g and h are precomputed by Equation (8)-(9). 

As an illustrative case, when the expected return is set to E[r̃p]=0.01, the computed Efficient Frontier portfolio weights derived 

are: 

wp = [0.01414041; 0.047494249; 0.034906146; 0.182464051; 0.10888253; 0.134244242; 0.109194996; 0.047210117;       

-0.022305965; 0.066786447; 0.071874996; 0.205107781] 

Notably, one component exhibits a negative weight w9 = −0.022305965 , which represents a short position in the 

corresponding asset. The treatment of short-selling limits in portfolio optimization must be discussed in consideration of this. 

4.4. Weight adjustment under short-selling constraints 

(1) To eliminate short - selling positions, assets with negative weights are iteratively eliminated from the portfolio. The leftover 

assets are then used to re-optimize the portfolio. Until all asset weights comply with the non-negative condition, this process is 

repeated (see formula 17): 

 wi ≥ 0    ∀I (17) 

This sequential exclusion guarantees that the final solution adheres to no-short-selling limitations. 

(2) Handling Weights Exceeding Unity (Leverage) 
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The presence of weights exceeding 1 is contingent upon the existence of negative weights in the unconstrained solution. By 

enforcing wi ≥ 0, the necessity for compensatory long positions to offset hypothetical short sales is eliminated, thereby inherently 

bounding all weights within formula (18): 

 0 ≤ wj ≤ 1     ∀j (18) 

(3) Following the elimination of the negative-weighted asset, we recompute the Efficient Frontier solution using the reduced 

universe of 11 component stocks. The optimized portfolio weights are listed by the parameter vector: 

wp = [0.014665321; 0.044350305; 0.039292786; 0.171658375; 0.10754829; 0.129208877; 0.10815592; 0.045183778; 

0.056248357; 0.071417744; 0.212270248] 

where all constituents satisfy wi ≥ 0. The correctness of the limited optimization under non-negativity criteria is confirmed by 

this strictly positive weighting scheme. Thus, the Efficient Frontier's ultimately acceptable solution is established.  

5. Portfolio optimization with risk-free asset 

5.1. Extended optimization model 

While the preceding analysis focused exclusively on N risky assets constructing the Efficient Frontier, we now extend the 

framework by introducing a riskless asset with return rate rf.  

New Equality-Constrained Optimization Problem is formulated as formula (19): 

  {w}
min  

1

2
wTVw (19) 

subject to the equality constraint (see equation 20): 

 wTe + (1 − wT1)rf = E[r̃p] (20) 

Where rf represents the risk-free rate of return. p denotes the frontier portfolio. w stands for the N-vector portfolio weights of 

p and V denotes the variance-covariance matrix of asset returns. e defines the vector of expected returns on the N risky assets. 

E[r̃p] defines the target portfolio return and 1 is the unit vector. 

Following the use of the Lagrange multiplier method, the optimal weights are determined to be (see equation 21): 

 wp = V−1(e − rf1)
E[r̃p]−rf

H
 (21) 

with constants defined as: H = B − 2Arf + Crf
2  (20). Where parameters A, B, C, and D are defined in Equations (3)-(6). Under 

the conditions A2 − BC < 0 and  H > 0, the solution is admissible. The portfolio return's variance is calculated as formula (22): 

 σ2(r̃p) = {

E[r̃p] −rf

√H
    if E[r̃p]  ≥ rf

−
E[r̃p] −rf

√H
  if E[r̃p]  < rf

 (22) 

That is, two half-lines with slopes √H and -√H that originate from point (0, rf) in the σ(r̃p) − E[r̃p] plane geometrically 

describe the portfolio frontier. 

5.2. Frontier analysis under market conditions 

To determine the intersection points between the half-lines and the hyperbola, it can be systematically categorized into three 

different cases. These cases result from the basic relationship between the parameters of the line and the inherent characteristics 

of the hyperbola.  
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5.2.1. Portfolio frontier under 𝑟𝑓 < 𝐴/𝐶 (typical situation: advantageous market conditions) (figure 2) 

 

Figure 2. A portfolio frontier when rf < A/C 

A scenario displays efficient markets with a low risk-free rate relative to market risk-return trends. There is only one point of 

tangency shared by the two half-lines and the hyperbola. It is on the upper branch of the hyperbola called point We. Two critical 

portfolios should be noticed: 

(1) Risk-free portfolio (0, r
f
): By allocating all resources to the risk-free asset, zero volatility is achieved. 

(2) Market portfolio We: Fully invested in risky assets, reflecting pure market risk and return. 

The frontier is divided into three distinct zones by the line connecting these two points:  

(1) Infeasible regions: Region below and to the right of (0, r
f
) implying short-selling risky assets (constrained by regulations). 

Region above and to the right of We limiting by borrowing costs/margin requirements (leveraging) 

(2) operationally feasible region: 

This region lies strictly between (0, r
f
) and We. A risk preference gradient can be apparent on the portfolio frontier:  weights 

near (0, r
f
) reflect conservative choices prioritizing capital preservation. Conversely, positions that approach We  indicate a 

greater willingness to take risks to maximize returns. Empirical data supports This feasible portion is where rational investors 

primarily optimize, adjusting allocations to suit their utility preferences and risk tolerance.  

5.2.2. Portfolio frontier under 𝑟𝑓 > 𝐴/𝐶 (typical situation: adverse market conditions) (figure 3) 

 

Figure 3. A portfolio frontier when rf > A/C  
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A less frequent situation where the risk-free rate is higher than the market's risk-return ratio, signaling unfavorable market 

conditions. The hyperbola and two half-lines share a single tangency point, located on the lower branch (market as point e’). 

Region below and to the right of e’ (leveraging) or above and to the right of  (0, r
f
) (short-selling risky assets) are limited by 

financial or regulatory barriers. 

operationally feasible region lies between e’ and (0, r
f
) portfolios closer to e’ exhibit increasingly unfavorable risk-return 

profiles. The goal of rational investors is to move their holdings toward (0, r
f
) by divesting risky assets. However, real-world 

obstacles like transaction fees or illiquid markets make these rebalancing exercises impractical. 

5.2.3. Portfolio frontier under 𝑟𝑓 = 𝐴/𝐶 (critical state) (figure 4) 

 

Figure 4. A portfolio frontier when rf = A/C  

Since the two half-lines in this case precisely correspond to the hyperbolics’ asymptote, there is no tangency point between risk-

free and risky assets. 

Considering financial markets are dynamic, this equilibrium situation is intrinsically unstable. The equality A gets disrupted 

by slight shifts in asset returns or risk-free rate adjustments, making this condition temporary and practically unobservable as an 

empirical standpoint. 

6. Conclusion 

To rigorously address risk-based portfolio optimization within the framework of Modern Portfolio Theory (MPT), this paper first 

develops an equality-constrained quadratic programming model under idealized assumptions. Then, through the Lagrange 

multiplier method and analytical derivations, we obtain solutions for frontier portfolios. By further visualizing these solutions, we 

present a clear geometric understanding of the Efficient Frontier and its relationship to diverse risk preferences. However, classical 

MPT frameworks have a practical limitation: negative weight allocations. Therefore, we propose a systematic methodology that 

iteratively refines portfolio constraints to eliminate such allocations. Through this approach, we bridge a critical gap between 

theoretical constructs and real-world implement ability. A 12-asset dataset is additionally utilized in this study to examine the 

theoretical framework in real-world scenarios. The whole mathematical procedure is thoroughly explained, with the computation 

of covariance matrices and the removal of negative weights. In this way, it blends strict methods with practical applications. This 

study makes two primary contributions: (1) Computational Refinement of Frontier Solutions: By simplifying improving the 

derivation of frontier portfolios and displaying their distribution on the risk-return plane, we provide an accessible geometric 

illustration of risk preferences. (2) Practical Extension with Risk-Free Assets: By incorporating a risk-free asset, we rigorously 

analyze its impact on portfolio optimization under real and comprehensive market conditions. 

There are some limitations to this study, which could lead to further studies and recommendations for future directions: (1) 

Overly idealized assumptions: The model assumes frictionless markets and independent asset returns, but Real-world variables 

like transaction costs and asset correlations may generate discrepancies between theoretical and practical results. (2) Scalability 

and computational efficiency issues: For high-dimensional optimization problems, the Lagrange multiplier approach shows 

significant computational complexity. Large-scale asset portfolio scheduling is hampered by the possibility of mistakes caused by 

manual Excel computations. To bridge the gap between theoretical models and practical implementation, Future research should 

concentrate on incorporating real-world restrictions into equality-constrained optimization frameworks, such as asset 

interdependencies and transaction costs. In addition to reducing human error, developing specialized algorithms or software tools 

to automate computations will increase scalability for managing sizable and diverse portfolios. Subsequent research endeavors 

may investigate the multidisciplinary integration of this model with the desire to present fresh viewpoints and insights about 
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portfolio optimization. focusing on the theoretical framework's applicability and practical relevance, such efforts may enhance its 

flexibility to meet changing investor needs and a diversity economic condition. 
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