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Abstract. The development of cloud computing and big data has promoted the use of cloud servers in machine learning but has 

also raised concerns about privacy security. To enhance security and efficiency, this paper proposes a multi-key aggregation 

scheme based on improved Ring Learning With Errors (R-LWE) homomorphic encryption. This method protects the privacy of 

local model parameters and prevents information leakage through collaborative decryption. Experimental results demonstrate that 

the proposed scheme can resist collusion attacks, reduce communication overhead, and maintain model accuracy. 
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1. Introduction 

In the context of the integration of informatization and distributed computing [1], data resources have become a core element of 

modern industries, with cloud storage and collaborative modeling being widely applied. Traditional machine learning faces three 

major challenges [2]: limited cross-institutional data sharing, high risks associated with centralized data processing, and expensive 

cloud computing costs. In 2016, Google proposed federated learning [3], which avoids direct data transmission and instead 

exchanges only model parameters, achieving both privacy protection and cross-institutional collaboration. This study optimizes 

homomorphic encryption to improve computational efficiency and reduce communication complexity. The proposed scheme not 

only protects privacy but also significantly reduces communication overhead while achieving an accuracy level comparable to 

traditional federated learning on real-world datasets, demonstrating its practicality and efficiency. 

2. Related work 

The risk of private data leakage has become increasingly prominent, potentially leading to identity theft, financial fraud, and other 

security threats. Major global economies have established multi-level regulatory frameworks to address these challenges. In 

response, the academic community has proposed the integration of homomorphic encryption technology [4], which supports 

encrypted computations and prevents information leakage during gradient exchange. Federated learning has been applied in 

various fields, including computer vision, autonomous driving, and natural language processing [5], leading to the development 

of frameworks such as TensorFlow Federated and FATE [6]. However, it still faces challenges related to communication efficiency, 

resource imbalances, and vulnerability to malicious attacks. Existing privacy protection methods include differential privacy [7], 

fully homomorphic encryption [8], and secure multi-party computation [9]. For example, the DSGD algorithm reduces privacy 

leakage risks [10], Paillier encryption enhances model security [11], and secure aggregation protocols improve robustness [12]. 

Current research faces major challenges such as data heterogeneity and device resource disparities. Low-quality data may degrade 

global model accuracy, while existing differential privacy mechanisms have security limitations in non-identity (non-ID) scenarios 

[13]. Moreover, significant computational power differences among edge devices can affect training efficiency. The FedCS 

protocol [14] optimizes training through dynamic node selection, but further improvements in resource scheduling strategies are 

still needed [15]. As an important approach in privacy computing, homomorphic encryption enables secure encrypted 

computations, enhancing data security. This study focuses on optimizing privacy protection in federated learning through 

homomorphic encryption, providing technical support for the development of privacy-preserving computing infrastructures. 
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3. System model and algorithm 

To address privacy leakage issues, this paper proposes an improved privacy-preserving federated learning scheme with multi-key 

aggregation (PFLMA). This scheme optimizes Ring Learning With Errors (R-LWE) homomorphic encryption, improving 

computational efficiency. Based on the MK-CKKS scheme, it innovatively employs aggregated public key encryption to secure 

local model parameters. As a result, the cloud server can only decrypt the aggregated result without accessing individual model 

updates, effectively protecting privacy. Additionally, this scheme resists collusion attacks between participants and the cloud server. 

3.1. System model 

The PFLMA scheme involves three main entities: the Key Generation Center (KGC), the Cloud Server (CS), and the Participants 

(P). The system workflow consists of key generation, model training, encrypted transmission, aggregation, and update processes 

(see Figure 1). The KGC generates public-private key pairs for participants and provides public parameters. Each participant trains 

a local model and uploads encrypted parameters to the CS. The CS aggregates the encrypted data and distributes the global model. 

The participants then continue training until convergence. 

 

Figure 1. Illustrates the system model of the proposed PFLMA scheme 

Key Generation Center (KGC): A trusted third party responsible for generating public parameters, managing key lifecycles, 

and coordinating secure interactions. The KGC ensures parameter security and supports key updates and revocation. 

Participants (P): Data providers that engage in local model training. They encrypt their model parameters using the keys 

generated by the KGC before uploading them to the CS. The participants optimize their local models while preserving privacy. 

Cloud Server (CS): Responsible for coordinating and aggregating encrypted model parameters to generate a global model and 

distributing it back to participants. The CS does not have direct access to raw data and can only recover encrypted aggregate results. 

3.2. Scheme implementation 

The PFLMA scheme employs multi-key homomorphic encryption, allowing multiple participants to independently encrypt data 

and perform collaborative computation, ensuring the secure transmission of model parameters. The scheme improves R-LWE 

homomorphic encryption, utilizes Stochastic Gradient Descent (SGD) for model training, and incorporates a key management 

mechanism to ensure privacy security. 

3.2.1. System initialization phase 

During this phase, the KGC and participants complete system initialization through the following steps: 

(1) Initialization: The KGC selects a security parameter, sets 𝜃 = 2𝑘 , 𝑘 ≥ 1, and confirms the key distribution 𝜒 and error 

distribution 𝜓, with ciphertext modulus 𝑞. 

The KGC sends public parameters 𝑝𝑝 = (𝜃, 𝑞, 𝜒, 𝜓, 𝑎) to the participants. 

(2) Encoding and Decoding: Participants expand model parameters into vectors, normalize them, and encode them as 

polynomials in ring 𝑅. 

(3) Key Generation: Each participant 𝑃𝑖 generates a private key 𝑠𝑘𝑖 = 𝑠𝑖 ← 𝜒 and an error vector 𝑒𝑖 ← 𝜓, then computes the 

public key 𝑝𝑘𝑖 = 𝑏𝑖 = −𝑠𝑖 ⋅ 𝑎 + 𝑒𝑖𝑚𝑜𝑑 𝑞. The KGC aggregates the keys to generate a global public key 𝑝𝑘 = ∑ 𝑏𝑖
𝑛
𝑖=1  and an 

aggregated private key 𝑠𝑘 = ∑ 𝑠𝑘𝑖
𝑛
𝑖=1 . 
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3.2.2. Local training phase 

(1) Encryption: Participants use SGD to train local models, obtaining model weights 𝑤𝑡
𝑖. 

The public key �̃� encrypts plaintext 𝑚𝑖 into ciphertext 𝑐𝑚𝑖 = (𝑐𝑖0, 𝑐𝑖1), incorporating randomness 𝑣 ← 𝜒. The encryption 

formula is as follows: 

 𝑐𝑚𝑖 = (𝑐𝑖0 + 𝑐𝑖1) = (𝑣 ⋅ �̃� + 𝑒𝑖0 +𝑚𝑖 , 𝑣𝑖 ⋅ 𝑎 + 𝑒𝑖1). (1) 

(2) Key Switching: Participants compute a transformation key 𝑅𝑖 = (−𝑠𝑘𝑖 ⋅ 𝑎 + 𝑠𝑘 ⋅ 𝑎 + 𝑠𝑒𝑖)𝑚𝑜𝑑 𝑞 and perform ciphertext 

conversion using 𝑅𝑖. The transformed ciphertext 𝑐𝑚𝑖′ is then sent to the cloud server. 

(3) Homomorphic Addition: The cloud server aggregates all participants' ciphertexts using homomorphic addition, yielding the 

aggregated ciphertext 𝐶𝑠𝑢𝑚 = ∑ 𝑐𝑚𝑖
𝑛
𝑖=1 ′, where 

𝐶𝑠𝑢𝑚0 = ∑ 𝑐𝑖0′
𝑛
𝑖=1  and 𝐶𝑠𝑢𝑚1 = ∑ 𝑐𝑖1′

𝑛
𝑖=1 .  

3.2.3. Partial decryption phase 

Each participant partially decrypts the aggregated ciphertext using their private key 𝑠𝑖 , and each participant decrypts the 

aggregated ciphertext sent by the cloud server, generating the partial decryption result 𝐷𝑖 = 𝐶𝑠𝑢𝑚1 − 𝑠𝑖 ⋅ 𝐶𝑠𝑢𝑚0𝑚𝑜𝑑 𝑞.  

3.2.4. Aggregation phase 

The cloud server aggregates the partial decryption results from all participants to recover the plaintext and compute the sum of 

parameters: 

 �̃� ≈∑𝐷𝑖𝑚𝑜𝑑 𝑞 .

𝑛

𝑖=1

 (2) 

3.2.5. Model update phase 

The cloud server and participants collaboratively update the local training models to derive the final global model. The cloud 

server computes the weighted average of all participants’ local models to obtain the global model 𝑤𝑡+1: 

 𝑤𝑡+1 =
1

𝑛
∑𝑤𝑡

𝑖

𝑛

𝑖=1

. (3) 

The cloud server then transmits the updated global model parameters to each participant for the next training round until 

convergence. 

3.3. Security analysis 

The PFLMA scheme ensures the confidentiality of model parameters in federated learning, preventing data leakage. The security 

analysis focuses on the cloud server, participants, and collusion resistance. 

(1) Security Against an Honest-but-Curious Cloud Server: The cloud server can only process encrypted data and cannot access 

any plaintext information. Even after aggregating encrypted data, the server can only obtain the sum, not individual participants’ 

models or training data. 

(2) Security Against Honest-but-Curious Participants: Each participant encrypts its own data, preventing them from inferring 

others' private information. The encryption randomness and error terms ensure that even if one participant decrypts their data, they 

cannot obtain others’ information. 

(3) Security Against Collusion Between Participants and the Cloud Server: Even if the cloud server and some participants 

collude, they cannot obtain other participants’ private data. The encryption and randomness mechanisms prevent effective 

decryption of ciphertext, ensuring data privacy. 

4. Experimental analysis 

4.1. Experimental setup 

The experiments were conducted on a Windows 10 platform, with a hardware configuration consisting of an Intel i5-1035G1 

processor and 16GB RAM. The PFLMA scheme was simulated in the context of horizontal federated learning. The experiments 
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utilized two publicly available datasets from UCI Machine Learning Repository: Heart Disease and Pima. The study compared 

three federated learning approaches: 

PFLMA (Proposed Scheme) 

Federated Learning Based on MK-CKKS 

Unencrypted Federated Learning (UFL) 

The evaluation focused on model accuracy and communication overhead. 

4.2. Accuracy analysis 

The training time of the PFLMA scheme increases as the number of participants grows. Experiments were conducted with different 

numbers of local training rounds 𝑁, specifically 1, 5, 10, 15, 20, 30, and 40 rounds. The results showed that (see Figure 2 and 3):  

When 𝑁=20, the accuracy of PFLMA on the Heart Disease and Pima datasets was 92.73% and 93.37%, respectively. These 

values were very close to UFL (93.25% and 93.90%), and significantly better than the MK-CKKS scheme. 

When 𝑁=40, the accuracy of PFLMA reached 92.89% and 93.87%, which was almost on par with UFL (93.65% and 94.53%) 

and exceeded the MK-CKKS scheme by 1.25% and 1.89%, respectively. 

 

Figure 2. Accuracy on heart disease dataset 

 

Figure 3. Accuracy on Pima dataset 

The results indicate that as the number of training rounds increases, PFLMA achieves accuracy close to UFL while 

outperforming the MK-CKKS scheme. 
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4.3. Communication efficiency analysis 

Each model consists of 510 weights, with each weight occupying 64 bits, resulting in a ciphertext size of approximately 92KB. 

The PFLMA scheme introduces additional collaborative decryptions 𝐶𝑠𝑢𝑚1 and 𝐷𝑖 of 52KB. To reduce communication overhead, 

experiments were conducted with 10 aggregation rounds or 5 aggregation rounds, allowing convergence to be achieved with 20 

or 40 local training rounds, respectively (see Figure 4). 

 

Figure 4. Communication efficiency comparison 

The results demonstrate that the communication overhead of PFLMA is slightly higher than UFL but significantly lower than 

the MK-CKKS scheme. By optimizing computational structures and introducing a trusted key management center, PFLMA 

reduces both computational complexity and communication costs. 

5. Conclusion 

This paper proposes an efficient privacy-preserving federated learning scheme based on multi-key aggregation (PFLMA). The 

scheme improves upon traditional R-LWE homomorphic encryption by simplifying related computations, enhancing 

computational efficiency and decryption accuracy, and reducing storage complexity during computation and communication, 

thereby improving overall efficiency. Furthermore, by refining the MK-CKKS scheme, the proposed method defines an aggregated 

public key and shared decryption mechanism, ensuring parameter privacy during federated learning model updates and effectively 

preventing collusion attacks between participants and the cloud server. The introduction of a trusted key generation center also 

minimizes communication overhead among participants. Both theoretical analysis and experimental results confirm that PFLMA 

effectively preserves data privacy, significantly reduces communication costs, improves efficiency, and performs competitively 

on real-world datasets. 
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