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Abstract. This paper proposes a CNN-Transformer hybrid model for ink formulation prediction, named CTNet. The model 

leverages Convolutional Neural Networks (CNN) to extract local features from the spectral reflectance of sample surfaces and 

incorporates the self-attention mechanism of the Transformer to achieve efficient mapping between color and formulation. In 

addition, Bayesian optimization is introduced for hyperparameter tuning, further enhancing model performance. Experimental 

results demonstrate that CTNet outperforms CNN, RNN, LSTM, and the standard Transformer model in terms of Mean Absolute 

Error (MAE), achieving higher prediction accuracy. This provides an effective solution for high-precision and automated ink color 

matching, showing promising potential for industrial applications. 
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1. Introduction 

With the advancement of the times and the progress of society, the demand for higher accuracy and efficiency in color matching 

continues to grow. Traditional methods, such as manual color matching [1] and fixed color matching retrieval [2], rely heavily on 

the operator's experience and are easily affected by human and environmental factors, making it difficult to ensure color 

consistency and stability in actual production. Although computer-aided color matching methods—such as the tristimulus value 

method [3] and spectral matching method [4]—have improved matching efficiency and accuracy to some extent, the former is 

prone to metamerism, while the latter involves complex calculations and cumbersome operations, limiting their application in 

industrial settings. Therefore, under the demands of high-precision and large-scale production, these methods are no longer 

sufficient, and more intelligent and efficient techniques are required. 

This study proposes an ink color matching model, CTNet, which combines Convolutional Neural Networks (CNN) [5] and 

Transformer models [6]. Using spectral reflectance data from object surfaces as input, the model leverages CNN's strong local 

feature extraction capability and the Transformer's self-attention mechanism and powerful sequence modeling ability to predict 

both color space and ink formulation. This approach enables the model to automatically learn the complex mapping between color 

and spectral reflectance, breaking away from the constraints of fixed rules in traditional formulation. It ensures high-precision 

color consistency in large-scale production and effectively addresses the limitations of traditional methods in complex 

manufacturing environments. 

1.1. Dataset preparation 

To construct a comprehensive and representative dataset, this experiment adheres to the international standard ISO 12642-2. Si 

Lian brand ink was chosen as the dye, with white paper as the printing substrate. Five types of sample combinations, ranging from 

single-color to four-color mixtures, were designed to comprehensively capture the spectral reflectance data of CMYK inks under 

different combinations, thereby enhancing the model's generalization capability in practical applications. 

A total of 1,553 color patches were produced. The single-color samples include the four primary colors—cyan (C), magenta 

(M), yellow (Y), and black (K)—with dot area percentages varying in 5% intervals, forming a complete gradient for each base 

color. The two-color samples include overlapping combinations such as CM, CY, and MY, with dot area percentages varied in 

10% intervals to evaluate the spectral response of two-color mixtures. The three-color samples are based on different three-color 

combinations, with dot area percentages varied in 15% intervals, allowing for the analysis of the characteristics of three-color 
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overprinting. The four-color samples represent the complete CMYK combination, with dot area percentages for the C, M, and Y 

channels varied in 20% intervals, and the K channel in 50% intervals, fully reflecting the color interaction effects under complex 

four-color overprinting conditions. 

Through this design, the dataset covers ink combinations ranging from simple to complex, enabling a comprehensive evaluation 

of color performance under various printing and dyeing scenarios. The detailed composition is shown in Table 1. 

Table 1. Sample color patch combinations 

Sample Type Total 

White paper substrate 1 

Single-color samples 84 

Two-color samples 600 

Three-color samples 436 

Four-color samples 432 

1.2. Data collection 

In this experiment, spectral measurements were conducted using the X-Rite Ci6X spectrophotometer, with parameters configured 

to include a small aperture, specular reflection, 100% UV, D65 light source, and specified observation angle. To ensure the 

standardization and consistency of the measurement results, the samples were systematically measured under controlled 

environmental conditions. During the measurement process, a white board, similar in color to the white paper substrate, was placed 

beneath the samples, and several sheets of identical white paper were used to standardize the background reflection conditions. 

Considering the potential issues of uneven color distribution or localized defects on the dyed sample surfaces, measurements 

were taken from regions with uniform ink layer distribution and smooth surfaces. Each color patch was measured three times, and 

the average value was recorded to enhance the accuracy and representativeness of the data. 

The spectral range collected in the experiment spanned from 400 nm to 700 nm, with sampling intervals of 10 nm. The spectral 

reflectance for each patch, along with the corresponding CMYK dot area percentages, was recorded and used as the foundational 

data for subsequent model training and performance evaluation. 

1.3. Normalization process 

Due to the numerical variations in spectral reflectance across different wavelengths, this study applies a min-max normalization 

to the spectral data to facilitate subsequent processing and model training. The normalization is performed using the following 

formula: 

 𝑥∗ =
𝑋−𝑋𝑚𝑎𝑥

𝑋𝑚𝑖𝑛𝑚𝑎𝑥
 (1) 

In the equation, 𝑋 denotes the original spectral reflectance, 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 represent the minimum and maximum values of all 

samples at the corresponding wavelength, respectively, and𝑥∗ is the normalized data. This normalization process effectively 

eliminates scale differences across wavelengths, which facilitates faster model convergence and improves both model stability and 

prediction accuracy. 

2. Model development 

2.1. Construction of the CNN 

Spectral reflectance, as a key physical parameter characterizing an object's color, can accurately describe its reflective properties 

across different wavelengths, thereby reflecting its color characteristics. As shown in Figure 1, the curves illustrate the spectral 

reflectance distributions of CMYK inks at 100% dot coverage on a white paper substrate. 
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Figure 1. Spectral reflectance distribution chart 

As shown in the figure, the spectral reflectance of different colors exhibits unique variation trends and reflective characteristics 

across different wavelength bands. Therefore, this study utilizes CNN to extract effective local features from the 31-dimensional 

spectral reflectance data. Each sample consists of spectral reflectance values at 31 different wavelengths, with a data shape of 

(batch_size, 31), where batch_size is the number of samples in each batch. CNN extracts local features from the spectral data 

through convolution and pooling operations and progressively captures more complex cross-band information layer by layer. To 

further enhance the model's expressive power, a layer-by-layer design is employed, allowing the model to capture multi-scale 

features at different levels. 

The CNN structure includes three convolutional layers, one fully connected layer, and one pooling layer, as shown in Figure 

2. The first convolutional layer performs a convolution operation on the input data using a 1D convolution kernel of size 3 to 

extract local features. A ReLU activation function is applied to introduce non-linearity and enhance the network's ability to process 

complex patterns and relationships. The second convolutional layer continues to use a convolution operation with a kernel size of 

3 to extract more complex cross-band features, and applies the ReLU activation function again. This layer further reduces the 

dimensionality of the feature space through pooling operations, while preserving the most important feature information. The third 

convolutional layer uses a convolution operation with a kernel size of 3 to extract high-level features, enabling the model to capture 

more abstract feature representations. Finally, the output from the convolutional layers is flattened and passed into the fully 

connected layer, mapping the data to a 64-dimensional feature space to provide optimized feature representations for subsequent 

prediction tasks. 

 

Figure 2. CNN model structure 

2.2. Combination of CNN and transformer models 

 

Figure 3. CNN-transformer model flowchart 
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The CTNet model uses CNN as the first stage to extract local features from the input spectral data, and then passes the resulting 

feature vectors to the Transformer structure. The Transformer captures the relationships between different wavelength bands 

through the self-attention mechanism and utilizes multi-head attention to explore the multi-dependencies of features across 

multiple subspaces, thereby obtaining a richer global feature representation. This ultimately enables an effective mapping from 

spectral reflectance to color space, producing the corresponding CMYK predictions. The overall model flow is illustrated in the 

Figure 3. 

3. Results and analysis 

3.1. Experimental parameters and evaluation metrics 

To ensure the reliability of the results, all experiments were conducted on the same platform. The specific configuration is shown 

in Table 2. 

Table 2. Experimental environment parameters 

Parameters Parameter Values 

GPU MIX250 

Processor i5-8265U 

Hard Drive 1TB 

Operating System Windows10 64位 

Memory 16G 

Parameters Parameter Values 

 

In the experiments, spectral reflectance was used as the input data and CMYK dot area percentages were used as the predicted 

output. 80% of the dataset was used as the training set, while the remaining 20% was used as the test set. The Adam optimizer was 

adopted, with a unified batch size, and an adaptive learning rate decay strategy combined with an early stopping mechanism [7] 

was employed to enhance the effectiveness and stability of model training. 

The evaluation metric is Mean Absolute Error (MAE), which is used to measure the magnitude of the difference between the 

predicted values and the actual values. The calculation formula is as follows: 

 𝑀𝐴𝐸 =
1

𝑁
∑ |𝑌𝑗 − 𝑌𝑖|𝑁

𝑖=1  (2) 

Where 𝑌𝑖 is the actual CMYK value, 𝑌𝑗 is the predicted CMYK value, and 𝑁is the number of samples. 

3.2. Hyperparameter optimization for transformer 

In the training process of deep learning models, the selection of hyperparameters is crucial to model performance. However, due 

to the large search space of hyperparameters, methods such as grid search [8] or random search [9] are often time-consuming and 

inefficient. Therefore, this study adopts the Bayesian Optimization algorithm [10] to explore the optimal hyperparameter 

combination and enhance the predictive performance of the Transformer model. 

When tuning the Transformer model, key hyperparameters include the model's embedding dimension (D_model), the number 

of attention heads (N_head), the number of encoder and decoder layers (Num_layers), and the hidden layer dimension of the 

feedforward neural network (Dim_feedforward). These hyperparameters directly impact the training efficiency and performance 

of the Transformer model. Therefore, in the experiment, a reasonable hyperparameter space for Bayesian optimization search was 

constructed based on the structural characteristics of the Transformer model and the dimensions of the fabric sample reflectance 

data, as shown in Table 3. 

Table 3. Hyperparameter space 

Hyperparameter Name D_model N_head Num_layers Dim_feedforward 

Search Range [32,128] [1,6] [1,6] [128,512] 

 

In the Table 3, the step size for D_model is set to 32, and the step size for Dim_feedforward is set to 128. In the experiment, 

the Bayesian optimization algorithm is used to perform 15 rounds of hyperparameter search. Random sampling is applied to 

determine the hyperparameter space, and in each round of the search, 30 random hyperparameter training runs for the Transformer 
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model are conducted. Each subsequent round of search prioritizes sampling the parameters that are more likely to improve the 

model performance, based on the acquisition function. During the optimization process, the MAE value is used as the optimization 

objective, and the set of hyperparameters with the lowest MAE value in the training set is selected as the final hyperparameter 

combination for the model. The final results are: D_model = 64, N_head = 4, Num_layers = 1, Dim_feedforward = 256. 

3.3. Comparison with typical models 

To validate the effectiveness of the CTNet model, this study selects several representative prediction models—CNN, RNN [11], 

DNN [12], BP [13], LSTM [14], and Transformer—for comparative experiments under the same dataset conditions. The test 

results of each model are shown in Table 4. 

Table 4. Evaluation results of each prediction model 

Network Model CNN RNN DNN BP LSTM Transformer CTNet 

MAE(%) 15.32 11.08 10.03 9.85 12.31 9.42 7.89 

 

As can be clearly seen from the table, CTNet outperforms the other models in the color matching prediction task, and compared 

to the Transformer model, the MAE value is reduced by 1.53%. To provide a more intuitive comparison of the performance 

differences among the models, the comparison results are shown in Figure 4. 

 

Figure 4. MAE values of each model 

These results indicate that the CTNet model performs the best, validating the effectiveness of the proposed method in the ink 

color matching prediction task. 

4. Conclusion 

This paper presents the CTNet model, which combines CNN and Transformer models for ink color matching. The model leverages 

the strong local feature extraction ability of CNNs and the powerful long-sequence modeling capability of Transformers for the 

color matching prediction task. Additionally, the Bayesian optimization algorithm is employed for hyperparameter optimization 

of the Transformer, ensuring the model is in its optimal state. Experimental results show that, compared to the original Transformer 

model and other typical predictive neural networks, the CTNet model is optimal, with the MAE value reduced to 7.89, validating 

the effectiveness of the proposed method. In future work, further research can explore how to extend this model to different 

materials and ink types to enhance its application potential in the practical color matching industry. 
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