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Abstract. Urban agglomerations play a pivotal role in China's carbon peaking and carbon neutrality goals, yet few studies have 

provided a unified, long-term assessment of their carbon emission performance. This paper addresses this gap by analyzing panel 

data (2006–2022) from 16 national-level urban agglomerations. Utilizing a Non-Radial Directional Distance Function (NDDF) to 

calculate the Carbon Reduction Efficiency Index (CREI) and a Global Malmquist-Luenberger (GML) index to measure Total 

Factor Carbon Emission Productivity (TFCEP), we reveal considerable disparities across regions. Eastern "optimization-

enhancing" agglomerations (e.g., Pearl River Delta, Yangtze River Delta) demonstrate consistently high efficiency, sustained by 

stable technological advances. In contrast, central and western "growth-enhancing" and "development-nurturing" agglomerations 

(e.g., the Ningxia region along the Yellow River, Central Shanxi) exhibit lower performance but significant potential for 

improvement. Dynamic analysis indicates an overall upward trend, largely driven by technology gains in advanced regions and 

efficiency catch-up in less developed ones, despite challenges such as technological lock-in. Dagum's Gini coefficient shows 

narrowing gaps under coordinated the carbon peaking and the carbon neutrality goals policies, although institutional barriers still 

restrict cross-regional technology diffusion. These findings underscore the need for region-specific low-carbon strategies that 

integrate industrial upgrading and innovation support, thereby promoting balanced and sustainable urban development trajectories. 
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1. Introduction 

Balancing global economic growth with environmental sustainability has become the focus of international attention. The signing 

of the Paris Agreement and the convening of COP26 marked a new historical stage in global climate governance, prompting 

nations to commit to more ambitious emissions reduction targets [1]. As a key participant in global climate governance, China 

officially proposed the carbon peaking goal by 2030 and the carbon neutrality goal by 2060. These targets not only reflect China’s 

responsibility as a major power but also clearly set the direction for regional low-carbon transitions. 

In the process of carbon reduction, urban agglomerations—core areas of regional economic development—have increasingly 

emphasized the importance of scientifically measuring and evaluating their carbon emission performance. With accelerating 

urbanization, urban agglomerations concentrate large populations, industries, and resources, amplifying their environmental 

impacts. Therefore, establishing a systematic evaluation method for carbon emission efficiency and improving the performance of 

urban agglomerations are crucial for promoting a nationwide green transformation [2, 3]. In China, both the “14th Five-Year Plan” 

and the third plenary session of the 20th CPC Central Committee have emphasized coordinated development among urban 

agglomerations, providing policy support for research on carbon emission performance. 

However, significant disparities exist among urban agglomerations in terms of scale, developmental stages, risk resilience, and 

environmental resilience management, resulting in pronounced regional and phased differences in input-output performance [4]. 

Mature urban agglomerations, such as the Guangdong-Hong Kong-Macao Greater Bay Area and the Yangtze River Delta, have 

established advanced market-oriented emission reduction mechanisms due to their developed economic foundations, technological 

capabilities, and effective management systems. In contrast, emerging urban agglomerations face considerable challenges in 

improving carbon emission performance due to constraints related to their development stages and industrial structures. Given 

rapid changes in regional economic conditions and industrial layouts, traditional “one-size-fits-all” emission reduction strategies 
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are insufficient for clearly identifying performance levels and evolutionary trends across diverse urban clusters, necessitating more 

precise evaluation methodologies. 

2. Literature review 

Research methodologies for evaluating carbon emission performance have evolved from simple single-indicator measures to multi-

factor evaluations and, more recently, to non-parametric methods based on production frontier theory. Early research primarily 

relied on indicators such as carbon emissions per unit of GDP or carbon intensity to assess the economic impacts of emissions [5, 

6]. For example, Sun analyzed performance based on the rate of change in carbon intensity, providing preliminary insights for 

dynamic evaluation [7]. However, such indicators fail to fully capture the complexity and dynamics of carbon emissions within 

economic systems. 

To address these shortcomings, multi-factor evaluation methods gained prominence. Early studies widely adopted the 

Malmquist and Luenberger indices for dynamic productivity analysis. Initially proposed by Färe et al., the Malmquist index 

assesses productivity changes over time [8]. Zhang et al. further developed a multidimensional framework, including cumulative 

per capita carbon emissions and carbon intensity per GDP, thereby improving comparative analyses across regions. Although these 

approaches handle complexity better, they still rely heavily on weighting schemes and data quality, which limits their effectiveness 

in dynamic and unobservable-factor analyses. 

Subsequently, non-parametric methods based on production frontier theory provided significant methodological advancements. 

Data Envelopment Analysis (DEA), introduced by Charnes et al. and Banker et al, became crucial for environmental performance 

evaluation due to its flexibility in simultaneously handling desirable and undesirable outputs without assuming production 

functions [9, 10]. Färe et al. introduced Directional Distance Functions (DDF) for evaluating pollutant emissions, although their 

radial assumption limited practical flexibility. The Non-Radial Directional Distance Function (NDDF), later developed by Färe & 

Grosskopf and Zhou et al., allows varying proportions between desirable and undesirable outputs, better reflecting real-world 

economic activities [11, 12]. Based on NDDF, Meng and Wu et al. analyzed regional carbon emission performance, validating the 

applicability of NDDF. Furthermore, spatial heterogeneity and temporal dynamics have become focal points in research, with 

studies by Liu et al., Che et al., and Xie et al. emphasizing spatial correlations, technological innovation, and policy interactions, 

advancing research on regional carbon reduction and dynamic evolution patterns. 

Despite numerous studies addressing carbon emissions with significant advances in methods and spatial-temporal analyses, 

some gaps remain. Firstly, most research focuses on single-city or provincial scales, lacking systematic comparative analysis across 

larger spatial scales encompassing multiple urban agglomerations. Secondly, even research addressing urban agglomerations 

predominantly relies on macro-level discussions or case studies, neglecting rigorous quantitative evaluations across varying 

periods, scales, and regional conditions [13]. Third, although some studies integrate NDDF with the Malmquist index, systematic 

explorations of the overall volatility trends and drivers of urban agglomerations' carbon emission performance remain limited. 

To bridge these gaps, this study employs NDDF to measure the carbon emission efficiency of 16 national-level urban 

agglomerations in China from 2006 to 2022, integrating a Global Malmquist-Luenberger (GML) index for dynamic decomposition. 

This paper contributes methodologically and theoretically by: (1) constructing an accurate carbon emission performance index 

using NDDF, overcoming limitations inherent in traditional radial efficiency measures; (2) applying the GML index to differentiate 

the impacts of efficiency changes and technological progress, and utilizing the Dagum Gini coefficient to identify inequality 

sources among urban agglomerations; and (3) providing empirical evidence on the spatial patterns and temporal evolution of 

carbon emission performance, thereby offering a scientific foundation for identifying replicable and generalizable paths towards 

regional carbon peak strategies. 

3. Research methodology and data processing 

3.1. Research methodology 

3.1.1. DEA efficiency analysis 

In order to more accurately measure the carbon emission performance of urban agglomerations and their dynamic evolution, this 

paper makes methodological improvements based on existing studies. First, following the productivity decomposition idea of Färe 

et al. (1996), the desired and undesired outputs are included in the technological production set in order to account for carbon 

emission control when evaluating economic performance [14]. Accordingly, the technology production set is defined as follows 

𝑇 = {(𝐿, 𝐾, 𝐸, 𝐺𝐷𝑃, 𝐶𝑂2): (𝐿, 𝐾, 𝐸) can produce (𝐺𝐷𝑃, 𝐶𝑂2)} (1) 

Equation (1) shows that inputs of labor (𝐿), capital (𝐾), and energy (𝐸) lead to a desired output, Gross Domestic Product (𝐺𝐷𝑃), 

and an undesired output, carbon dioxide (𝐶𝑂2). Following the assumptions of Färe et al., desired outputs have strong disposability 

and undesired outputs have weak disposability and can be bounded under Constant Returns to Scale (CRS) or Variable Returns to 

Scale (VRS) [15]. If the technology production set is assumed to have constant returns to scale, it can be further expressed as 

follows: 
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(2) 

Theoretically, compared with traditional parametric estimation methods (e.g., Stochastic Frontier Analysis SFA), 

nonparametric DEA has more flexibility and is particularly suitable for measuring efficiency that includes both desired and 

undesired outputs [16, 17]. 

In the specific measurement, the Directional Distance Function (DDF) is the key. Traditional radial models (e.g., CCR, BCC) 

usually assume that inputs or outputs change in the same proportion, and it is difficult to disaggregate the different adjustment 

margins of desired and undesired outputs [18]. After Chung et al. proposed the directional distance function, although it has 

expanded the idea of environmental performance measurement, it still belongs to the radial hypothesis. To overcome this 

shortcoming, NDDF allows desired output and undesired output to be adjusted in different proportions, which is closer to the 

diversified change characteristics of economic growth and pollution emission in reality. Therefore, this paper adopts NDDF to 

measure the carbon emission performance of urban agglomerations, which can be mathematically regarded as finding the optimal 

technological frontier and calculating the inefficiency distance by reducing 𝐶𝑂2  emissions and increasing 𝐺𝐷𝑃  by different 

proportions under the premise of given inputs. 

3.1.2. NDDF measurement models 

In this paper, we refer to both Zhou et al. (2012) and Shao et al. studies [12, 19] to define the following model with the expression: 

�⃗⃗� (𝑥, 𝑦, 𝑏; 𝑔) = 𝑠𝑢𝑝{𝑤𝑇𝛽: ((𝑥, 𝑦, 𝑏) + 𝑔 ⋅ 𝑑𝑖𝑎𝑔(𝛽)) ∈ 𝐴𝑇} (3) 

In equation (3), the input vector denoted by 𝑥 = (𝐿, 𝐾, 𝐸) produces the desired output 𝑦 = 𝐺𝐷𝑃 and the undesired output 

𝑏 = 𝐶𝑂2 ; the set of all possible production technologies is denoted by 𝐴𝑇 , which represents the transposition of the set of 

technological possibilities. where 𝑤 = (𝑤𝐿 , 𝑤𝐾 , 𝑤𝐸 , 𝑤𝐺𝐷𝑃 , 𝑤𝐶𝑂2)
𝑇

 is a vector of normalized weights associated with the number 

of inputs and outputs; Since we want the expected direction of efficiency improvement to be an increase in desired outputs, a 

decrease in inputs, and a decrease in non-desired outputs, in order to characterize the level of efficiency of the production units, 

the NDDF model is set to Direction vector 𝑔 = (−g𝑥 , g𝑦 , −g𝑏), denotes the direction of decreasing inputs, increasing desired 

outputs, and decreasing non-desired outputs, respectively; 𝛽 = (𝛽𝐿 , 𝛽𝐾 , 𝛽𝐸 , 𝛽𝐺𝐷𝑃, 𝛽𝐶𝑂2)
𝑇
≥ 0 denotes the scaling factor vector, 

and 𝑑𝑖𝑎𝑔(𝛽) denotes the diagonalization of the 𝛽 vector. 

Based on the basic assumptions of technology production set in Eq. (2), the DEA method is used in this study to solve the 

NDDF. The model can be obtained by solving the following linear programming problem, whose objective function and constraints 

are denoted as: 

�⃗⃗� (𝑥, 𝑦, 𝑏; 𝑔) = max(𝑤𝐿𝛽𝐿 + 𝑤𝐾𝛽𝐾 +𝑤𝐸𝛽𝐸 + 𝑤𝐺𝐷𝑃𝛽𝐺𝐷𝑃 + 𝑤𝐶𝑂2𝛽𝐶𝑂2) (4) 
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(5) 

Equation (5) comprehensively considers key factors such as input slack, desirable output slack, undesirable output slack, and 

the weak disposability of undesirable outputs. Based on the given objectives, the direction vector 𝑔 can be set in different ways. 
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When �⃗⃗� (𝑥, 𝑦, 𝑏; 𝑔) = 0, it indicates that the Decision-Making Unit (DMU) is on the optimal production frontier, meaning its 

input-output efficiency has reached the optimal level. The solution of this function primarily reflects the distance between the 

DMU and the frontier, which can thus be interpreted as an economic inefficiency index incorporating carbon dioxide emissions. 

This study references the methods of Zhou et al., Zhang et al., and Shao et al. to set the direction vector as 𝑔 =
(−𝐾,−𝐿,−𝐸, 𝐺𝐷𝑃,−𝐶𝑂2) and adopts a balanced weight allocation strategy. Each input factor, desirable output, and undesirable 

output is assigned a weight of 1/3, further distributed evenly among the types of factors. The final weight vector is determined as 

(1/9,1/9,1/9,1/3,1/3) to ensure fair and reasonable evaluation of each factor's contribution within the model [12, 20]. 

Using Equations (4) and (5), this study calculates inefficiency based on both the unified technology frontier constructed over 

the entire study period and the annual technology frontiers. According to the definitions of the reference set and data structure, 

two types of Non-Radial Directional Distance Functions (NDDF) are constructed: global 𝐷𝐺⃗⃗ ⃗⃗  ⃗(𝑥, 𝑦, 𝑏)  and current-period 

𝐷𝑡⃗⃗ ⃗⃗  (𝑥, 𝑦, 𝑏) .Constructing an independent production frontier for each year and calculating the inefficiency value 𝐷𝑡⃗⃗ ⃗⃗  (𝑥, 𝑦, 𝑏) 
provides the relative efficiency level of urban agglomerations during that period, reflecting competition among agglomerations 

under given technological conditions. Alternatively, using pooled data from the entire study period to construct a unified frontier 

and calculate inefficiency values 𝐷𝐺⃗⃗ ⃗⃗  ⃗(𝑥, 𝑦, 𝑏) yields a measure of relative efficiency under the long-term overall technological 

context, identifying gaps relative to the optimal technology. Furthermore, four distance function values corresponding to global 

and current-period measures for periods 𝑡 and 𝑡 + 1 can be calculated separately. 

Through NDDF, this study quantifies the extent to which each Decision-Making Unit (DMU) deviates from the optimal frontier 

in terms of inputs and outputs. These inefficiency measures are typically expressed as reductions or increases in inputs and outputs. 

From an economic perspective, the results of Equations (4) and (5) only reveal the potential for efficiency improvement when 

considering undesirable outputs such as CO₂. These calculated values, however, cannot directly measure the specific effectiveness 

of carbon emission control. 

Current-period efficiency reflects short-term, contemporaneous relative performance, while global efficiency reflects long-

term, overall efficiency positioning. Combining the two helps distinguish performance improvements driven by management 

efforts to approach the frontier (catch-up effect) from advancements in technology itself (frontier shift). Based on the ratio method 

of target carbon emissions to actual carbon emissions proposed by Zhou et al. and incorporating the intrinsic relationship of input-

output slack variables in the production possibility frontier, the ratio of target carbon emissions to actual emissions is extended 

into a comprehensive indicator that accounts for GDP growth [12]. This Carbon Reduction Efficiency Index (CREI), calculated 

based on the annual production frontier, effectively measures the synergistic effect of achieving both economic growth and carbon 

emission reduction in urban agglomerations during a specific period. The formula is as follows: 

𝐶𝑅𝐸𝐼𝑡 =
(𝐶𝑂2 − 𝛽𝐶𝑂2

𝑡 𝐶𝑂2)/(𝐺𝐷𝑃 + 𝛽𝐺𝐷𝑃
𝑡 𝐺𝐷𝑃)

𝐶𝑂2/𝐺𝐷𝑃
=
1 − 𝛽𝐶𝑂2

𝑡

1 + 𝛽𝐺𝐷𝑃
𝑡 (6) 

Here the relaxation variables of the directional distance function of CO₂ emission and GDP, denoted by 𝛽𝐶𝑂2
𝑡  and 𝛽𝐺𝐷𝑃

𝑡  

respectively, are derived from the solution of the NDDF model in the 𝑡  period. The proposed Equation (6) overcomes the 

limitation of the traditional single-dimension evaluation by incorporating a weighted assessment of economic growth and emission 

reduction effects. The slack variable, being a dimensionless value, guarantees the comparability of measurement results across 

disparate decision-making units. 

3.1.3. Malmquist processing and dynamic decomposition 

The Malmquist-Luenberger (ML) index is commonly used to measure total factor productivity changes incorporating undesirable 

outputs [21]. However, traditional ML indices often suffer from infeasibility across periods or efficiency biases. To address these 

limitations, scholars have proposed the Global Malmquist-Luenberger (GML) index and the Biennial Malmquist-Luenberger 

(BML) index, introducing non-radial forms to mitigate angular and radial assumption constraints [20, 22-25]. Among these, the 

GML index, based on the global technology frontier, avoids non-circularity and partial biases inherent in the ML index, better 

capturing intertemporal technological changes and promoting dynamic and comprehensive performance measurement methods. 

To evaluate the trends in Total Factor Carbon Emission Productivity (TFCEP) across periods, this study employs the Global 

NDDF to calculate the Global Malmquist-Luenberger (GML) index: 

𝑇𝐹𝐶𝐸𝑃_𝐺𝑀𝐿𝑡,𝑡+1 =
1 + 𝐷𝐺⃗⃗ ⃗⃗  ⃗(𝑥𝑡 , 𝑦𝑡 , 𝑏𝑡)

1 + 𝐷𝐺⃗⃗ ⃗⃗  ⃗(𝑥𝑡+1, 𝑦𝑡+1, 𝑏𝑡+1)
(7) 

The advantage of the GML index lies in its ability to effectively address infeasibility issues in linear programming, providing 

a more robust measure of productivity growth (Zhou et al., 2012) [12]. In Equation (7), 𝐷𝐺⃗⃗ ⃗⃗  ⃗(𝑥, 𝑦, 𝑏) is calculated based on the 

production frontier constructed using data from the entire study period (2006–2022), and it measures the inefficiency of each DMU 

relative to this global frontier. This reflects the long-term overall efficiency level and identifies DMUs that remain inefficient even 

under the global technological context. Here, 𝑥𝑡 , 𝑦𝑡 , 𝑏𝑡 and 𝑥𝑡+1, 𝑦𝑡+1, 𝑏𝑡+1 represent inputs, desirable outputs, and undesirable 

outputs for periods 𝑡 and 𝑡 + 𝑡  respectively. If 𝑇𝐹𝐶𝐸𝑃_𝐺𝑀𝐿𝑡,𝑡+1 > 1, it indicates improved carbon emission performance from 
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period t to 𝑡 + 1; if T𝑇𝐹𝐶𝐸𝑃_𝐺𝑀𝐿𝑡,𝑡+1 < 1, performance has declined. By adopting the global technology frontier, the GML 

index avoids infeasible solutions inherent in the traditional ML index and better reflects long-term technological disparities. 

The GML index can also be dynamically decomposed to identify spatiotemporal evolution patterns across multiple dimensions, 

such as efficiency change (EC) and technological change (TC): 

𝐸𝐶𝑡,𝑡+1 =
1 + 𝐷𝑡⃗⃗ ⃗⃗  (𝑥𝑡 , 𝑦𝑡 , 𝑏𝑡)

1 + 𝐷𝑡+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑥𝑡+1, 𝑦𝑡+1, 𝑏𝑡+1)
(8) 

𝑇𝐶𝑡,𝑡+1 =

(1 + 𝐷𝐺⃗⃗ ⃗⃗  ⃗(𝑥𝑡 , 𝑦𝑡 , 𝑏𝑡))

(1 + 𝐷𝑡⃗⃗ ⃗⃗  (𝑥𝑡 , 𝑦𝑡 , 𝑏𝑡))

(1 + 𝐷𝐺⃗⃗ ⃗⃗  ⃗(𝑥𝑡+1, 𝑦𝑡+1, 𝑏𝑡+1))

(1 + 𝐷𝑡+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑥𝑡+1, 𝑦𝑡+1, 𝑏𝑡+1))

(9) 

while 

𝑇𝐹𝐶𝐸𝑃_𝐺𝑀𝐿𝑡,𝑡+1 = 𝐸𝐶𝑡,𝑡+1 × 𝑇𝐶𝑡,𝑡+1 (10) 

In this decomposition, the EC indicator reflects the change in the efficiency of the decision unit on the technology frontier, 

while the TC indicator measures the movement of the technology frontier itself [26]. Among them, since each year possesses its 

own set of production possibilities and frontier, 𝐷𝑡⃗⃗ ⃗⃗  (𝑥, 𝑦, 𝑏) is the result of the calculation of the production frontier constructed 

based on the separate data for each year, which measures the relative degree of inefficiency of the DMU under its own technological 

conditions in that year, which reflects the performance of the DMU in the current period in comparison with other decision-making 

units in the same period. 

The setting for the study stipulates that the values of the GML index, EC, and TC are all greater than 0. Among them, when 

these values are greater than 1, it indicates that the carbon emission performance improves, and both technical efficiency and 

progress are positive. Conversely, if these values are less than 1, it signifies that the carbon emission performance declines, and 

both technical efficiency and progress regress. Furthermore, when EC is greater than 1, it signifies that efficiency enhancement 

predominates performance growth, while when TC is greater than 1, it indicates that technical progress predominates performance 

growth. The decomposition analysis employed in this study facilitates a more profound comprehension of the alterations in 

production efficiency and technology level of each decision-making unit across diverse periods. This analytical approach provides 

a robust foundation for the formulation of pertinent policies. 

3.1.4. Spatial disparity analysis 

To systematically analyze the spatial disparities in carbon emission performance across Chinese urban agglomerations, this study 

employs Dagum’s Gini coefficient decomposition and Kernel Density Estimation (KDE) to evaluate the CREI and GML indices. 

Dagum’s Gini coefficient, an advanced measure of inequality proposed by Dagum, decomposes overall disparities into three 

components: within-group inequality, between-group inequality, and transvariation [27]. This method overcomes the limitations 

of traditional Gini coefficients by explicitly distinguishing between intra-group and inter-group disparities. In this study, Dagum’s 

Gini coefficient is applied annually to analyze inequality in performance metrics across the 16 urban agglomerations. This 

approach has been widely adopted in environmental economics and regional studies. For instance, the overall Gini coefficient and 

its decomposition for the current-period results are illustrated in Equations (11–14). 

Kernel Density Estimation (KDE) is further used to visualize the dynamic evolution of carbon emission performance 

distributions. By estimating probability density functions non-parametrically, KDE captures shifts in central tendencies, dispersion, 

and multimodality of performance metrics over time. This combination of Dagum’s decomposition and KDE provides a 

comprehensive understanding of spatial heterogeneity and convergence patterns in carbon emission efficiency. 

𝐺 =
1

2𝑛2𝐶𝑅𝐸𝐼𝑡̅̅ ̅̅ ̅̅ ̅̅
∑∑|𝐶𝑅𝐸𝐼𝑖

𝑡 − 𝐶𝑅𝐸𝐼𝑗
𝑡|

𝑛

𝑗=1

𝑛

𝑖=1

(11) 

𝐺 = 𝐺𝑤 + 𝐺𝑛𝑏 + 𝐺𝑡 (12) 

𝐺𝑤 =∑
𝑛𝑗

𝑛

𝑘

𝑗=1

𝐺𝑗 (13) 
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𝐺𝑛𝑏 =∑∑
𝑛𝑗𝑛ℎ

𝑛2

𝑗−1

ℎ=1

𝑑𝑗ℎ

𝑘

𝑗=2

(14) 

𝑑𝑗ℎ =
1

2𝐶𝑅𝐸𝐼𝑡̅̅ ̅̅ ̅̅ ̅̅
∫ ∫ |𝐶𝑅𝐸𝐼𝑖

𝑡 − 𝐶𝑅𝐸𝐼𝑗
𝑡|𝑓𝑗(𝐶𝑅𝐸𝐼𝑗

𝑡)𝑓ℎ(𝐶𝑅𝐸𝐼ℎ
𝑡)𝑑𝐶𝑅𝐸𝐼𝑗

𝑡𝑑𝐶𝑅𝐸𝐼ℎ
𝑡

∞

0

∞

0

(15) 

The sample size n represents the number of urban agglomerations observed annually, corresponding to the annual data of 16 

national-level urban agglomerations. 𝐶𝑅𝐸𝐼𝑡̅̅ ̅̅ ̅̅ ̅̅  denotes the mean CREI value for all urban agglomerations in a specific year, used to 

standardize the Gini coefficient calculation. 𝐶𝑅𝐸𝐼𝑖
𝑡  and 𝐶𝑅𝐸𝐼𝑗

𝑡  represent the carbon emission performance values of urban 

agglomerations 𝑖 and 𝑗 in a given year, respectively, measuring absolute disparities between them. Additionally, 𝑛𝑗 indicates the 

number of urban agglomerations within the j-th classification group (e.g. categories such as “optimization-enhancing” type, 

“growth-enhancing” type, and “development-nurturing” type as defined in China's 14th Five-Year Plan 10)., while 𝑘 denotes the 

total number of classification groups. These variables collectively form the foundation of Dagum’s Gini coefficient and its 

decomposition, ensuring accurate reflection of inequality in carbon emission performance and its sources. Equation (15) calculates 

the average absolute difference between the j-th and h-th classification groups. 

3.2. Data collection and processing 

3.2.1. Selection of research subjects 

China's national-level urban agglomerations show significant heterogeneity in terms of geographic distribution, size hierarchy, 

and economic and geographic characteristics. According to the “14th Five-Year” New Urbanization Implementation Plan, there 

are currently 19 national-level urban agglomerations in China, whose spatial layout covers four major segments, namely the eastern 

coastal region (5 clusters), central region (3 clusters), western region (9 clusters), and northeastern region (2 clusters), and covers 

diversified geographical environments, economic structures and development stages, which can fully represent the typical 

characteristics of China's regional development. It can fully represent the typical characteristics of China's regional development. 

In addition, in order to more clearly reflect the development positioning and policy orientation of each urban agglomeration, this 

study divides the urban agglomerations into three categories based on the “Outline of the 14th Five-Year Plan for National 

Economic and Social Development of the People's Republic of China and the Visionary Goals for the Year 2035” (referred to as 

the “14th Five-Year Plan”): (1) “optimization-enhancing” type, including the Beijing-Tianjin-Hebei region, Yangtze River Delta 

region, Pearl River Delta region, Middle reaches of Yangtze River, and Chengdu-Chongqing region; (2) “growth-enhancing” type, 

comprising the Shandong Peninsula region, Zhongyuan region, Guanzhong Plain region, Beibu Gulf region, and Guangdong-

Fujian-Zhejiang Coastal region; and (3) “development-nurturing” type, covering Harbin-Changchun region, Central and Southern 

Liaoning, Central Shanxi region, Central Guizhou region, Central Yunnan region, Huhhot-Baotou-Ordos-Yulin region, Lanzhou-

Xining region, Ningxia region along the Yellow River, and North slope region of Tianshan Mountains. The classification of the 

16 urban agglomerations is illustrated in Fig. 1, accompanied by the abbreviated pronouns for the urban agglomerations in the data 

tables below, which have been included to facilitate the presentation. 

 

Figure 1. Abbreviation cross-reference for urban agglomerations in China 
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In terms of scale, urban agglomerations exhibit a clear gradient: the Beijing-Tianjin-Hebei and Yangtze River Delta regions, 

centered on Beijing and Shanghai, are ultra-large, while the Zhongyuan and Guanzhong Plain regions, anchored by Zhengzhou 

and Xi'an, are medium-sized. Additionally, each cluster develops distinct patterns based on resource endowments. For example, 

the Yangtze River Delta region excels in high-end manufacturing and modern services, while the Chengdu-Chongqing region 

focuses on equipment manufacturing and electronics. These differences further contribute to regional variations in carbon emission 

profiles [4]. 

In selecting the sample, this study adhered to the principle of data availability. Due to missing data or inconsistent starting 

years in statistical yearbooks, cities in the Harbin-Changchun region, Central and Southern Liaoning, and the North Slope region 

of the Tianshan Mountains—confirmed through correspondence with provincial statistical authorities—were excluded. As a result, 

16 national urban agglomerations from 2006 to 2022 were selected. Their spatial distribution and economic-geographic 

characteristics still effectively reflect China's regional development patterns. 

In defining the sample, this study cross-checked overlapping spatial boundaries. Six prefecture-level cities—Dezhou, Handan, 

Heze, Xingtai, Liaocheng, and Yuncheng—belong to two national urban agglomerations simultaneously. These cities were 

redundantly included in the statistics of their respective clusters. In the end, data were collected and compiled for 190 prefecture-

level cities under the 16 urban agglomerations, whose spatial density and economic-geographic characteristics matched the typical 

requirements for national urban agglomeration development. 

3.2.2. Selection of production indicators 

The study adopts the Non-Radial Directional Distance Function (NDDF) to construct a closed-loop analytical framework of "input-

output-emission." Capital, labor, and energy consumption are selected as input indicators, GDP as the desired output, and carbon 

emissions as the undesired output. This framework aligns with production function theory to comprehensively characterize urban 

production features and quantify carbon emission efficiency. The selection of capital, labor, and energy as inputs is based on two 

criteria: (1) their theoretical alignment with core production factors in economic theory, ensuring a comprehensive representation 

of urban production dynamics, and (2) their significant relevance to carbon emissions, as labor expansion correlates with energy 

intensity, while capital-intensive production and non-clean energy structures drive carbon emission intensity. Carbon emissions 

and GDP jointly form the output side of the production function, providing a theoretical foundation for quantifying carbon emission 

performance. 

In terms of data collection, this study employs a multi-source integration approach. The primary data are sourced from the 

CSMAR and Wind economic databases, supplemented by provincial and municipal statistical yearbooks. To address missing 

values and variations in data collection standards, we employ cross-verification through statistical bulletins, historical growth-rate 

extrapolation, and literature-based calibrations (e.g., estimating missing values from year-on-year growth rates or using average 

values of comparable cities). The time span for the relevant input-output indicators extends from 2006 to 2022. 

Regarding input indicators, annual employed population data at the prefecture level are used to measure labor, with 

interpolation methods applied to fill missing data and reconcile discrepancies in statistical standards. Capital stock is estimated via 

the perpetual inventory method, referencing the depreciation rate of 10.96% proposed by Shan, and deflated by constant base-

period prices [28]. The formula is: 𝐾𝑖,𝑡 = 𝐼𝑖,𝑡 + (1 − 𝛿)𝐾𝑖,𝑡−1 where 𝐾𝑖,𝑡 denotes the capital stock of city 𝑖 in year 𝑡, 𝐼𝑖,𝑡 is the 

constant-price fixed-asset investment in year 𝑡, and 𝛿 is the depreciation rate, implying the current year's capital stock equals the 

sum of that year’s investment plus the net capital stock carried over from the previous year after depreciation. Energy consumption 

is estimated through a spatial downscaling model that uses the modified DMSP-OLS-like nighttime light dataset from Wu et al. 

[29] and provincial energy consumption data. Specifically, the energy consumption of city 𝑖 in year 𝑡 is formulated as: �̂�𝑖𝑡 =
𝑘𝑡 × 𝐷𝑁𝑖𝑡 where �̂�𝑗𝑡  is the estimated energy consumption, 𝑘𝑡 is the provincial regression coefficient, and 𝐷𝑁𝑗𝑡 is the aggregated 

nighttime light intensity. These approaches ensure data comparability and scientific rigor. 

Concerning output indicators, GDP data have been deflated and unified to constant 2006 prices, reflecting the scale and 

efficiency of economic growth across the 16 urban agglomerations [30]. Carbon emissions data derive from the EDGAR global 

emissions database and are matched spatially to prefecture-level units for the 2006–2022 period [31], thus avoiding overlap with 

the nighttime-light-based energy consumption estimates and preserving independence among variables. 

Table 1. Descriptive statistics for input-output indicators 

Variable Unit Mean Std. Dev. Min. Max. 

Employed Population 10,000 people 810.27 754.44 50.00 3,347.24 

Capital Stock 100 million CNY 88,697.90 103,327.76 1,358.11 525,880.95 

Energy Consumption 10,000 tons of standard coal 18,592.97 16,955.49 1,234.93 74,342.25 

GDP 100 million CNY 28,788.09 32,581.02 631.04 179,670.56 

CO2 10,000 tons 46,495.90 40,944.21 4,177.12 153,981.36 
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Figure 2. Compound annual growth rate by urban agglomeration (2006-2022) 

The selection and computation of the above indicators are based on sound theoretical rationale, data availability, and model 

requirements. Table 1 presents descriptive statistics, and Fig. 2 illustrates the average annual growth rates of these input-output 

indicators for the 16 urban agglomerations. Overall, the data highlight clear differences in scale and characteristics across these 

urban agglomerations, with notable regional disparities emerging in both resource inputs and economic outputs. 

In terms of inputs, the Pearl River Delta region shows the fastest labor growth (6.01%), while the Beibu Gulf region exhibits 

the slowest growth (0.95%), potentially reflecting the strong economic attractiveness and population inflows in the Pearl River 

Delta, as well as unbalanced labor and employment growth among regions. Meanwhile, Central Guizhou shows the highest growth 

rate in capital stock (20.56%), far exceeding that of more developed regions like the Yangtze River Delta (10.29%), likely due to 

rapid capital accumulation in these latecomer areas. Additionally, regional energy consumption growth varies considerably, with 

the Beibu Gulf region registering the fastest increase (6.61%) and the Pearl River Delta region showing a slight decline (-0.49%), 

likely driven by successful industrial upgrading and energy-saving policies. From an economic perspective, Central Guizhou also 

exhibits the highest GDP growth (10.42%), while Central Shanxi reports the lowest (7.24%), indicating diverging regional 

economic growth rates. Environmentally, the Ningxia region along the Yellow River records the fastest rise in CO₂ emissions 

(6.43%), substantially outpacing other regions, while the Pearl River Delta shows the lowest increase (1.96%), reflecting a focus 

on environmental protection and sustainable development amid economic expansion. These findings provide strong empirical 

support for subsequent analyses of the carbon emission efficiency of various urban agglomerations and inform regionally 

differentiated governance strategies. 

4. Empirical analysis 

4.1. Carbon emission efficiency index analysis 

Using panel data from China’s 16 national-level urban agglomerations over 2006–2022, this study applies the Non-Radial 

Directional Distance Function (NDDF) approach alongside the Global Malmquist-Luenberger (GML) index. Specifically, the 

Carbon Reduction Efficiency Index (CREI) focuses on single-period performance in emission reduction and output, while the 

GML index tracks intertemporal changes, thereby ensuring both logical rigor and dual perspectives—short term and long term—

for comprehensive explanatory power. Through linear programming, we evaluate static efficiency levels at both the national scale 

and across each urban agglomeration, then further decompose the dynamic changes in productivity, revealing the respective 

contributions of efficiency improvement and technological progress. These results offer empirical evidence for analyzing the 

spatial distribution and temporal evolution of carbon emission performance among urban agglomerations. 

4.1.1. Annual performance analysis 

According to Table 2, the CREI values of the selected urban agglomerations exhibit significant disparities during the study period, 

indicating pronounced differences in efficiency relative to the production frontier. The Pearl River Delta region consistently 

records a CREI of 1.000, reflecting its position at the technological frontier and maximization of carbon reduction potential . 

Shandong Peninsula region and Huhhot-Baotou-Ordos-Yulin region both reach CREI = 1.000 from 2009 onward, remaining stable 

and showing notable efficiency gains. In contrast, the CREI of Ningxia region along the Yellow River declines from 0.093 in 2006 

to 0.046 in 2022, and Central Shanxi region drops from 0.181 to 0.105, both remaining at relatively low levels; the Chengdu-
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Chongqing region and the Beibu Gulf region display clear signs of efficiency deterioration. These differences mainly stem from 

variations in industrial structure, policy enforcement, and technological capacity across urban agglomerations. 

Table 2. Carbon emission reduction efficiency index for urban agglomeration (2006-2022) 

Years / U-A ZYR BTH LZXN GZP BGR HBOY NXYR SDP 

2006 0.232 0.359 0.165 0.212 1.000 0.139 0.093 0.282 

2007 0.208 0.323 0.144 0.179 0.410 0.122 0.082 0.262 

2008 0.197 0.302 0.140 0.169 0.378 0.118 0.081 0.251 

2009 0.194 0.273 0.133 0.159 0.351 1.000 0.076 0.246 

2010 0.203 0.281 0.144 0.161 0.372 1.000 0.067 0.259 

2011 0.206 0.285 0.147 0.160 0.329 1.000 0.062 0.263 

2012 0.207 0.283 0.158 0.165 0.328 1.000 0.066 0.264 

2013 0.197 0.267 0.159 0.161 0.308 1.000 0.063 1.000 

2014 0.199 0.257 0.167 0.164 0.307 1.000 0.065 1.000 

2015 0.197 0.259 0.158 0.164 0.307 1.000 0.066 1.000 

2016 0.200 0.265 0.157 0.166 0.300 1.000 0.065 1.000 

2017 0.197 0.257 0.154 0.163 0.295 1.000 0.055 1.000 

2018 0.198 0.251 0.155 0.161 0.294 1.000 0.052 1.000 

2019 0.212 0.239 0.151 0.155 0.279 0.404 0.046 1.000 

2020 0.266 0.262 0.157 0.159 0.252 1.000 0.047 1.000 

2021 0.303 0.259 0.157 0.163 0.259 1.000 0.046 1.000 

2022 0.371 0.289 0.159 0.167 0.252 1.000 0.046 1.000 

Average 0.223 0.277 0.153 0.166 0.354 0.811 0.063 0.696 

Annual growth (%) 2.98 -1.36 -0.20 -1.50 -8.26 13.13 -4.24 8.25 

Years / U-A CSX CCR CYR PRD GFZC YRD MYR CGR 

2006 0.181 1.000 0.287 1.000 0.509 0.508 1.000 0.260 

2007 0.163 1.000 0.239 1.000 0.476 0.481 1.000 0.260 

2008 0.149 1.000 0.226 1.000 0.437 0.439 1.000 0.263 

2009 0.134 0.605 0.224 1.000 0.423 0.536 1.000 0.266 

2010 0.133 0.444 0.236 1.000 0.424 0.426 0.272 0.286 

2011 0.125 1.000 0.247 1.000 0.431 0.430 0.438 0.312 

2012 0.122 0.476 0.255 1.000 0.437 0.430 0.283 0.324 

2013 0.119 0.457 0.247 1.000 0.421 0.651 0.276 0.274 

2014 0.116 0.453 0.248 1.000 0.414 0.404 0.276 0.279 

2015 0.111 0.452 0.253 1.000 0.409 0.402 0.274 0.262 

2016 0.109 0.456 0.262 1.000 0.414 0.538 0.277 0.270 

2017 0.106 0.454 0.262 1.000 0.405 0.652 0.274 0.271 

2018 0.108 0.465 0.268 1.000 0.408 0.654 0.278 0.275 

2019 0.106 0.464 0.440 1.000 0.772 0.923 0.272 0.276 

2020 0.109 0.482 0.573 1.000 1.000 1.000 0.548 0.265 

2021 0.103 0.484 0.593 1.000 0.994 1.000 0.577 0.277 

2022 0.105 0.498 0.692 1.000 1.000 1.000 0.666 0.281 

Average 0.123 0.599 0.327 1.000 0.551 0.616 0.512 0.276 

Annual growth (%) -3.35 -4.26 5.66 0.00 4.32 4.33 -2.51 0.48 

Referring to Fig. 3, the box plots visually depict the distribution of the carbon reduction efficiency index for each agglomeration. 

The length of each box represents the interquartile range (i.e., the middle 50% of the data), and the upper and lower edges indicate 

data boundaries. Shorter boxes, such as in the Beijing-Tianjin-Hebei region, suggest relatively concentrated annual carbon 

emission performance with minimal volatility. By contrast, longer boxes for agglomerations such as the Beibu Gulf region and the 

Middle Reaches of the Yangtze River region underscore large inter-annual variation in carbon reduction efficiency. 
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Figure 3. CREI distribution by urban agglomeration (2006-2022) 

From a developmental perspective, regions like the Pearl River Delta region and the Yangtze River Delta region may benefit 

from advanced industrial structures—particularly high-tech manufacturing and modern services—leading to high energy 

efficiency and stable carbon emission performance. In contrast, regions such as Ningxia region along the Yellow River and Central 

Shanxi region primarily rely on traditional, high-energy-consuming industries, which, though supporting economic growth, 

confront significant carbon reduction pressures that hamper performance. Urban agglomerations exhibiting considerable 

performance volatility may be undergoing industrial transitions whose annual outcomes and policy implementations vary, thereby 

causing greater fluctuations in efficiency. 

4.1.2. Temporal trends and regional comparisons 

Over different years, the carbon reduction efficiency (CREI) of the 16 urban agglomerations shows notable changes, reflecting the 

progressive realization of national low-carbon policies. 

When viewed over time, the CREI of several urban agglomerations exhibits diverging trajectories. Some regions show 

sustained growth, such as the Central Yunnan region (increasing from 0.287 to 0.692 at an average annual growth rate of 5.66%) 

and the Yangtze River Delta region (from 0.508 to 1.000 at 4.33%). Others, such as the Beibu Gulf region (from 1.000 to 0.252, 

averaging -8.26% per year) and the Beijing-Tianjin-Hebei region (from 0.359 to 0.289, averaging -1.36%), experience marked 

declines. A comparison across regions reveals significantly higher average CREI in eastern urban agglomerations compared to 

mid-western ones (e.g., Ningxia region along the Yellow River at 0.063, Central Shanxi region at 0.123), highlighting distinct 

regional heterogeneity. Notably, the Huhhot-Baotou-Ordos-Yulin region, though located in China’s mid-west, has maintained a 

CREI of 1.000 since 2009, suggesting efficiency levels on par with those of eastern clusters. 

4.1.3. Overall Gini coefficient analysis 

Lastly, Fig. 4 provides an overview of the overall Gini coefficient for carbon reduction efficiency. A comparative assessment of 

the coefficient time series against average CREI data indicates a strong association. From 2006 to 2019, while the carbon emission 

performance average fluctuated within 0.36–0.45, the Gini coefficient also remained relatively high and unstable, reflecting 

substantial performance disparities among urban agglomerations. Around 2008, in the wake of the global financial crisis, the 

average carbon reduction performance declined while the Gini coefficient rose, illustrating the differentiated impacts of economic 

shocks on clusters at distinct development stages; those with higher reliance on traditional industries faced stagnation or reversal 

in carbon reduction efforts, whereas mature regions—drawing on more advanced industrial structures and stronger technology—

maintained relatively stable carbon emissions, thereby widening the gap. 
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Figure 4. Trend of Dagum’s Gini coefficient for carbon emission performance in urban agglomerations (2006-2022) 

After 2020, a series of unified reduction policies aligned with the carbon peaking and the carbon neutrality goalssubstantially 

elevated carbon reduction efficiency in lower-performing agglomerations, raising the average CREI to 0.51 or higher and driving 

down the Gini coefficient. The improved policy support, technology guidance, and funding resources granted to lower-performing 

agglomerations enable them to catch up with advanced regions, promoting more balanced regional development. 

4.1.4. Efficiency evaluation 

The differing CREI outcomes stem from three principal factors. First, industrial structure exerts a decisive influence: the Pearl 

River Delta region and the Yangtze River Delta region attain high CREI partly due to robust tertiary sectors and higher energy 

efficiencies. Second, policy effects are notable: the implementation of energy conservation and emission reduction measures has 

propelled some urban agglomerations to rapidly increase CREI, and the carbon peaking and the carbon neutrality goals introduced 

in 2020 further accelerated efficiency improvements. Technological advances and resource endowments also shape regional 

disparities; eastern agglomerations benefit from technology-driven improvements in efficiency, whereas midwestern 

agglomerations remain constrained by traditional industrial structures. These findings underscore the necessity of designing 

differentiated low-carbon development policies. The following analysis employs the GML index in a global NDDF framework to 

further examine intertemporal changes, providing more precise policy recommendations for low-carbon transitions among urban 

agglomerations. 

4.2. Dynamic analysis of carbon emission performance 

To comprehensively evaluate changes in carbon emission performance among China’s 16 national-level urban agglomerations 

from 2006 to 2022, this study employs the GML index and its decomposition method. The analysis captures trends in Total Factor 

Carbon Emission Productivity (TFCEP), subsequently separated into Efficiency Change (EC) and Technological Change (TC). 
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4.2.1. Overall trend analysis 

 

Figure 5. Trends in the average urban agglomerations (2006-2022) 

As demonstrated in Fig. 5 and Table 3 the carbon emission performance of the 16 urban agglomerations fluctuates over the 

2006–2022 period, with the average GML index slightly exceeding 1.000, indicating incremental overall improvements. For 

example, the GML of the Zhongyuan region increased from 0.994 (<1.000) in 2006–2007 to 1.047 (>1.000) in 2021–2022, 

showing a noticeable upward trend. In the early phase (2006–2010), several urban agglomerations had GML values below 1.000, 

such as the Guanzhong Plain region (0.974 in 2006–2007) and the Beibu Gulf region (0.735 in the same period). However, in the 

later period (2015–2022), GML values approached or exceeded 1.000. For instance, the Yangtze River Delta region reached 1.119 

in 2020–2021, and the Guangdong-Fujian-Zhejiang Coastal region achieved 1.132 in 2021–2022. This trend suggests that the 

deepening of low-carbon policies and ongoing economic restructuring in China have contributed to improvements in carbon 

emission performance, particularly after the introduction of the "the carbon peaking and the carbon neutrality goals goals in 2020. 

However, there were some years where GML values fell below 1.000 (e.g., 0.735 for the Beibu Gulf region in 2006–2007 and 

0.944 for the Central Guizhou region in 2012–2013), reflecting setbacks and the complexity of dynamic changes. 

Table 3. GML of urban agglomerations (2006-2022) 

Periods / U-A ZYR BTH LZXN GZP BGR HBOY NXYR SDP 

2006-2007 0.994 0.994 0.983 0.974 0.735 1.017 0.973 1.016 

2007-2008 0.993 0.997 0.989 0.979 0.980 1.032 0.975 1.015 

2008-2009 0.983 0.980 0.981 0.962 0.976 1.019 0.963 1.007 

2009-2010 0.991 0.991 0.984 0.969 0.989 1.017 0.992 1.008 

2010-2011 0.998 0.995 0.985 0.988 0.976 1.004 1.010 1.005 

2011-2012 1.000 0.993 0.984 0.990 0.987 1.015 0.993 1.009 

2012-2013 0.980 1.001 0.979 0.982 0.995 0.968 1.010 0.994 

2013-2014 1.004 0.996 1.009 1.006 1.001 1.014 0.858 1.020 

2014-2015 1.011 1.018 1.000 1.027 1.012 1.022 1.009 1.015 

2015-2016 1.018 1.017 1.019 1.022 1.009 1.032 1.235 1.013 

2016-2017 0.983 1.018 1.007 1.022 1.015 1.023 1.016 1.050 

2017-2018 1.073 1.015 1.021 1.021 1.011 1.026 1.030 1.078 

2018-2019 1.013 1.011 1.021 1.007 1.006 0.996 1.006 1.059 
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2019-2020 1.005 1.011 0.992 1.010 0.991 1.009 1.014 1.015 

2020-2021 1.028 1.014 1.015 1.021 1.010 1.060 1.011 1.066 

2021-2022 1.047 1.019 1.005 1.022 1.005 1.245 1.008 1.081 

Periods / U-A CSX CCR CYR PRD GFZC YRD MYR CGR 

2006-2007 0.998 0.993 0.973 1.067 0.995 1.018 0.965 0.982 

2007-2008 0.991 0.998 0.985 1.071 0.999 1.009 0.992 0.990 

2008-2009 0.963 0.990 0.977 1.000 0.999 1.008 0.991 0.987 

2009-2010 0.985 1.004 0.978 1.000 0.996 1.001 0.977 0.986 

2010-2011 0.986 1.008 0.992 0.985 0.993 1.000 0.997 0.983 

2011-2012 0.976 0.977 0.997 1.015 0.998 1.006 0.995 0.976 

2012-2013 0.991 0.988 1.003 1.000 1.001 0.992 0.985 0.944 

2013-2014 0.971 1.002 1.008 0.995 0.995 0.999 0.999 0.983 

2014-2015 0.992 1.000 1.008 1.005 1.008 1.016 1.018 1.021 

2015-2016 1.021 1.040 1.020 0.989 1.014 1.022 1.017 1.024 

2016-2017 1.031 1.029 1.023 1.011 1.012 1.018 1.016 1.028 

2017-2018 1.031 1.012 1.019 1.000 1.010 1.008 1.019 1.029 

2018-2019 1.025 1.020 1.046 1.000 1.023 1.047 1.009 1.022 

2019-2020 1.007 0.978 1.020 0.971 1.144 1.053 1.029 1.005 

2020-2021 1.023 1.001 1.067 1.030 1.034 1.119 1.074 1.026 

2021-2022 1.013 1.062 1.064 1.000 1.132 1.075 1.056 1.008 

4.2.2. Differences across urban agglomerations 

 

Figure 6. Heat map of the average index for urban agglomerations (2006-2022) 

The GML index reveals significant heterogeneity among urban agglomerations, highlighting a geographically differentiated 

pattern of carbon emission performance. The Pearl River Delta region shows relatively high GML values from 2006 to 2008, but 

experiences a decline to 0.971 between 2019 and 2020, suggesting some volatility. Notably, the region steadily approaches the 

Table 3. Continued 
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global frontier, as indicated by its rising EC values, which consistently approach 1.000. This suggests that variations in 

performance are primarily driven by technological change (TC). In contrast, the Huhhot-Baotou-Ordos-Yulin region saw a 

substantial increase in its GML, reaching 1.245 in 2021–2022. This significant rise, marked by a TC value of 1.245, well above 

the EC value of 1.000, underscores the crucial role of technological advancements in improving performance. On the other hand, 

the Beibu Gulf region exhibited a relatively low GML of 0.735 in 2006–2007, with both EC (0.772) and TC (0.952) below 1.000, 

indicating stagnant efficiency and technological progress. Spatially, mid-western agglomerations such as the Ningxia region along 

the Yellow River have lower GML values (0.858 in 2013–2014), while eastern regions, such as the Yangtze River Delta and the 

Guangdong-Fujian-Zhejiang Coastal region, show GML values exceeding 1.000 in later years (e.g., 1.075 for the Yangtze River 

Delta in 2021–2022), reflecting escalating disparities between regions. These variations can be attributed to differing levels of 

economic development, industrial restructuring, and technological innovation. Fig. 6 provides a visual representation of the 

average values of three key indices across all urban agglomerations. 

4.2.3. Analysis of driving factors 

The decomposition of the GML index reveals that Efficiency Change (EC) and Technological Change (TC) have distinct impacts 

on carbon emission performance across different urban agglomerations and time periods. For example, in the Zhongyuan region, 

the GML was 0.980 in 2012–2013, with an EC of 1.038 (>1.000), indicating substantial “catch-up” efficiency. However, the TC 

was 0.945 (<1.000), suggesting that technical regression partially offset the efficiency gains. By 2017–2018, the GML increased 

to 1.073, with both EC (1.055) and TC (1.017) exceeding 1.000, showing that both efficiency and technology played a role in 

performance improvements. In the Huhhot-Baotou-Ordos-Yulin region, the GML in 2008–2009 was 1.019, driven by an EC of 

1.421, indicating significant “catch-up” efficiency. However, the TC was only 0.717, indicating that the production frontier itself 

had regressed. In the Beibu Gulf region (2006–2007), the GML was 0.735, with both EC (0.772) and TC (0.952) below 1.000, 

signaling that neither efficiency nor technology met expectations. 

In contrast, in eastern regions like the Yangtze River Delta and the Guangdong-Fujian-Zhejiang coastal region, the GML 

showed an upward trend. In the Yangtze River Delta, the GML reached 1.022 in 2015–2016, primarily driven by EC (1.047). 

Similarly, in the Guangdong-Fujian-Zhejiang coastal region, the GML reached 1.144 in 2019–2020, largely influenced by EC 

(1.172). These findings suggest that “catch-up” efficiency is a key driver of short-term carbon emission performance improvement 

in certain regions (e.g., Huhhot-Baotou-Ordos-Yulin and Zhongyuan regions), while technological progress is more critical for 

long-term sustainability in advanced eastern regions such as the Pearl River Delta and the Yangtze River Delta. Consequently, this 

analysis provides valuable insights for designing region-specific low-carbon strategies: central and western agglomerations should 

prioritize enhancing efficiency, while eastern regions should focus on fostering technological innovation to sustain carbon emission 

performance improvements. 

4.2.4. Performance evaluation 

Analysis of the GML index for China’s 16 national-level urban agglomerations between 2006 and 2022 reveals an overall positive 

yet notably volatile trajectory in carbon emission performance. Spatially, the eastern agglomerations (e.g., Pearl River Delta region, 

Yangtze River Delta region) continue to lead in efficiency and technological innovation, whereas mid-western ones (e.g., Ningxia 

region along the Yellow River, Beibu Gulf region) exhibit greater instability. Decomposition of the GML index underscores 

significant spatiotemporal heterogeneity in the contributions of efficiency catch-up (EC) and technological progress (TC). This 

variation likely arises from differing policy incentives, degrees of industrial restructuring, and innovation capacities across regions. 

Specifically, mid-western clusters should emphasize technology introduction and transfer, optimizing industrial structures and 

elevating the level of technological transformation, whereas eastern clusters ought to consolidate their innovation advantages and 

steer efficiency toward the global frontier to achieve coordinated, low-carbon development goals at a regional scale. 

5. Conclusion 

Economic restructuring and technological advancement are pivotal pathways for improving carbon emission performance in urban 

agglomerations and facilitating China’s regional low-carbon transition. This study systematically evaluates the carbon emission 

performance of 16 national-level urban agglomerations in China from 2006 to 2022 using a Non-Radial Directional Distance 

Function and the Global Malmquist-Luenberger (GML) index. The results highlight significant regional heterogeneity and periodic 

variation in carbon emission performance. Eastern "optimization-enhancing" urban agglomerations, such as the Pearl River Delta 

and Yangtze River Delta regions, have long been at the technological frontier, exhibiting consistently high performance. In contrast, 

central and western "development-nurturing" and "growth-enhancing" urban agglomerations display relatively lower performance, 

though they possess considerable potential for improvement. Furthermore, the decomposition of the GML index reveals that the 

continuous advances in the eastern regions are primarily driven by long-term, stable technological progress (TC), while central 

and western regions rely more on efficiency improvements (EC) to close the performance gap. This finding enriches the theoretical 

framework of regional low-carbon development and provides new insights into the dynamic mechanisms of carbon reduction 

across China’s urban agglomerations. 
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Based on these findings, carbon reduction strategies should be tailored to the specific needs of different urban agglomerations, 

emphasizing the synergy between efficiency improvements and technological progress. For "optimization-enhancing" and 

"growth-enhancing" clusters, leveraging technological innovation is crucial. This involves guiding industrial structures toward 

higher-level green and low-carbon paradigms, solidifying the first-mover advantage in regional development. Additionally, 

investing more in research and development (R&D) of green technologies and establishing a robust carbon emissions trading 

system can direct resources to more efficient, low-carbon industries. For "development-nurturing" clusters, the focus should be on 

exploiting efficiency-based catch-up potential, accelerating the transition away from energy- and emissions-intensive industries, 

and reducing the costs of industrial restructuring through green finance and targeted policy support. This approach can facilitate 

leapfrogging toward low-carbon development. 

On the regional coordination front, it is essential to establish cross-regional collaboration mechanisms that promote the 

diffusion and sharing of advanced low-carbon technologies, as well as a unified system for carbon emission monitoring and 

evaluation. This will create a lasting framework for collaborative emission reduction. Moreover, government agencies should 

strengthen top-level design, refine the fiscal transfer payment system, and provide more robust policy and financial support for the 

low-carbon transition in central and western regions. This would help reduce disparities in carbon reduction capacity nationwide, 

fostering more balanced and sustainable development across the country. 

Finally, several limitations remain in this study. First, due to the quality and availability of statistical data, there may be 

inaccuracies in estimating carbon emissions within urban agglomerations. Second, the NDDF approach is sensitive to outliers and 

does not fully account for spatial spillover effects or policy interactions among different agglomerations. Future research could 

improve upon these limitations by (1) integrating multiple data sources and enhancing data quality to construct a more 

comprehensive database of urban agglomeration carbon emissions, (2) applying spatial econometrics or machine learning 

techniques to more accurately identify the drivers and spatial interaction mechanisms of carbon emission performance, and (3) 

refining the research scale by extending analyses to municipal and enterprise levels. This would establish a multi-scale analytical 

framework and provide more precise scientific evidence for low-carbon policymaking at various levels. Such enhancements would 

deepen the understanding of China’s regional low-carbon transition pathways and offer stronger theoretical and practical guidance 

for achieving the nation’s carbon peaking and carbon neutrality goals. 
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