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Abstract. The emergence of large language models has catalyzed unprecedented interest in artificial intelligence applications. 

Intelligent assistants, as exemplary implementations of this technology, have demonstrated remarkable capabilities, leading to their 

increasing adoption as a primary mode of human-machine interaction for task completion. However, the underlying mechanisms 

governing user interactions with these intelligent assistants warrant further investigation. This study examines the human-machine 

interaction process through the lens of knowledge co-creation, grounded in sense-making theory. We developed an intelligent 

assistant platform to collect interaction data from 316 users and conducted grounded theory research, incorporating third-party 

materials, to construct a comprehensive model of human-machine collaborative knowledge co-creation. The model was 

subsequently validated through quantitative empirical research. Our findings reveal three key insights: (1) human-machine 

collaboration serves as a critical mediator in facilitating knowledge co-creation; (2) both individual and machine knowledge 

capabilities significantly contribute to achieving optimal human-machine synergy; and (3) users' prompt literacy exhibits a 

significant positive moderating effect on human-machine collaboration. This research makes two primary contributions: it 

elucidates the fundamental mechanisms underlying human-intelligent assistant interaction from a knowledge co-creation 

perspective, and it establishes a theoretical foundation for scaling human-machine knowledge co-creation research to 

organizational and industrial contexts. 
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1. Introduction 

Artificial intelligence has fundamentally transformed knowledge management processes, revolutionizing the ways in which 

knowledge is acquired, developed, and disseminated in the 21st century [1,2]. This transformation has been dramatically 

accelerated by the advent of large language models, exemplified by ChatGPT. These models, representing a significant 

advancement in computational technology [3], possess the capability to generate novel, contextually relevant, and semantically 

meaningful content in response to various inputs and instructions. Their remarkable versatility enables them to address queries 

across diverse domains [4,5], establishing them as invaluable tools in numerous sectors, including education, scientific research, 

and healthcare. Studies have documented an exponential growth in both the user base and application scope of intelligent assistants, 

with users reporting enhanced productivity, improved work efficiency, and increased task satisfaction [3,4,6]. This rapid expansion 

in both the breadth and frequency of intelligent assistant utilization underscores the pressing need to comprehensively understand 

the underlying mechanisms of human-machine interaction. 

The evolution of human knowledge co-creation models has paralleled advancements in computational technology. Initially, 

knowledge creation was exclusively a human-to-human process. Subsequently, the advent of knowledge management systems and 

knowledge bases introduced machines as auxiliary tools in the knowledge creation process. Currently, we are witnessing a 

paradigm shift where intelligent assistants are transitioning from auxiliary tools to primary participants in knowledge creation 

[5,7]. These intelligent assistants, powered by large language models, exhibit sophisticated language comprehension and 

generation capabilities that transcend basic information retrieval and instruction execution, enabling them to engage in complex 

problem-solving, creative generation, and knowledge creation processes [5]. Within this emerging human-machine collaborative 

framework, intelligent assistants serve not merely as information providers but as active partners in knowledge creation through 

interactive dialogue. This transformation, spearheaded by intelligent assistants, represents a fundamental disruption of traditional 

human-centric knowledge co-creation paradigms, heralding the emergence of a novel human-machine knowledge co-creation 
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model. While preliminary investigations have been conducted [8], a comprehensive theoretical framework remains undeveloped. 

Thus, there is an urgent need to thoroughly examine the key variables, underlying mechanisms, and theoretical foundations of this 

nascent human-machine knowledge co-creation model to advance our understanding of knowledge co-creation mechanisms in the 

digital age. 

To address these research imperatives, we employ a mixed-methodology approach grounded in Sense-Making Theory to 

investigate the human-intelligent assistant interaction process. The study’s methodological framework, depicted in Figure 1, 

encompasses four sequential phases: research foundation establishment, qualitative investigation, quantitative analysis, and 

findings synthesis, collectively facilitating the systematic construction and validation of a human-machine knowledge co-creation 

model. Initially, we developed a bespoke human-machine interaction platform to systematically collect interaction data from 

recruited participants. Through rigorous application of Grounded Theory methodology to these interaction logs and supplementary 

materials, we derived a comprehensive model of human-machine knowledge co-creation. Subsequently, we formulated testable 

hypotheses based on this theoretical model, developed measurement instruments for key variables, and conducted empirical 

validation to assess the model’s robustness and validity. 

 

Figure 1. Research framework 

This research advances theoretical understanding in several significant ways. Primarily, it extends the application of Sense-

Making Theory to illuminate the human-machine knowledge co-creation process, providing an innovative theoretical framework 

for comprehending cognitive mechanisms in human-machine interaction. Secondly, while extant literature has predominantly 

offered preliminary qualitative insights into human-machine interaction processes [8], our study develops a comprehensive 

theoretical architecture that integrates multiple dimensions: personal knowledge capability, machine knowledge capability, 

human-machine collaboration, prompt literacy, and knowledge co-creation. This integrated model establishes a systematic 

theoretical foundation for understanding the dynamics of knowledge creation in human-machine interaction contexts. Furthermore, 

we introduce and empirically validate prompt literacy as a critical construct in human-machine knowledge co-creation. This 

theoretical extension significantly broadens the conceptual boundaries of information literacy research by incorporating technical 

elements of prompt engineering into user-centered research paradigms, thereby offering novel perspectives on the determinants of 

effective human-machine interaction. 

2. Literature review 

2.1. Sense-making theory 

Sense-Making Theory posits that individuals develop knowledge, interpretations, and understanding of their environment through 

sustained dialogic interactions. The sense-making process comprises three fundamental elements: cues, frames, and the 

interconnections between them. Cues constitute environmental stimuli that catalyze individuals’ motivation to comprehend 

situations, while frames represent structured knowledge repositories encompassing rules and values that guide understanding. 

Meaning emerges when individuals establish cognitive linkages between frames and cues [9-12]. Zhang et al. synthesized existing 

sense-making models, emphasizing that sense-making represents a knowledge construction process, whether undertaken 

individually or collectively. Despite variations across different models, they share a common foundational pattern: an iterative 

cycle between information search and meaningful structure creation [9]. Contemporary scholars have increasingly applied Sense-

Making Theory to elucidate theoretical underpinnings in human-machine interaction research: Qian and Fang [13] investigated 

demand interpretation through a sense-making lens to address algorithm aversion; Gero et al. [14] enhanced large language model 

system design using Sense-Making Theory principles; and Li et al. [8] conducted qualitative analyses of knowledge workers’ 

sense-making processes in human-machine interactions. Building upon this theoretical foundation, our research conceptualizes 

human-intelligent assistant knowledge co-creation as a sense-making process, wherein multiple rounds of environmentally-
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informed interactions between humans and intelligent assistants facilitate the reconstruction of personal knowledge structures. 

This theoretical framework provides valuable insights into the mechanisms underlying human-machine knowledge co-creation. 

2.2. Current status of human-machine interaction research 

Contemporary research in human-machine interaction primarily encompasses two distinct domains [15-20]. The first domain 

focuses on human-machine collaboration in physical systems, predominantly addressing industrial and manufacturing applications 

designed to enhance professional task accomplishment [15-18]. The integration of deep learning methodologies into natural 

language processing has catalyzed significant advancements in natural language understanding, speech recognition, and gesture 

interpretation, leading to the development of intelligent systems across diverse production and service contexts [19]. These 

investigations primarily aim to optimize human-machine system performance through systematic improvements in operational 

design and development [21]. The second domain examines human-machine collaborative relationships, encompassing critical 

areas such as human-machine trust [22,23], algorithm aversion [22,24], and collaborative dynamics [20]. This research stream 

emphasizes the intricate interplay between technological systems and human behavioral, cognitive, and social dimensions. While 

existing literature has established a robust foundation for understanding human-machine collaboration, it has predominantly 

concentrated on machine utilization rather than co-creation processes. Consequently, our research adopts a knowledge-centric 

perspective to investigate the mechanisms underlying human-intelligent assistant interaction, specifically examining the processes 

through which humans and intelligent machines collaboratively generate knowledge. 

2.3. Evolution of knowledge co-creation models 

The evolution of knowledge co-creation models has progressed through three distinct developmental stages. The initial stage, 

characterized by traditional knowledge creation, is exemplified by Ikujiro Nonaka’s seminal SECI model. This framework 

conceptualizes knowledge creation through four iterative cycles: socialization, externalization, combination, and internalization, 

facilitating knowledge creation through the dynamic interplay between explicit and tacit knowledge [25]. Within this theoretical 

framework, knowledge creation is exclusively human-centric, with knowledge generation and transformation occurring through 

sustained interpersonal communication and practice. 

The second stage represents technology-assisted knowledge creation, marked by the emergence of information systems and 

knowledge management platforms. These technological innovations have substantially enhanced inter-human knowledge creation 

processes. The implementation of these technological tools has not only significantly reduced the operational costs of knowledge 

management processes but has also catalyzed theoretical advancements in knowledge management research [26]. During this 

phase, while knowledge creation remained fundamentally human-centered, technological tools began serving as auxiliary 

facilitators, marking machines’ initial entry into the knowledge creation process. 

The third stage introduces human-machine collaborative knowledge creation, characterized by the advancement of artificial 

intelligence technologies. Intelligent assistants exemplify this evolution, demonstrating sophisticated capabilities in context 

comprehension, human-like response generation, and deep user interaction. Hu et al.’s research demonstrates how intelligent 

assistants establish comprehensive platforms for knowledge acquisition, sharing, and integration [5]. Feng et al. further elucidate 

intelligent assistants’ dual role in facilitating knowledge transformation and enabling more effective, personalized learning 

experiences [7]. This transformation signifies intelligent machines’ emergence as active participants in knowledge creation. 

However, the underlying mechanisms of this process remain largely unexplored, necessitating comprehensive investigation to 

enhance and enrich knowledge creation theory. 

In conclusion, knowledge co-creation models have evolved to their current third-stage manifestation: the human-machine 

knowledge co-creation paradigm. In this contemporary context, machines have transcended their auxiliary role to become active 

participants in knowledge creation. While existing research has examined intelligent assistants’ functional roles, the fundamental 

mechanisms underlying human-machine knowledge co-creation remain inadequately explored. Our research addresses this gap by 

analyzing the comprehensive process of human-machine knowledge creation in the digital era, employing Sense-Making Theory 

as a robust theoretical foundation. This investigation not only addresses a critical research gap in human-machine interaction but 

also provides valuable theoretical and practical insights for optimizing human-machine collaboration systems and enhancing 

knowledge co-creation effectiveness. 

3. Grounded research design 

3.1. Introduction to experimental platform 

To empirically investigate the underlying mechanisms of human-intelligent assistant knowledge co-creation, we developed a 

proprietary research platform (as shown in Fig.2). The system, hosted on Tencent Cloud infrastructure with a registered domain, 

was launched on April 11, 2024. Developed independently using the Gradio framework, the platform implements a modular 

architectural design that ensures both scalability and customizability. The system’s core functionality is built around asophisticated 
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multi-model fusion architecture, integrating several state-of-the-art large language models, including Claude and GPT-4. This 

design enables users to leverage different models for diverse task requirements through a unified interface. 

 

Figure 2. Interface of AI assistant platform 

In contrast to conventional web-based large language model implementations, our platform exhibits enhanced capabilities in 

contextual understanding and task processing adaptability. The system architecture integrates both real-time internet-based 

information retrieval and local knowledge base comprehension functionalities, facilitating sophisticated domain-specific 

knowledge extraction. A key architectural component is the advanced dialogue management system, which maintains persistent 

contextual memory to support cumulative knowledge construction and multiturn reasoning processes. Through iterative user 

interactions, the platform demonstrates adaptive optimization of both problem comprehension and task decomposition capabilities, 

progressively developing user-specific assistance paradigms. This sophisticated interaction framework not only facilitates the 

execution of complex tasks but also establishes an optimal experimental environment for investigating cognitive mechanisms in 

human-machine collaborative processes. 

3.2. Data collection 

For this empirical investigation, we collected a comprehensive dataset comprising 316 carefully selected user-intelligent assistant 

interactions from the platform, encompassing user prompts and textual exchanges totaling 810,000 characters. To supplement our 

primary data, we also gathered secondary materials including user evaluations from external platforms and relevant articles on 

intelligent assistants. This methodological approach primarily relies on first-hand interaction data to construct our theoretical 

framework, with supplementary materials serving to enhance the robustness and generalizability of our findings. 

The analysis of our dialogue corpus revealed distinct interaction patterns (Figure 3). Within the 316 validated dialogue samples, 

we documented 1,228 discrete message exchanges. The interactions exhibited an average of 3.2 conversational turns per dialogue, 

with mean dialogue length of 856 characters. The turn frequency distribution indicated a predominance of 2-3 turn exchanges, 

while approximately 40 interactions extended beyond 5 turns, suggesting that users typically engaged in focused, goal-oriented 

interactions rather than extended conversational exchanges. Examination of dialogue length distribution revealed noteworthy 

patterns: the modal category occurred in the 501-1000 character range, followed by a consistent diminution in frequency as length 

increased, with relatively few exchanges exceeding 2000 characters. This distribution pattern suggests that while users 

predominantly engaged in moderate-length interactions, a subset of exchanges developed into more extensive discussions, 

potentially reflecting more complex problem-solving scenarios or detailed knowledge-sharing sessions. 



Journal	of	Applied	Economics	and	Policy	Studies	|	Vol.18	|	Issue	3	|	2323

 

Figure 3. Statistical distribution of human-machine dialogue characteristics 

3.3. Grounded theory method 

3.3.1. Open coding 

In the open coding phase, we employed a systematic approach to analyze the raw data and identify initial concepts. The coding 

process was conducted by two independent groups, each comprising three graduate researchers (masters and doctoral candidates) 

in business administration. These groups performed parallel open coding on 316 interaction transcripts. Through the constant 

comparative method, the coding results from both groups were integrated to generate preliminary conceptual categories. To 

illustrate the open coding process, Figure 4 presents a representative analysis of a web crawler optimization dialogue, 

demonstrating our approach to initial concept identification and categorization.  

 

Figure 4. Examples of human-machine interaction process analysis 
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The open coding process began with thorough examination of our first-hand interaction transcripts, each containing detailed 

user-intelligent assistant dialogues. Team members conducted line-by-line analysis to identify potential conceptual indicators. For 

example, in the dialogue presented in Figure 4, we traced the progression of interaction patterns from initial problem framing 

through iterative requirement refinement to solution optimization. Our open coding procedure followed three systematic steps. 

First, researchers independently analyzed the raw data to generate initial analytical notes. Second, these preliminary observations 

were synthesized into conceptual codes through collaborative intra-group analysis. Finally, these conceptual codes were organized 

into higher-level categories. The relationship between raw data excerpts, conceptual codes, and emergent categories is detailed in 

Table 1. Following intra-group analysis, we conducted inter-group comparative sessions to integrate and refine the coding schemes. 

This iterative coding process, involving multiple rounds of independent coding and group discussion, enhanced the reliability and 

theoretical sensitivity of our findings. 

Table 1. Examples of open coding results 

Raw Data Insights Initial Concepts Categories 

Q: How can I check my server’s 

memory usage? A: To check 

server memory usage, you can 

use the following commands: 

The intelligent assistant possesses server-related 

knowledge and can correctly answer user 

questions 

Server usage 

knowledge 

A1 

Knowledge 

Base 

Q: Linux “anzhao minianaconda” 

A:Installing minianaconda is a 

good choice...Here are the 

detailed steps: ... 

The intelligent assistant possesses software 

installation knowledge and can correctly answer 

related questions 

Software 

installation 

knowledge 

A1 

Knowledge 

Base 

Q: I’m using Alibaba Cloud, how 

to ensure access to port 8777? A: 

On Alibaba Cloud, you need to 

configure security group rules… 

The intelligent assistant possesses website 

related knowledge and can correctly answer 

related questions 

Website knowledge 

A1 

Knowledge 

Base 

… … … … 

Q: Linux “anzhao miniana-

conda” A: Installing mini-

anaconda is a good choice...Here 

are the detailed steps: ... 

In this interaction, the user meant “install” but 

typed “anzhao miniana-conda”. The intelligent 

assistant correctly understood the user’s 

intention and provided the appropriate response 

“Install” semantic 

understanding 

A2 

Knowledge 

Application 

Ability 

Q: How can I check my server’s 

memory usage? A: To check 

server memory usage, you can 

use the following commands: 

For unique user questions, the intelligent 

assistant needs both relevant knowledge and the 

ability to apply this knowledge to solve specific 

user needs 

Server knowledge 

application ability 

A2 

Knowledge 

Application 

Ability 

Q: Please polish this paragraph in 

academic English and mark the 

changes... A: “The questionnaire 

commenced on May 22, 2023, 

and… 

In this interaction, the intelligent assistant 

understood Chinese semantics and polished the 

content in English as requested 

English language 

ability 

A2 

Knowledge 

Application 

Ability 

… … … … 

Q1: Here’s my web crawler code, 

but it runs too slowly. How can I 

improve it? A1: ...Here are my 

suggestions: ... 

Through multiple rounds of interaction, the 

intelligent assistant gradually understands and 

meets the user’s specific needs for crawler code 

modification, providing increasingly appropriate 

responses 

Crawler code 

demand 

collaboration 

A5 human-

machine 

Demand 

Collaboration 

Q2: Can you help me modify it? I 

also need to add progress printing 

A2: OK, I’ve added the tqdm 

library to show real-time 

progress. 

Q3: Please add it to each for loop 

A3: OK, I’ve added tqdm 

progress bars to all loops, here’s 

the code: ... 

Q1: (Stata code) A1: Based on 

your Stata code snippet... 

Through multiple rounds of interaction, the 

intelligent assistant helps users solve Stata code 

Stata code 

knowledge 

A6 human-

machine 
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Q2: (Data) How to convert from 

wide format to long format? A2: 

Based on your data frame... Q3: 

variable Country num contains all 

missing values A3: If Country 

num variable contains all missing 

values after executing reshape 

long command. 

problems step by step, with knowledge from 

both parties being integrated and enhanced 

during the communication process 

collaboration 

process 

Knowledge 

Collaboration 

Q1: Linux “anzhao mini 

anaconda” A1: Installing mini 

anaconda is a good choice... 

Analysis of the interaction reveals that users 

combined their Miniconda installation 

knowledge with relevant knowledge provided 

by the intelligent assistant, and through 

providing practical information, helped the 

intelligent assistant better understand the user’s 

problems, thus providing more in-depth 

solutions 

Software 

installation 

knowledge 

collaboration 

A6 human-

machine 

Knowledge 

Collaboration 

Q2: I made a mistake and didn’t 

add it to PATH A2: If you didn’t 

add Miniconda to PATH during 

installation, you can do it 

manually. Here are the detailed 

steps: ... 

… … … … 

Q: What is artificial intelligence? 

A: Artificial Intelligence (AI) 

refers to... 

User recognized their knowledge gap in AI 

definition and acquired external knowledge 

through interaction with the intelligent assistant 

“Artificial 

Intelligence” 

definition 

acquisition 

A8 

Knowledge 

Acquisition 

Q: Do you know about the 

openparse library? A: Yes, 

OpenParse is an open-source 

toolkit for natural language 

processing... 

User recognized their knowledge gap about the 

OpenParse Python library and acquired external 

knowledge through interaction with the 

intelligent assistant 

Python library 

information 

acquisition 

A8 

Knowledge 

Acquisition 

Q: Please introduce me to 

“Blossoms Shanghai” A: 

“Blossoms Shanghai” is a 

popular TV series that tells 

stories of Shanghai’s 

concessions... 

User recognized their knowledge gap about this 

TV series and acquired external knowledge 

through interaction with the intelligent assistant 

TV series 

information 

acquisition 

A8 

Knowledge 

Acquisition 

… … … … 

3.3.2. Axial Coding 

Following open coding, we proceeded with axial coding to systematically explore relationships among emergent concepts and 

reassemble the data into a coherent theoretical framework. Through this analytical process, we sought to identify core phenomena 

and their interrelationships by examining the dimensions and properties of initial categories. The integration of our 12 preliminary 

categories led to the identification of five core theoretical categories: machine knowledge capability, personal knowledge 

capability, human-machine collaboration, knowledge co-creation, and prompt literacy, as shown in Table 2. 

Table 2. Axial Coding and Explanations 

Main 

Categories 
Sub-categories Explanations 

Machine 

Knowledge 

Capability 

A1 Machine 

Knowledge Base 

The extensive and in-depth knowledge system learned by intelligent assistants through vast 

amounts of data 

A2 Machine 

Knowledge Application 

The ability of intelligent assistants to flexibly apply their knowledge base to solve problems 

and complete tasks in specific contexts 

Personal 

Knowledge 

Capability 

A3 Personal 

Knowledge Breadth 
The range of diverse knowledge an individual possesses across multiple domains 

A4 Personal 

Knowledge Depth 
The deep understanding and expertise an individual possesses in specific domains 

Table 1. (continued). 
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Human-

machine 

Collaboration 

A5Human-machine 

Demand Collaboration 

Refers to the process where intelligent assistants accurately understand and meet user needs, 

while users effectively express their needs and utilize assistant functions. Through continuous 

interaction, both parties optimize their collaboration mode to achieve more precise need 

fulfillment. 

A6 Human-machine 

Knowledge 

Collaboration 

Refers to the complementarity and integration between users and intelligent assistants in 

knowledge exchange and creation processes. Both parties expand their knowledge structures 

through knowledge sharing and integration. 

Knowledge 

Cocreation 

A7 Knowledge 

Acquisition 

Users acquire needed knowledge and information from intelligent assistants based on their 

requirements 

A8 Knowledge 

Integration 

After users acquire knowledge, intelligent assistants help them organize and analyze this 

knowledge. This may include explaining complex concepts, integrating similar information, 

etc. 

A9 Knowledge 

Creation 

Based on integrated knowledge, intelligent assistants and users jointly generate new insights or 

knowledge. This may include innovative solutions, new theories, or valuable insights. 

Prompt 

Literacy 

A10 Background 

Prompting 

Users provide context and relevant details of current tasks or problems, helping intelligent 

assistants provide more targeted support 

A11Knowledge 

Prompting 

Users provide or specify professional information in specific domains, enabling intelligent 

assistants to more accurately match and answer with relevant knowledge 

A12 Behavioral 

Prompting 
Guide users in next steps or provide choices, helping them complete tasks more efficiently 

3.3.3. Grounded theory research results 

Through intensive analysis of the interaction data, our grounded theory investigation revealed five main categories with 12 

subcategories, yielding four key theoretical mechanisms. 

First, our analysis demonstrated that knowledge capabilities of both human users and intelligent assistants function as critical 

determinants of knowledge co-creation outcomes. Specifically: 1) The knowledge repository and application capabilities of 

intelligent assistants emerged as fundamental enablers of effective knowledge co-creation. This was particularly evident in 

technical domains, where the assistant’s domain expertise and adaptive application of knowledge significantly influenced 

interaction quality, as observed in server management and programming consultations. 2) User knowledge dimensions—both 

breadth and depth—exhibited substantial impact on co-creation processes. Users possessing diverse knowledge backgrounds and 

deep domain expertise consistently demonstrated more sophisticated and productive engagement patterns with intelligent assistants. 

Second, the analysis revealed human-machine collaboration as the core mediating mechanism in knowledge co-creation, 

manifesting in two distinct dimensions. The first dimension, demand collaboration, encompasses the progressive refinement of 

mutual understanding, where intelligent assistants iteratively align with user requirements while users increasingly optimize their 

utilization of system capabilities. This was exemplified in web crawler optimization scenarios, where multiple interaction cycles 

led to increasingly precise solution development. The second dimension, knowledge collaboration, represents the synergistic 

integration of human and machine knowledge bases. This was particularly evident in statistical programming contexts, where 

sustained dialogue facilitated the fusion of complementary expertise to address complex technical challenges. 

Third, our findings identified prompt literacy as a significant moderating factor in human-machine collaboration effectiveness. 

Users demonstrating advanced prompt engineering skills—particularly in articulating task parameters and contextual 

information—achieved notably higher levels of collaborative success. This effect was clearly demonstrated in software installation 

scenarios, where detailed error context provision led to more precise technical solutions. 

Finally, the analysis revealed a progressive deepening of knowledge co-creation through three distinct phases: a) Knowledge 

acquisition, where users obtain novel information from the intelligent assistant, exemplified in conceptual inquiries about artificial 

intelligence; b) Knowledge integration, where assistants facilitate the incorporation of new knowledge into existing cognitive 

frameworks, observed in discussions of complex programming paradigms; c) Knowledge creation, characterized by the emergence 

of novel insights and innovative solutions through sustained collaborative interaction, particularly evident in algorithm 

optimization scenarios. 

4. Propose hypotheses 

The conclusion should elaborate on the key points of the research results, analyze the conclusions drawn from the results, and 

explain their significance for future research or practice. All sections such as patents, appendices, funding projects, and 

acknowledgments should be placed after the conclusion and before the references. 

Table 2. (continued). 
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4.1. Knowledge capability and human-machine collaboration 

Sense-making theory serves as a crucial theoretical cornerstone for conceptualizing the human-machine knowledge co-creation 

process. Foundational research indicates that sense-making comprises two fundamental components: internal and external 

representations [27,28]. Within the context of human-machine interaction, our study, informed by grounded research findings, 

conceptualizes personal knowledge capability as internal representation and machine knowledge capability as its external 

counterpart. 

By incorporating schema theory [29-31], we frame the human-machine knowledge co-creation process as a dynamic interplay 

of knowledge accumulation, adjustment, and reorganization. Within this framework, human-machine collaboration emerges as the 

pivotal mechanism, manifesting through distinct developmental stages as illustrated in Table 3. 

Table 3. Process stages of HM collaborative knowledge co-creation 

Stage Description 

Accumulation 

Driven by needs, individuals begin to interact with intelligent assistants.At this stage, personal knowledge capability 

(internal representation) starts to assimilate machine knowledge capability (external representation) [32]. For example, 

users begin to receive and understand information provided by the intelligent assistant. 

Adjustment 

As interaction deepens, human-machine collaboration begins to form. This is reflected in users and intelligent assistants 

gradually clarifying needs and their knowledge structures beginning to adapt and adjust to each other during the 

interaction process [31]. 

Reorganization 

Through continuous human-machine collaboration, users’ knowledge structures undergo reorganization, thereby 

achieving knowledge co-creation. This may manifest as the acquisition of new knowledge, integration of existing 

knowledge, or generation of entirely new insights. 

 

Rather than following a linear trajectory, this process exhibits an upward spiral pattern. The depth of human-machine 

collaboration intensifies with increasing interactions, leading to corresponding enhancements in knowledge co-creation outcomes. 

Drawing from prior case studies and synthesizing literature on sense-making and schema theories, we posit that enhanced personal 

and machine knowledge capabilities facilitate more effective knowledge structure supplementation and correction through human-

machine collaboration. Pontis and Blandford’s investigation into knowledge capabilities’ effects on sense-making revealed that 

both domain expertise and general knowledge levels significantly influence knowledge structure adjustment processes [32]. 

Building upon organizational knowledge base theory [33], we differentiate personal knowledge capability into two dimensions: 

breadth and depth. Similarly, informed by case study findings, we categorize machine knowledge capability into knowledge base 

and knowledge application components. Based on our analysis, we propose: 

H1: Personal knowledge capability has a positive effect on human-machine collaboration 

H1a: Personal knowledge breadth has a positive effect on human-machine collaboration 

H1b: Personal knowledge depth has a positive effect on human-machine collaboration 

H2: Machine knowledge capability has a positive effect on human-machine collaboration 

H2a: Machine knowledge base has a positive effect on human-machine collaboration 

H2b: Machine knowledge application has a positive effect on human-machine collaboration 

4.2. Human-machine collaboration and knowledge co-creation 

Through iterative interactions between personal and machine knowledge capabilities, the alignment and refinement of knowledge 

structures culminates in the emergence of a novel knowledge framework system, marking the completion of the knowledge co-

creation process. Our case study-derived theoretical model delineates this knowledge co-creation process into three distinct stages: 

acquisition, integration, and creation. 

The initial stage, knowledge acquisition, emerges primarily from structured information seeking behaviors [34]. Our grounded 

research corroborates this finding, revealing that knowledge expansion through interaction with intelligent assistants constitutes 

the fundamental and most prevalent activity in human-machine interactions. 

The second stage encompasses knowledge integration, wherein individuals engage in cognitive processes of idea clarification, 

model conceptualization, comparative analysis between existing and new models, and ultimately, model synthesis [10,35]. Our 

grounded analysis demonstrates that users maintain continuous dialogue with intelligent assistants to refine their understanding, 

enabling the assistants to systematically organize, synthesize, and propose novel frameworks and action strategies. 

In the final stage, as interactions become more sophisticated, intelligent assistants facilitate the continuous refinement and 

augmentation of the knowledge framework, enabling co-creators to derive meaningful insights. This culminates in various 

outcomes, including task-specific methodologies, novel knowledge constructs, or tacit knowledge generation, thereby completing 

the knowledge creation cycle. Based on these observations, we propose: 

H3: Human-machine collaboration has a positive effect on knowledge co-creation 

H3a: Human-machine collaboration has a positive effect on knowledge acquisition 

H3b: Human-machine collaboration has a positive effect on knowledge integration 
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H3c: Human-machine collaboration has a positive effect on knowledge creation 

4.3. The moderating effect of prompt literacy 

Research by Zhang, Pontis, and colleagues demonstrates that the provision of contextual background information enhances sense-

making effectiveness [9,32]. In human-intelligent assistant interactions, prompt engineering serves as a mechanism for conveying 

essential contextual information, encompassing the co-creator’s environmental context, the intended role of the intelligent assistant, 

and the desired response format. This contextual enrichment facilitates the intelligent assistant’s comprehension of co-creator 

requirements, thereby enhancing human-machine collaborative outcomes. Based on these insights, we propose: 

H4: Prompt literacy moderates the positive relationship between machine knowledge capability and human-machine 

collaboration 

H4a: Prompt literacy moderates the positive relationship between machine knowledge base and human-machine collaboration 

H4b: Prompt literacy moderates the positive relationship between machine knowledge application and human-machine 

collaboration 

Figure 5 presents our integrated research model, synthesizing findings from our grounded theory investigation and 

comprehensive literature review. 

 

Figure 5. Model framework diagram 

5. Verification of human-machine knowledge co-creation mechanism 

5.1. Research procedure and sample 

To validate the questionnaire’s reliability and validity and implement necessary refinements, we conducted a pilot study with 318 

participants who had prior experience with intelligent assistants. Participants were recruited through the Wenjuanxing platform, 

with the sample size determined based on the questionnaire’s variable structure. Initial data analysis confirmed the instrument’s 

reliability, while exploratory factor analysis revealed nine distinct components that aligned precisely with our theoretical constructs, 

thereby establishing the measurement instrument’s construct validity. 

Following the successful pilot phase, we administered the refined questionnaire in the main study. We recruited 672 new 

participants through the Wenjuanxing platform, all with intelligent assistant experience. After eliminating responses with 

insufficient completion times and those indicating no prior intelligent assistant usage, our final sample comprised 619 valid 

questionnaires. The demographic characteristics of the sample are presented below. 



Journal	of	Applied	Economics	and	Policy	Studies	|	Vol.18	|	Issue	3	|	2929

Table 4. Descriptive statistics of survey sample 

Characteristic Category Frequency Percentage (%) 

Gender 
Male 295 47.7 

Female 324 52.3 

Age 

Under 18 89 14.4 

19-30 239 38.6 

31-45 148 23.9 

46-59 115 18.6 

Over 60 28 4.5 

Education 

High School or Below 152 24.6 

Associate 185 29.9 

Bechelor’s Degree 204 33.0 

Master’s Degree 66 10.7 

Doctoral Degree 12 1.9 

Frequency of Using Intelligent Assistants 

Multiple Times per Day 133 21.5 

Once per Day 236 38.1 

Several Times per Week 142 22.9 

Several Times per Month 73 11.8 

Rarely 35 5.7 

Never 0 0.0 

5.2. Questionnaire design and measurement 

To establish measurement reliability and validity, we adapted established scales from prior research, employing the back-

translation method for non-English instruments and modifying items to align with our research context. All constructs were 

measured using 7-point Likert scales (1=“strongly disagree” to 7 =“strongly agree”). The measurement scales were operationalized 

as follows: 

Personal Knowledge Capability: We adapted LYU et al.’s [37] scales to assess personal knowledge breadth and depth. 

Machine Knowledge Capability: Drawing from Rosemarie’s [38] conceptualization and Chi et al.’s [39] robot performance 

(RP) measurement, we developed scales for machine knowledge base and application. 

Human-Machine Collaboration: Scale items were adapted from Chi et al.’s [39] Service Robot Facilitator (SRF) measurement. 

Knowledge Co-creation: This construct was measured using three subscales: knowledge acquisition (adapted from Lyles and 

Salk [41]), knowledge integration (based on Basaglia et al.’s [41] IT knowledge integration capability scale), and knowledge 

creation (synthesized from Sarwat and Abbas’s [42] personal knowledge creation ability scale and Hoon Song et al.’s [43] 

organizational knowledge creation scale). 

Prompt Literacy: We developed this scale by adapting Chi et al.’s [39] Robot Use Self-Efficacy (RUSE) measurement, 

incorporating recent conceptualizations of prompt engineering as an emerging information literacy competency [44–48]. 

5.3. Mechanism verification 

5.3.1. Reliability and validity tests 

We assessed the measurement model’s psychometric properties using SPSS for reliability analysis and AMOS for confirmatory 

factor analysis. Table 5 presents the detailed results. All items demonstrated satisfactory factor loadings (> 0.7), and each construct 

exhibited strong internal consistency with Cronbach′ sα and composite reliability (CR) values exceeding 0.8. Additionally, the 

average variance extracted (AVE) values were all above the recommended threshold of 0.5. These results collectively support the 

reliability and construct validity of our measurement instrument. 
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Table 5. Reliability and convergent validity results 

Variable Items Loading Cronbach’s 𝛼 CR AVE 

Personal 

Knowledge 

Breadth 

(PKB) 

I can understand and discuss topics across different 

disciplines. 
0.768 

0.841 0.832 0.6228 
I often explore knowledge areas not directly related to my 

specialty. 
0.788 

I can connect knowledge from different fields to solve 

problems. 
0.811 

Personal 

Knowledge 

Depth (PKD) 

I can understand and apply complex concepts in my field. 0.766 

0.835 0.8266 0.6138 
I can critically evaluate new theories or methods in my 

field. 
0.801 

I frequently study cutting-edge topics in my field. 0.783 

Machine 

Knowledge 

Base (MKB) 

The intelligent assistant can provide basic knowledge 

across multiple disciplines. 
0.798 

0.831 0.8263 0.6132 
The intelligent assistant’s answers usually contain accurate 

factual information. 
0.782 

The intelligent assistant can explain complex concepts or 

theories. 
0.769 

Machine 

Knowledge 

Application 

(MKA) 

The intelligent assistant can flexibly apply knowledge to 

specific problems. 
0.79 

0.821 0.8097 0.5866 
The intelligent assistant can integrate knowledge from 

multiple fields to solve complex problems. 
0.742 

The intelligent assistant can adjust its knowledge 

application based on specific contexts. 
0.765 

Human-

machine 

Match (HM) 

Information provided by the intelligent assistant is usually 

highly relevant to my needs. 
0.788 

0.835 0.8257 0.6125 
My interaction with the intelligent assistant improves as 

the dialogue deepens. 
0.804 

The intelligent assistant can understand and adapt to my 

knowledge level and expression. 
0.755 

Knowledge 

Acquisition 

(KA) 

Through interaction with the intelligent assistant, I gained 

new knowledge or information. 
0.799 

0.838 0.8338 0.6259 
The intelligent assistant helped me quickly understand 

unfamiliar fields. 
0.804 

Interaction with the intelligent assistant sparked my 

interest in further learning. 
0.77 

Knowledge 

Integration 

(KI) 

The intelligent assistant helps me connect new knowledge 

with existing knowledge. 
0.789 

0.849 0.8458 0.6465 
Through discussions with the intelligent assistant, I better 

understand relationships between complex concepts. 
0.817 

The intelligent assistant helps me build a more systematic 

knowledge framework. 
0.806 

Knowledge 

Creation 

(KC) 

Interaction with the intelligent assistant inspired new ideas. 0.826 

0.828 0.8244 0.6106 
The intelligent assistant helped me discover new problem-

solving perspectives. 
0.744 

Through collaboration with the intelligent assistant, I can 

generate innovative solutions. 
0.772 

Prompt 

Literacy (PL) 

I clearly express my task objectives 

and background to the intelligent assistant. 
0.802 

0.825 0.8341 0.6263 
I adjust my questioning method based on the quality of the 

intelligent assistant’s responses. 
0.796 

I provide necessary technical terms or domain-specific 

information to the intelligent assistant 
0.776 

5.3.2. Main effects test 

We employed structural equation modeling using AMOS to examine the main effects, with path parameters estimated through 

maximum likelihood estimation. The model demonstrated satisfactory fit indices: χ2/df = 3.457 (falling within the acceptable 

range of 2-5); RMSEA = 0.063 (indicating good fit); GFI = 0.874 and AGFI = 0.846 (both exceeding the threshold of 0.8 for good 
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fit); and CFI = 0.908 (surpassing 0.9, indicating excellent fit). Collectively, these fit indices provide strong support for the 

model’sempirical validity. Table 6 presents the detailed path analysis results. 

Table 6. Path analysis results 

Hypothesis Path Coefficient SE CR P-value Result 

H1a 
Personal Knowledge Rreadth--->human-machine 

Match 
0.326 0.042 6.887 *** Supported 

H1b 
Personal Knowledge Depth--->human-machine 

Match 
0.331 0.043 6.928 *** Supported 

H2a 
Machine Knowledge Base--->human-machine 

Match 
0.24 0.042 5.188 *** Supported 

H2b 
Machine Knowledge Application--->human-

machine Match 
0.148 0.043 3.247 *** Supported 

H3a Human-machine Match--->Knowledge Acquisition 0.499 0.057 9.512 *** Supported 

H3b Human-machine Match--->Knowledge Integration 0.471 0.055 9.083 *** Supported 

H3c Human-machine Match--->Knowledge Creation 0.472 0.057 9.107 *** Supported 

 

Path analysis results reveal significant positive relationships in our hypothesized model. Personal knowledge depth and breadth 

both demonstrate significant positive effects on human-machine collaboration (p < 0.001), supporting H1a and H1b. Similarly, 

machine knowledge base and machine knowledge application exhibit significant positive influences on human-machine 

collaboration (p < 0.001), confirming H2a and H2b. Furthermore, human-machine collaboration shows significant positive effects 

on all three knowledge co-creation outcomes: acquisition, integration, and creation (p < 0.001), validating H3a, H3b, and H3c. 

Collectively, all path coefficients in the main effects model demonstrate statistical significance, providing comprehensive support 

for hypotheses H1, H2, and H3. 

5.3.3. Moderation effect test 

To examine the moderation effects, we conducted multi-group analyses in AMOS using a median split to categorize prompt literacy 

into high and low groups. We employed nested model comparisons with three increasingly constrained models: 

M0: Unconstrained model (baseline) 

M1: Constrained factor loadings 

M2: Constrained factor loadings and path coefficients 

All three models demonstrated satisfactory fit indices. Sequential model comparisons revealed a nonsignificant chi-square 

difference between M0 and M1 (∆χ2 = 0.299, p > 0.05), supporting measurement invariance. However, the comparison between 

M1 and M2 yielded a significant difference (∆χ2, p < 0.001), indicating the presence of moderation effects. 

Further examination of specific paths revealed that the critical ratio for the “Machine Knowledge Base→ Human-Machine 

Collaboration:” relationship (CR = 1.647, p > 0.05) was non-significant, suggesting prompt literacy does not moderate this 

relationship. Conversely, the critical ratio for the ”Machine Knowledge Application → Human-Machine Collaboration” path (CR 

= 1.978, p < 0.05) was significant, indicating that prompt literacy significantly moderates the relationship between machine 

knowledge application and human-machine collaboration. 

6. Conclusion and discussion 

6.1. Research conclusions 

This research investigated the knowledge co-creation process at the individual level, employing Sense-Making Theory as a 

theoretical foundation and utilizing a mixed-method approach combining grounded theory methodology and empirical validation. 

Through systematic analysis of human-intelligent assistant interactions, we identified several key mechanisms underlying the 

knowledge co-creation process. 

Our primary finding reveals that human-machine collaboration constitutes the fundamental mechanism driving knowledge co-

creation. This collaboration manifests through two distinct dimensions: human-machine demand alignment and knowledge 

synthesis. Throughout iterative interactions, we observed a progressive enhancement in the intelligent assistant’s ability to 

comprehend user requirements, while users demonstrated increasing capacity to assimilate and integrate the assistant’s knowledge 

into their existing cognitive frameworks. This bidirectional collaborative process facilitates profound knowledge co-creation, 

yielding outcomes across three hierarchical levels: knowledge acquisition, knowledge integration, and knowledge creation. 

Furthermore, our analysis demonstrates that knowledge capability serves as the cornerstone of effective human-machine 

collaboration. The empirical results establish that both individual and machine knowledge capabilities exert significant positive 
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influences on collaborative outcomes. Enhanced individual knowledge capability enables more precise and targeted inquiries, 

while superior machine knowledge capability facilitates more sophisticated and comprehensive knowledge support. 

A notable finding concerns the role of prompt literacy in modulating the relationship between machine knowledge application 

and human-machine collaboration. The data suggests that users possessing advanced prompt literacy demonstrate superior ability 

to articulate their requirements and optimize their interactions, thereby more effectively leveraging the intelligent assistant’s 

knowledge capabilities. 

This investigation contributes substantial insights to our understanding of human-machine knowledge co-creation mechanisms, 

particularly emphasizing the critical roles of human-machine collaboration, knowledge capabilities, and prompt literacy. These 

findings advance both theoretical frameworks for understanding human-intelligent assistant interaction and provide actionable 

guidelines for enhancing collaborative effectiveness in knowledge-intensive contexts. 

6.2. Theoretical contributions 

This study makes several significant theoretical contributions. Foremost, it extends the theoretical boundaries of Sense-Making 

Theory into the domain of human-machine interaction. While traditional Sense-Making Theory has predominantly addressed 

human-human interactions and basic computational program interactions [9], our research advances its application to encompass 

sophisticated human-intelligent assistant interactions. By conceptualizing personal knowledge capability and machine knowledge 

capability as internal and external representations respectively, and integrating Sense-Making Theory with empirically derived 

human-machine knowledge co-creation processes, we establish a novel theoretical framework for understanding cognitive 

mechanisms in human-machine interaction. 

Additionally, our research substantially advances beyond the preliminary qualitative findings of previous studies on human-

machine interaction processes through the lens of Sense-Making Theory [8]. We empirically validate the centrality of human-

machine collaboration in knowledge co-creation and develop a comprehensive theoretical model that synthesizes multiple 

dimensions: personal knowledge capability, machine knowledge capability, human-machine collaboration, prompt literacy, and 

knowledge co-creation. This integrated model not only delineates the pathways through which knowledge capabilities influence 

collaborative processes but also explicates the mechanisms by which human-machine collaboration facilitates the progressive 

evolution of knowledge from initial acquisition to sophisticated creation. The result is a systematic theoretical framework that 

substantially enhances our understanding of knowledge creation dynamics in human-machine interaction. 

Furthermore, this study makes a distinctive contribution by empirically validating prompt literacy as a critical moderating 

variable in human-machine knowledge co-creation. While previous research has identified prompt literacy as an emergent 

component of information literacy, our investigation rigorously establishes its role in mediating human-machine interaction 

effectiveness. This finding successfully bridges the technical domain of prompt engineering with user-centered research paradigms, 

offering novel insights into the factors that shape successful human-machine interaction outcomes. 

6.3. Practical implications 

Our comprehensive investigation into human-intelligent assistant interactions and the validated model of knowledge co-creation 

mechanisms yields significant practical implications, particularly for stakeholders in the content economy. Drawing from our 

theoretical findings, we present strategic recommendations across two key domains: 

For Traditional Content Production Organizations: 

Our research indicates a paradigm shift in content generation processes. The emergence of human-machine collaborative 

knowledge co-creation fundamentally transforms content production from a linear, human-resource-dependent model to an 

integrated, dynamic ecosystem. We propose the following strategic initiatives: 

1. Strategic Process Redesign: Organizations must fundamentally reimagine their content production workflows, implementing 

sophisticated AI integration strategies. This transformation extends beyond superficial AI adoption, necessitating the development 

of comprehensive human-machine collaborative frameworks that optimize the synergy between human creativity and AI 

capabilities. 

2. Evolution of Quality Assessment Frameworks: Contemporary content evaluation protocols require substantial revision to 

accurately capture the value generated through human-machine collaboration. Organizations should implement multidimensional 

evaluation systems that incorporate metrics for content originality, intellectual depth, operational efficiency, and scalability 

potential. 

3. Systematic Development of Prompt Engineering Competencies: Our findings emphasize the critical role of prompt literacy 

in enhancing collaborative effectiveness. Organizations should institute structured training programs and knowledge-sharing 

platforms to cultivate advanced prompt engineering capabilities among their workforce. 

For Individual Creators and Small Production Teams: 

Our research highlights a pivotal trend: future content creation excellence will be increasingly defined by proficiency in AI 

collaboration. We recommend the following strategic adaptations: 

1. Prompt Literacy Enhancement: Given the demonstrated positive moderating effect of prompt literacy on machine knowledge 

application and collaborative outcomes, mastery of prompt engineering techniques should be prioritized as a fundamental 

professional competency. 
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2. Role Evolution: Within the human-machine collaborative paradigm, creators must transition from traditional content 

production roles to become strategic content architects and creative directors. This evolution demands enhanced capabilities in 

strategic analysis and cross-disciplinary knowledge synthesis. 

3. Continuous Technological Adaptation: The progressive nature of knowledge co-creation, evolving from basic to 

sophisticated levels, necessitates ongoing professional development. Creators must maintain dynamic knowledge structures 

aligned with rapidly advancing technological capabilities. 

6.4. Limitations and future directions 

While this research advances our understanding of human-machine knowledge co-creation mechanisms, several limitations 

warrant acknowledgment and suggest promising avenues for future investigation: A primary methodological limitation concerns 

the scope of data collection. The reliance on interaction data from a single intelligent assistant platform potentially introduces 

platform-specific biases and may constrain the generalizability of our findings. This single-source data collection approach may 

not adequately capture the diverse characteristics and impacts of various intelligent assistant systems on knowledge co-creation 

processes. Future research would benefit from adopting a comprehensive multi-platform sampling strategy. Such cross-platform 

comparative analyses could illuminate universal patterns in human-machine knowledge co-creation while elucidating the role of 

platform-specific characteristics in shaping co-creation outcomes, ultimately yielding more robust and generalizable conclusions. 

A second theoretical limitation lies in the study’s predominantly individual-level focus, which necessarily excludes team and 

organizational dynamics from consideration. Given that knowledge innovation in professional contexts typically occurs through 

collective processes, future investigations should expand their analytical scope to encompass team and organizational dimensions. 

Such research could explore the cascading effects of human-machine collaboration on collective knowledge innovation processes 

across organizational hierarchies. This multi-level analysis approach would not only enhance the theoretical framework of human-

machine knowledge co-creation but also provide actionable insights for organizations seeking to leverage artificial intelligence 

technologies for collective innovation advancement. Researchers might employ hierarchical modeling techniques to 

simultaneously examine variables at individual, team, and organizational levels, thereby constructing a more comprehensive 

theoretical framework. 

Finally, while our study establishes prompt literacy as a significant moderating variable, the underlying mechanisms through 

which it influences human-machine collaboration remain incompletely understood. This presents a crucial opportunity for future 

research to conduct more granular analyses of prompt literacy’s operational dynamics. Subsequent investigations could employ 

mixed-method research designs to systematically examine how various dimensions of prompt literacy impact the quality and 

efficiency of human-machine interactions. Specifically, controlled experimental studies could be designed to manipulate different 

prompt engineering strategies and assess their differential effects on knowledge co-creation processes and outcomes. Such research 

would contribute to both theoretical understanding and practical applications in optimizing human-machine collaboration. 
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