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Abstract: Accurate carbon price forecasting plays a key role in promoting emission 

reductions and advancing the low-carbon economy. Given the strong nonlinear nature of 

carbon prices and the subjective challenge in tuning hyperparameters for traditional LSTM 

networks, this study introduces a prediction framework combining a Hybrid Particle Swarm 

Optimization (HPSO) algorithm with an LSTM neural network. Using China’s national 

carbon market data, both univariate and multivariate time series predictions are conducted. 

Results demonstrate that the HPSO algorithm efficiently tunes LSTM hyperparameters, 

enhancing performance compared to multilayer perceptron (MLP) models. Moreover, 

incorporating multiple variables yields superior predictive outcomes over using historical 

prices alone. 

Keywords: Carbon Price Prediction Model, LSTM Neural Network, Hybrid Particle Swarm 
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1. Introduction 

In recent years, climate change and sustainable development issues have drawn widespread attention. 

Rapid industrial expansion and intensified human activities substantially increase greenhouse gas 

emissions, accelerating global warming and leading to more frequent extreme weather events. Many 

countries and regions, in response to climate change, have put forward the goals of carbon neutrality 

and net-zero emissions. As a means of reducing emissions, carbon emission trading has been applied 

globally and is regarded as crucial for the transition to a low-carbon economy. Currently, improving 

the precision of carbon price prediction, reducing corporate risks, and optimizing market functions in 

emission reductions have attracted growing academic and industrial attention. 

Currently, academic discussions regarding carbon price forecasting mainly focus on three aspects: 

the carbon market price formation mechanism, influencing factors affecting carbon prices, and carbon 

price prediction models. Regarding the formation mechanisms of carbon market prices, prior studies 

have outlined the institutional frameworks of markets such as the EU and pilot carbon markets [1], 

analyzing their distinct price-setting characteristics [2]. For factors affecting carbon prices, research 

emphasizes identifying types and selecting crucial indicators, Zhao Lixiang et al. [3] summarized that 

the major factors influencing carbon prices, including policy dynamics, climate change, market 

environment, and energy prices. Chen Xin et al. [4] constructed a Bai-Perron structural break test 

from the perspective of supply and demand changes to observe the causes of drastic fluctuations in 

carbon prices. In terms of prediction approaches, the literature has proposed various methods, 

including econometric models, artificial intelligence algorithms, and hybrid techniques. Li et al. [5] 
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employed empirical mode decomposition, GARCH models, and computable general equilibrium 

(CGE) models to predict China’s carbon prices based on historical data. Yao Yiqian et al. [6] 

developed a BP-LSTM hybrid neural network approach, demonstrating improved forecast accuracy. 

Existing literature highlights that carbon trading prices are shaped by various market and non-

market factors, but the challenge of accurately modeling these price dynamics remains unresolved. 

Traditional time series methods and machine learning approaches such as SVMs often fall short in 

capturing the complex nonlinear patterns observed in carbon price data. In contrast, Long Short-Term 

Memory (LSTM) networks, a refined class of recurrent neural networks, are designed to handle long-

range dependencies in sequential data, making them highly suitable for time series forecasting tasks. 

However, the predictive accuracy of LSTM models is highly sensitive to hyperparameter selection, 

including the number of hidden units, learning rate, and time window size. Historically, these 

parameters have been set through manual tuning or grid search, processes that are often inefficient 

and heavily reliant on researcher expertise. To address this limitation, metaheuristic optimization 

algorithms have been increasingly applied to neural network hyperparameter tuning. Among them, 

the Particle Swarm Optimization (PSO) algorithm has attracted significant attention for its ability to 

efficiently explore large search spaces. Nevertheless, standard PSO can sometimes become trapped 

in local optima. The Hybrid Particle Swarm Optimization (HPSO) algorithm, which enhances the 

basic PSO by incorporating strategies such as elite and follower subgroups and cross-learning 

mechanisms, offers a promising solution. By integrating HPSO with LSTM, this study aims to 

develop a robust carbon price prediction model that overcomes the inefficiencies of manual 

hyperparameter tuning and achieves superior forecasting performance. 

2. Research methodology 

2.1. Long Short-Term Memory (LSTM) neural network 

The Long Short-Term Memory (LSTM) is a special type of Recurrent Neural Network (RNN), which 

excels in learning long-term dependencies and is particularly suitable for time series prediction and 

classification. Its performance is influenced by hyperparameters such as the number of hidden units, 

the learning rate, and the prediction window. Optimizing these parameters can enhance the model's 

ability to capture long-term dependencies, its generalization performance, and the convergence speed. 

Therefore, in complex time series tasks, optimizing the hyperparameters of LSTM is crucial for 

improving the model's prediction ability and robustness. The basic unit structure of LSTM is shown 

in Fig 1. Each unit structure is composed of four main elements: the input gate 𝑖𝑡, the forget gate 𝑓𝑡, 

the output gate 𝑜𝑡, and the cell state 𝐶𝑡.   

 

Figure 1: The basic unit structure of LSTM 
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2.2. Hybrid Particle Swarm Optimization (HPSO) algorithm 

The HPSO algorithm divides the population into an elite subgroup and a follower subgroup, which 

are respectively responsible for different search tasks. The elite subgroup enhances its global search 

ability through a cross-learning strategy, while the follower subgroup improves its local search ability 

through a random learning strategy. The overview of the population learning strategy is as follows: 

(1) Cross-learning strategy 

In the HPSO algorithm, particles can reach the optimal state in each dimension. For the elite 

population, a horizontal crossover operator is designed to perform crossovers in the same dimension 

among the historical best positions of different particles, so as to enhance information sharing and 

improve diversity and global search ability. A vertical crossover operator is designed to avoid local 

optimality and perform crossovers between different dimensions of a single particle. In this paper, 

the velocity update formula is consistent with the traditional PSO velocity update strategy. The 

selection of the horizontal and vertical crossover operators in the position update formula depends on 

the value of rand and the crossover probability 𝑝𝑐 . As shown in Equation (1),𝑟1, 𝑟2and rand are 

random numbers uniformly distributed in the interval [0,1], 𝑗  represents the index of another 

randomly selected particle, 𝑑 ≠ 𝑑1represents the feature dimension of the particle, and 𝑑1 is the 

other feature dimension of the particle randomly selected. 

 {
𝑥𝑖𝑑

𝑡+1 = 𝑟1𝑝𝑖𝑑
𝑡 + (1 − 𝑟1)𝑝𝑗𝑑

𝑡 + 𝑐(𝑝𝑖𝑑
𝑡 − 𝑝𝑗𝑑

𝑡 ), 𝑟𝑎𝑛𝑑 ≤ 𝑝𝑐

𝑥𝑖𝑑
𝑡+1 = 𝑟2𝑝𝑖𝑑

𝑡 + (1 − 𝑟2)𝑝𝑖𝑑1

𝑡 , 𝑟𝑎𝑛𝑑 > 𝑝𝑐

 (1) 

(2) Random learning strategy 

In the follower subgroup, particles are sorted according to their fitness values, with the ones with 

poorer fitness at the rear. To guide the particles with poor fitness to search for a better solution space, 

a random learning strategy is designed. Assume that after sorting, particle 𝑥𝑖 randomly selects a 

particle 𝑥𝑘 from the first 𝑖 − 1 particles as the learning object, and performs a crossover operation 

as shown in Equation (2) to generate a velocity vector. Using this velocity vector, the particles with 

poor fitness can learn from the experience of the better - performing particles and explore their 

solution space, thus obtaining a new position. As shown in Equation (3),𝑟1, 𝑟2, and rand are random 

numbers uniformly distributed in the interval [0,1] and 𝑝𝑚 is the mutation probability. 

 𝑣𝑖𝑑
𝑡+1 = 𝜔𝑣𝑖𝑑

𝑡 + 𝑐1𝑟1(𝑟2𝑝𝑖𝑑
𝑡 + (1 − 𝑟2)𝑝𝑘𝑑

𝑡 − 𝑥𝑖𝑑
𝑡 ) (2) 

 {
𝑥𝑖𝑑

𝑡+1 = 𝑝𝑖𝑑
𝑡 + 𝑐2𝑟2(𝑝𝑔𝑑

𝑡 − 𝑝𝑖𝑑
𝑡 ), 𝑟𝑎𝑛𝑑 ≤ 𝑝𝑚

𝑥𝑖𝑑
𝑡+1 = 𝑥𝑖𝑑

𝑡 + 𝑣𝑖𝑑
𝑡 , 𝑟𝑎𝑛𝑑 > 𝑝𝑚

 (3) 

3. Carbon price prediction model based on HPSO-LSTM 

This study applies the HPSO algorithm to optimize key hyperparameters of the LSTM model—

including time window size, hidden unit count, dropout probability, and learning rate—thereby 

reducing manual bias. To improve the algorithm ’s efficiency, the HPSO design is modified by 

keeping the horizontal crossover operator in the cross-learning process while substituting the vertical 

crossover operator with the standard PSO position update method. This results in the development of 

an HPSO-LSTM-based carbon price forecasting model. 

 {
𝑥𝑖𝑑

𝑡+1 = 𝑟1𝑝𝑖𝑑
𝑡 + (1 − 𝑟1)𝑝𝑗𝑑

𝑡 + 𝑐(𝑝𝑖𝑑
𝑡 − 𝑝𝑗𝑑

𝑡 ), 𝑟𝑎𝑛𝑑 ≤ 𝑝𝑐

𝑥𝑖𝑑
𝑡+1 = 𝑥𝑖𝑑

𝑡+1 + 𝑣𝑖𝑑
𝑡+1, 𝑟𝑎𝑛𝑑 > 𝑝𝑐

 (4) 

The procedure for the HPSO-LSTM model is illustrated in Fig 2: 
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Step 1: Preprocess the experimental data, including historical carbon prices and relevant 

influencing variables; divide the dataset into training, validation, and test subsets. 

Step 2: Define the time window, hidden layer units, dropout rate, and learning rate as optimization 

targets, and initialize the particle swarm parameters. 

Step 3: For each particle, construct an LSTM model using its position as hyperparameters, train it 

on the training set, validate it, compute the mean squared error (MSE), and assign it as the particle’s 

fitness value. 

Step 4: Rank particles based on fitness, identify each particle’s best historical position and the 

global best position, and split the population into elite and follower subgroups according to the 

predefined elite proportion. 

Step 5: The elite group applies the cross-learning strategy to update velocity and position using 

the crossover probability and Equation (4); the follower group uses the random learning strategy, 

updating velocity and position via the mutation probability and Equations (2)-(3). 

Step 6: Check termination criteria. If met, return the best hyperparameter set; if not, repeat from 

Step 3 until the stopping condition is fulfilled. 

Step 7: Build a final LSTM model using the optimized hyperparameters, retrain it on the training 

set, generate predictions on the validation and test sets, and assess model performance.  

 

Figure 2: Algorithm flowchart of the HPSO-LSTM model 

4. Empirical analysis 

4.1. Data source and preprocessing 

The dataset used in this study includes daily closing prices from China’s national carbon trading 

market, alongside variables such as the CSI 300 Index and the EU Emission Allowance (EUA) prices. 

The time span ranges from July 16, 2021, to June 7, 2024, totaling 701 observations. The CSI 300 

Index serves as a proxy for China’s macroeconomic trends, while EUA prices represent international 

carbon market benchmarks. Energy market indicators include prices for coking coal, INE crude oil, 

and UK natural gas (IPE). Descriptive statistics of all variables are presented in Table 1. 
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Table 1: Descriptive statistical results of the data 

Norm 
Carbon 

price 

HS300 

index 

Coal 

price 

INE Crude oil 

prices 

Price of 

natural gas 

EUA 

prices 

Quantaties 701 701 701 701 680 696 

Average 62.318 4068.007 
2276.9

99 
592.619 174.888 76.550 

Standard 

deviation 
13.228 491.589 

682.82

4 
85.257 113.160 11.323 

Minimum 41.460 3179.628 
1116.5

00 
406.600 54.020 50.520 

Maximum 103.470 5151.752 
3995.0

00 
806.600 606.200 97.670 

Coefficient of 

variation 
0.212 0.121 0.300 0.144 0.647 0.148 

Skewness 1.067 0.525 0.427 0.014 1.468 -0.499 

Kurtosis 0.957 -0.705 -0.666 -0.752 1.911 -0.769 

4.2. Model parameter settings and evaluation indicators 

The LSTM prediction model is composed of two hidden LSTM layers followed by a fully connected 

output layer. The HPSO algorithm is utilized to optimize four key hyperparameters: time window 

length, number of hidden units, dropout probability, and learning rate. Each of the four dimensions 

of the particle vector corresponds to one hyperparameter. Their respective ranges are set as [1, 30], 

[16, 256], [0, 0.5], and [0.001, 0.01], with maximum velocities configured to 2, 8, 0.01, and 0.001. 

The particle swarm includes 50 individuals and evolves over a maximum of 100 iterations. The inertia 

weight decreases linearly from 0.9 by 0.005 per generation. Learning factors, elite group ratio, 

crossover probability, and mutation rate are all initialized at 0.5. During optimization, each LSTM 

model is trained over 100 epochs using the Adam optimizer and MSE as the loss function. For 

comparative purposes, an MLP model with the same configuration is used as a benchmark. 

To evaluate the prediction accuracy of the model, four commonly used evaluation indicators are 

introduced: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), Mean Absolute 

Percentage Error (MAPE), and R2. MAE, RMSE, and MAPE are used to detect the deviation between 

the predicted values and the true values of the model, and R2 reflects the fitting degree of the model 

to the data. The closer R2 is to 1, the better the model fits the data. 

4.3. Analysis of experimental results 

Fifty percent of the samples in the dataset are used as the training set, 20% as the validation set, and 

30% as the test set. In Experiment 1, only the historical carbon price data is used as the input for 

prediction. In Experiment 2, on this basis, the influences of multiple factors such as the macro 

environment, the international carbon market, and energy prices on the carbon price are further 

considered, and multiple variables are used for comprehensive prediction of the carbon price. The 

HPSO algorithm is respectively used to optimize the hyperparameters of the LSTM model for 

Experiment 1 and Experiment 2. The population evolution curves are shown in Fig 3(a) and 3(b), and 

the optimal hyperparameters of the finally obtained LSTM model are shown in Table 2. It can be seen 

from Figure 3(b) that in Experiment 2, a relatively good LSTM model has been obtained when 

initializing the population, resulting in the long-term stagnation of population evolution. With the 

increase of the mutual learning among particles in the elite subgroup and the follower subgroup, the 

population jumps out of the local optimum in the later stage and quickly converges to a better state. 
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To a certain extent, this result shows that the adjusted HPSO algorithm has not lost its original strong 

global search ability and can effectively reduce the risk of falling into local optimum during the 

population evolution process. 

  
(a) (b) 

Figure 3: Population evolution curves 

Table 2: The results of hyperparameter optimization of LSTM by HPSO 

Hyper-

parameters 
Time window 

Number of hidden 

layer units 

Probability of 

dropping a neuron 

Learning 

rate 

Test 1 6 234 0.08 0.005 

Test 2 1 138 0.00 0.009 

 

Based on the optimal hyperparameters, the LSTM models are reconstructed and trained 

respectively, and the number of iterations is changed to 200. The validation set and the test set are 

combined for prediction. The prediction results of the models in Experiment 1 and Experiment 2 are 

shown in Fig 4 and Fig 5, and the evaluation results of the model prediction performance are shown 

in Table 3. It can be seen that whether it is predicting with only the historical carbon price data as the 

input or conducting comprehensive prediction with multiple variables, the prediction model after 

optimizing the hyperparameters of the LSTM model by the HPSO algorithm has a better fitting effect 

and smaller prediction errors compared with the MLP model, and can predict the carbon price more 

accurately. In addition, it can be concluded from the experimental results that further incorporating 

the data of the influencing factors of the carbon price into the prediction model on the basis of the 

historical carbon price data can predict the future carbon price more accurately. In comparison to 

using historical carbon price data alone, prediction accuracy improved by 26.3%, 25.7%, and 25.6%, 

with goodness-of-fit increasing by 2.1%. 
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(a)Prediction results of the LSTM-HPSO model (b)Prediction results of the MLP model 

Figure 4: Prediction results of the single-input model in experiment 1 

  
(a)Prediction results of the LSTM-HPSO model (b)Prediction results of the MLP model 

Figure 5: Prediction results of the multi-input model in experiment 2 

Table 3: Comparison of model prediction performance evaluation indicators 

Model Category MAE RMSE MAPE R2 

LSTM-HPSO 
Test 1 

1.7277 2.2407 0.0207 0.9559 

MLP 2.4878 3.2787 0.0291 0.9055 

LSTM-HPSO 
Test 2 

1.2731 1.6648 0.0154 0.9756 

MLP 2.2534 2.6589 0.0267 0.9378 

5. Conclusion 

Aiming at the complex nonlinear carbon price prediction problem, this paper combines the hybrid 

particle swarm optimization algorithm and the LSTM neural network to construct a carbon price 

prediction model based on HPSO-LSTM. Then, a time series prediction of the national carbon price 

is carried out by only considering the historical carbon price data, as well as a comprehensive 

prediction with multiple variables by comprehensively considering the historical carbon price data, 

the macro environment, the international carbon market, and energy prices. The research results show 

that the HPSO algorithm has a strong global search ability and can be effectively used for the 

optimization of LSTM hyperparameters, thus avoiding the subjectivity of manually setting and 

adjusting hyperparameters. The optimized LSTM model has a high prediction accuracy and goodness 

of fit, and the prediction effect of the comprehensive prediction model with multiple variables is better 

than that of the time series prediction model. In the future, other factors such as text features and the 
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degree of public attention can be considered for predicting the carbon price to further improve the 

prediction accuracy of the model. 
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