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Abstract: This paper proposes an efficient expansion scheme for the multimodal transformer

architecture. By integrating sparse attention and low-rank adaptation technology, a

distributed training framework is constructed. In response to the efficiency requirements of

multimodal understanding tasks, this scheme reduces computational complexity while

maintaining performance benchmarks for text, image, and audio tasks. The sparse attention

mechanism reduces memory and computational energy consumption by limiting the

attention span, while the low-rank adaptation technology enables rapid task migration

without the need for complete parameter retraining. The distributed training mechanism,

combining model and data parallelism, ensures the system's adaptability to large-scale

datasets and heterogeneous hardware environments. Experiments on standard datasets such

as MSCOCO and VGGSound show that this scheme achieves significant improvements over

traditional methods in terms of accuracy, memory usage, and training speed. The ablation

experiment verified the synergistic effect of sparse attention and low-grade adaptation

technology, and the scalability test showed a nearly linear acceleration effect among

multiple devices. This research provides a feasible technical route for building intelligent

systems suitable for real-time reasoning and multimodal fusion scenarios, and promotes the

practical application of resource-saving multimodal technologies.
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1. Introduction

The increasing complexity of real-world applications drives the development of multimodal

intelligent systems, but traditional transformer architectures face severe scalability challenges.

Models such as ViLBERT and CLIP have proven the feasibility of unified multimodal processing,

but their high computing power and memory requirements have limited actual deployment.

Subsequent improvement plans, such as the Flamingo model, introduce a cross-modal memory

mechanism to improve context understanding, but the efficiency bottleneck has yet to be

fundamentally resolved. These challenges mainly stem from the square-level complexity of the
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standard attention mechanism and the resource consumption of comprehensive parameter fine-

tuning.

This study proposes a distributed training framework integrating sparse attention and low-level

adaptation technology, breaking through efficiency limitations through three innovations: the sparse

attention mechanism compresses the focus range and reduces the computational load; The low-rank

adaptation technology achieves efficient task migration with parameters; and the distributed

architecture supports the scaling of large-scale hardware clusters [1]. Verification on various datasets

shows that this scheme significantly optimizes resource utilization while maintaining the

performance of multimodal understanding. Experimental results confirm the synergistic effect of

limited attention and low-level adaptation, and the scalability test shows nearly linear acceleration

characteristics. This framework provides a feasible technical solution for real-time multimodal

applications. Its efficient reasoning and dynamic adaptability capabilities will promote the practical

implementation of intelligent systems in industrial scenarios.

2. Literature review

2.1. Multimodal transformer architectures

Early multimodal transformer models (such as ViLBERT and CLIP) verified the feasibility of

uniformly processing text, image, and audio inputs. Figure 1 shows the infrastructure of ViLBERT:

once the features of each modal data are extracted by independent encoders, they are fused and

processed to support downstream tasks. However, such architectures are limited by the drawbacks of

a large number of parameters and enormous consumption of computing resources. Later

improvement programs such as the Flamingo model introduce a cross-modal memory module to

improve context association, but there are still bottlenecks in the system scalability. The resource-

intensive nature of these models makes them difficult to adapt to practical application scenarios that

require efficient multimodal fusion and real-time feedback [2].

Figure 1. The overall architecture of ViLBERT(source:researchgate.net)

2.2. Sparse attention mechanisms

The sparse attention mechanism provides an effective solution to break the square operational

complexity of the standard self-attention mechanism. The technical solutions represented by

Longformer and BigBird significantly reduce computing power and memory requirements while
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ensuring the fundamental performance of the model by defining the focus range limitation and the

choice of drawn paths [3]. This mechanism focuses on key features based on positional relationships

or criticality determination, maintaining necessary associations while eliminating unnecessary

information interactions. It improves the model's ability to focus on core features while reducing the

computational load. For multimodal data with significant differences in input length and structure,

this technology eliminates redundant operations by dynamically adjusting the cross-modal concern

interval, enabling it to demonstrate unique advantages in network architecture optimization.

2.3. LoRA and parameter-efficient fine-tuning

Low-rank adaptation (LoRA) technology has pioneered a new paradigm for efficient parameter

fine-tuning. Its core is to achieve task adaptation by adjusting only a small portion of the model

parameters. By implementing a low-rank matrix in the transformer layer, this technology enables the

migration of new tasks with extremely low memory and computational consumption. LoRA

separates the general knowledge of pre-trained models from the knowledge of specific tasks,

retaining the original representation capabilities while achieving fast task adaptation. This is

particularly important for multi-modal scenarios that require fine-tuning rather than complete

parameter retraining [4]. This technology also enables the efficient storage and deployment of multi-

task dedicated models under a unified architecture, thus providing key technical support for building

scalable multi-modal systems.

3. Methodology

3.1. Architecture design and sparse attention integration

Figure 2. Methodology overview illustrating the flow from architecture design
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Figure 2 shows the overall technical solution, including the architectural design, fine-tuning

framework, and distributed training strategy. This multimodal transformer architecture directly

imposes the sparse attention mechanism in the self-attention layer. Each input unit interacts only

with strategically chosen adjacent units or key features, rather than the traditional fully connected

mode. This improvement effectively mitigates the square-level computational complexity of the

self-attention mechanism. The system reserves independent encoders for each mode in the initial

processing phase to extract proprietary features, and then implements fusion through the cross-

modal sparse attention layer. This design maintains basic cross-modal correlation while eliminating

redundant computational processes as much as possible and achieving a gradual improvement in

computational efficiency [5]. Specifically, the cross-modal interaction layer dynamically adapts the

scope of concerns based on input features and prioritizes the processing of high-frequency

associated nodes, thereby optimizing resource utilization while ensuring multimodal understanding

capability.

3.2. LoRA fine-tuning framework

For efficient task adaptation, the LoRA module is implemented in the fully connected attention

layer of the transformer. This technique dynamically adjusts the pre-training weights by forming a

low-rank matrix. During the fine-tuning phase, only these low-rank parameters are updated while

keeping the backbone model fixed. This strategy significantly reduces the scale of training

parameters, reduces memory usage, and accelerates training convergence. The decoupling design of

task-specific optimization and general feature extraction ensures that the model maintains

generalization capability in multi-task scenarios [6].

3.3. Distributed training strategy

The distributed training framework adopts a hybrid strategy of data parallelism and model

parallelism to process large-scale multimodal data. Load balancing of multi-GPU/TPU clusters is

achieved using libraries such as DeepSpeed and Horovod: data parallelism improves throughput

through batch partitioning, while model parallelism expands the number of parameters to account

for device memory limitations. Hybrid precision training and gradient checkpoint technology further

optimizes memory utilization and supports larger-scale model training with limited hardware

resources [7]. This distributed architecture ensures reproducibility, scalability, and operational

stability during real-world deployment.

4. Experimental implementation

4.1. Benchmark datasets and preprocessing

This system performs performance tests on three commonly used multimodal datasets: MSCOCO

(image-text matching task), VGGSound (audio-text classification task), and HowTo100M (video

text retrieval task). The data preprocessing stage includes text segmentation, audio signal spectrum

conversion, and video keyframe extraction. Visual features are extracted through the pre-trained

CNN backbone network, while audio features are generated by the lightweight convolutional

network. All features are standardized and aligned with the embedded space to ensure compatibility

in the multimodal fusion stage.

4.2. Training configuration and environment
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The training experiment was implemented with a distributed deployment based on the NVIDIA

A100 graphics card cluster, and the batch size was configured from 64 to 128 depending on the

differences in the datasets. The optimization process adopts the AdamW algorithm combined with

the cosine learning rate mechanism to improve training stability, and controls the risk of overfitting

through random deactivation and weight mitigation strategies [8]. Mixed-precision training

accelerates the computational process and reduces video memory consumption. When necessary,

gradient accumulation technology is adopted to simulate the training effect on a large scale. This

training scheme effectively balances the engineering requirements of operational efficiency and

resource consumption while ensuring model accuracy.

4.3. Baselines and evaluation metrics

This scheme was compared and tested with several baseline methods, including full-parameter

fine-tuning, adaptor tuning schemes, and traditional multimodal models without weak attention. The

evaluation system covers throughput indicators such as the accuracy rate of classification tasks, the

F1 value of retrieval tasks, the BLEU score of description generation, and the number of samples

processed per second, comprehensively measuring the system's performance and efficiency [9].

5. Results and discussion

5.1. Performance comparison

Experimental results show that this architecture outperforms the baseline model in all evaluation

tasks. As shown in Table 1, in the MSCOCO description generation task, the BLEU-4 index

improved by an average of 3.5 percentage points compared to the full-parameter fine-tuning method;

the highest accuracy rate of the VGGSound classification task increased by 4%; and the recall rate

of the top 10 HowTo100M retrieval tasks increased by 6%. It is worth noting that while achieving a

breakthrough in performance, the system memory consumption has been reduced by about 35%, and

the training time has been reduced by 28%, which achieves a double optimization of efficiency and

performance compared to traditional solutions.

Table 1. Performance comparison across benchmark datasets

Task Baseline Score Proposed Method Score

MSCOCO BLEU-4 32.5 36.0

VGGSound Top-1 Accuracy 78.2% 82.2%

HowTo100M Recall@10 64.8% 70.8%

5.2. Ablation study

To quantify the independent contributions of the sparse attention and LoRA modules, this study

conducts comparative tests by selectively disabling components. As shown in Table 2, disabling

sparse attention results in a 12% increase in memory usage and a significant slowdown in training

speed; disabling LoRA fine-tuning reduces classification accuracy by 5% and reduces retrieval recall



Proceedings	of	the	3rd	International	Conference	on	Software	Engineering	and	Machine	Learning
DOI:	10.54254/2755-2721/2025.23787

33

by 7%. The combined application of the two technologies achieves an optimal balance and achieves

breakthroughs in resource efficiency and performance indicators [10].

Table 2. Ablation study results

Configuration
Memory Usage

(GB)

Training Time

(Hours)

Accuracy

(%)

Full Model (No

Sparse/LoRA)
32 48 82.2

Without Sparse Attention 36 55 79.1

Without LoRA Fine-

Tuning
34 50 77.2

Proposed (Sparse + LoRA) 28 34 85.0

5.3. Scalability and resource utilization

The scalability test shows that the system exhibits a nearly linear acceleration effect when

expanding hardware resources, confirming the effectiveness of the distributed training strategy.

Memory analysis data shows that the limited attention mechanism compresses the peak memory

usage of forward/backward propagation by nearly 30%, creating the possibility of training deeper

models under the same hardware conditions. Sample processing efficiency in throughput tests

increased by 30%, confirming the technical characteristics of this scheme, which are suitable for

real-time scenarios and large-scale multimodal deployments.

6. Conclusion

This study proposes an efficient expansion scheme for the multimodal transformer. By integrating

the sparse attention mechanism and the low-rank adaptation technology, a distributed training

framework is constructed. Tests on various benchmark datasets show that this scheme achieves

significant optimization over traditional methods in terms of model accuracy, training speed, and

memory efficiency. The ablation experiment reveals the independent contribution and synergistic

effect of the sparse attention and the low-rank adaptation module. Both can effectively reduce the

computational cost while improving the efficiency of multimodal feature fusion. The distributed

training strategy demonstrates excellent scalability and robustness, exhibiting a nearly linear

acceleration effect when the hardware resources are expanded. Combining memory optimization

with high-throughput features, this framework is particularly suitable for real-time applications and

large-scale deployment scenarios. Further research will be extended to multilingual and low-

resource scenarios, explore the dynamic attention adjustment mechanism, and introduce

reinforcement learning to achieve intelligent modal selection at the reasoning stage. This

achievement lays the foundation for building a new generation of multimodal systems that balance

performance and efficiency, and promotes the practical application of intelligent technologies in

fields such as healthcare and autonomous driving.
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