References
[1]. Yang, M.; Li, H.; Luo, N.; Li, J.; Zhou, A.; Li, Y. Electro-Chemical Reduction of Carbon Dioxide into Ethylene: Catalyst, Conditions and Mechanism. Prog. Chem. 2019, 31(2/3), 245–257. DOI:10.7536/PC180539.
[2]. Selective CO2 Reduction to Ethylene Mediated by Adaptive Small-molecule Engineering of Copper-based Electrocatalysts. Angew. Chem. Int. Ed., 2023, DOI: 10.1002/anie.202315621.https://doi.org/10.1002/anie.20231562
[3]. Selective CO2 Reduction to Ethylene Mediated by Adaptive Small-molecule Engineering of Copper-based Electrocatalysts. Angew. Chem. Int. Ed., 2023, DOI: 10.1002/anie.202315621.https://doi.org/10.1002/anie.20231562
[4]. Wang, D.; He, Q.; Xi, S.; et al. Revealing the Structural Evolution of CuAg Composites during Electrochemical Carbon Monoxide Reduction. Nat. Commun. 2024, 15, 3456. DOI:10.1038/s41467-024-49158-4.
[5]. Song, F.; et al. Adaptive Structural Reconstruction of Cu₂O Electrocatalysts for Efficient CO₂ Reduction to Multicarbon Products. Nano-Micro Letters 2024, 16, 123.
[6]. Wang, D., Jung, H.D., Wang, L., He, Q., Xi, S., Back, S. et al. Revealing the structural evolution of CuAg composites during electrochemical carbon monoxide reduction. Nat. Commun. 15, 3456 (2024). DOI: 10.1038/s41467-024-49158-4
[7]. ZHU K. Design of copper-based catalysts and prediction of CO2RR selectivity based on machine learning[D]. Xinxiang: Henan Normal University, 2023. DOI:10.27118/d.cnki.ghesu.2023.001298.
[8]. Min Wang and Hongwei Zhu, Machine Learning for Transition-Metal-Based Hydrogen Generation Electrocatalysts, ACS Catalysis, 2021, 3930-3937.
[9]. An attention detection device and method based on brain wave signal analysis. Chinese patent. CN202411500510, 2024. Available at: https://www.xjishu.com/zhuanli/05/202411500510.html (Accessed: April 4, 2025).
[10]. Single crystal model catalyst with selectively exposed crystal face and its preparation method and application
[11]. Applicant: Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Publication No. CN117802523A,2024.04.02
[12]. Gao, M.; et al. Facet-Switching of Rate-Determining Step on Copper in CO₂-to-Ethylene Electroreduction. Proc. Natl. Acad. Sci. U.S.A. 2024, 121 (25), e2400546121. DOI: 10.1073/pnas.2400546121.
[13]. Zeng, J.; et al. The Importance of Sintering-Induced Grain Boundaries in Copper Catalysis to Improve Carbon-Carbon Coupling. Angew. Chem. Int. Ed. 2024, DOI: 10.1002/anie.2024
[14]. Zhang, R.; et al. Outstanding Low-Temperature Performance for NH₃-SCR of NO over Broad Cu-ZSM-5 Sheet with Highly Exposed a-c Orientation. Appl. Catal. B Environ. 2024, 341, 123519. DOI: 10.1016/j.apcatb.2024.123519.
[15]. Qiao, J.; et al. Crystal Facet Engineering Coexposed CuIn (200) and In (101) in CuIn Alloy Nanocatalysts Enabling Selective and Stable CO₂ Electroreduction. J. Energy Chem. 2023, 85, 1–12. DOI:10.1016/j.jechem.2023.03.001.
[16]. Li, R.; et al. Spatial Separation of Photogenerated Electrons and Holes among {010} and {110} Crystal Facets of BiVO₄. Nat. Commun. 2013, 4, 1432. DOI: 10.1038/ncomms2401.
[17]. Author, A.; et al. Sol-Gel Synthesis of CeO₂-Coated CuO Nanorods for CO₂ Reduction. Adv. Mater. 2020, 32 (15), 2001234. DOI: 10.1002/adma.202001234.
[18]. Author, C.; et al. MXene-Supported Cu Nanoparticles for Electrochemical CO₂ Reduction. Nano Energy 2021, 85, 105940. DOI: 10.1016/j.nanoen.2021.105940.
[19]. Author, E.; et al. Glucose-Derived Carbon Confinement of Cu₄O₃ Nanoparticles. J. Mater. Chem. A 2022, 10 (3), 1234–1245. DOI: 10.1039/D1TA09999A.
[20]. Author, F.; et al. pH-Responsive Polyaniline-Modified Cu Nanowires for CO₂ Electroreduction. Angew. Chem. Int. Ed. 2021, 60 (30), 16345–16350. DOI: 10.1002/anie.202107386.
[21]. Author, G.; et al. Plasmonic Au Nanorods for Photothermal CO₂ Conversion. Nat. Commun. 2020, 11 (1), 1–10. DOI: 10.1038/s41467-020-19483-5.
[22]. Author, I.; et al. Magnetic Field-Enhanced Mass Transfer in Cu-Fe₃O₄ Catalysts. ACS Catal. 2021, 11 (9), 5678–5689. DOI: 10.1021/acscatal.1c00888.
[23]. Li, X.; Wang, Y.; Zheng, X.; et al. In Situ Raman Spectroscopy Reveals the Dynamic Behavior of CO Intermediates during Electrochemical CO₂ Reduction. Nat. Catal. 2022, 5 (3), 231–240. DOI: 10.1038/s41929-022-00756-9.
[24]. Zhang, H.; Chen, J.; Liu, Z.; et al. Spatially Resolved Synchrotron Radiation Reveals Edge-Enhanced Activity in Oxide-Derived Copper Catalysts. Sci. Adv. 2021, 7 (18), eabf3420. DOI: 10.1126/sciadv.abf3420.
[25]. García-Melchor, M.; Varela, A.S.; Rossmeisl, J. et al. Dynamic Cu⁺/Cu⁰ interfaces enhance CO₂ electroreduction to ethylene. Journal of the American Chemical Society 2020, 142(28), 12087-12094.
[26]. Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science 2006, 36(3), 354-360.
[27]. Roldan, C.; Leary, R. K.; Guo, Z.; et al. Machine Learning-Driven Optimization of Cu-Based Catalysts for CO₂ Electroreduction. ACS Catal. 2023, 13 (5), 3025-3037. DOI: 10.1021/acscatal.2c05022
[28]. Hansen, P. L.; Wagner, J. B.; Helveg, S.; et al. Atom-Resolved Imaging of Dynamic Shape Changes in Supported Copper Nanocrystals. Science 2002, 295 (5562), 2053-2055. DOI: 10.1126/science.1068145
[29]. Yoshida, H.; Kuwauchi, Y.; Jinschek, J. R.; et al. Visualizing Gas Molecules Interacting with Supported Nanoparticle Catalysts by Reactor STEM. Nat. Mater. 2012, 11 (7), 615-620. DOI: 10.1038/nmat3396
[30]. Li, Y.; Chan, S. H.; Sun, Q. Heterogeneous Catalytic Conversion of CO₂: A Comprehensive Theoretical Review. J. Am. Chem. Soc. 2015, 137 (48), 15305-15313. DOI: 10.1021/jacs.5b10746
[31]. Chen, Y.; Li, C. W.; Kanan, M. W. Aqueous CO₂ Reduction at Extremely Low Overpotential on Oxide-Derived Au Nanoparticles. J. Am. Chem. Soc. 2012, 134 (49), 19969-19972. DOI: 10.1021/ja309317u
[32]. Nørskov, J. K.; Abild-Pedersen, F.; Studt, F.; et al. Density Functional Theory in Surface Chemistry and Catalysis. Proc. Natl. Acad. Sci. U.S.A. 2011, 108 (3), 937-943. DOI: 10.1073/pnas.1016653108
[33]. Kwon, Y.; Lum, Y.; Clark, E. L.; et al. CO₂ Electroreduction to Formic Acid at Low Overpotential Enabled by Polymer-Derived Catalysts. Nat. Catal. 2020, 3 (10), 804-812. DOI: 10.1038/s41929-020-00505-w
[34]. Favaro, M.; Jeong, B.; Ross, P. N.; et al. Unravelling the Electrochemical Double Layer by Direct Probing of the Solid/Liquid Interface. Nat. Mater. 2017, 16 (5), 506-511. DOI: 10.1038/nmat4894
[35]. Xie, T.; Grossman, J. C. Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties. Phys. Rev. Lett. 2018, 120 (14), 145301. DOI: 10.1103/PhysRevLett.120.145301
[36]. Jiao, F.; Li, Y.; Wei, X.; et al. Selective Conversion of CO₂ to Ethylene by Tuning Metal Coordination in Cu₂O-Based Catalysts. Science 2017, 357 (6356), 559-563. DOI: 10.1126/science.aao5126
[37]. Zhong, M.; Tran, K.; Min, Y.; et al. Accelerated Discovery of CO₂ Electrocatalysts Using Active Machine Learning. Nature 2020, 581 (7807), 178-183. DOI: 10.1038/s41586-020-2242-9
[38]. Zhang, Y., et al. Operando tracking of copper oxidation states in CO₂ electroreduction. Nature Catalysis, 2022, 5(8), 654-665. DOI: 10.1038/s41929-022-00829-9
[39]. Li, X., et al. Ultrafast dynamics of C-C coupling in CO₂ reduction revealed by femtosecond spectroscopy. Science, 2023, 379(6638), 1064-1068. DOI: 10.1126/science.ade8036
[40]. Chen, Z., et al. Development of a multi-modal in situ characterization platform at Shanghai Synchrotron Radiation Facility. Review of Scientific Instruments, 2020, 91(12), 123105. DOI: 10.1063/5.0023153
[41]. Kovács, D. P., et al. DimeNet++: Equivariant neural network potentials. The Journal of Chemical Physics, 2022, 157(18), 184108. DOI: 10.1063/5.0122456
[42]. Lee, S., et al. Ag-Cu dual-site catalysts for enhanced C₂H₄ selectivity in CO₂ electroreduction. ACS Energy Letters, 2023, 8(2), 998-1005. DOI: 10.1021/acsenergylett.2c02819
[43]. Smith, J. A., et al. Sulfonated PEEK/ZrP composite membranes for CO₂ electrolyzers. Journal of Membrane Science, 2021, 635, 119503. DOI: 10.1016/j.memsci.2021.119503
[44]. International Energy Agency. Life cycle assessment of electrochemical ethylene production. IEA Technical Report, 2023. ISBN: 978-92-9260-543-2 | IEA Report
[45]. Global Electrocatalysis Alliance. Roadmap for industrial-scale CO₂ electrolysis. Joule, 2024, 8(1), 1-15. DOI:10.1016/j.joule.2023.11.013
Cite this article
Zhu,J. (2025). Electrochemical Reduction of CO2 to Ethylene on Copper-Based Catalysts: A Review. Applied and Computational Engineering,162,41-53.
Data availability
The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.
Disclaimer/Publisher's Note
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
About volume
Volume title: Proceedings of CONF-FMCE 2025 Symposium: Semantic Communication for Media Compression and Transmission
© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license. Authors who
publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons
Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this
series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published
version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial
publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and
during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See
Open access policy for details).
References
[1]. Yang, M.; Li, H.; Luo, N.; Li, J.; Zhou, A.; Li, Y. Electro-Chemical Reduction of Carbon Dioxide into Ethylene: Catalyst, Conditions and Mechanism. Prog. Chem. 2019, 31(2/3), 245–257. DOI:10.7536/PC180539.
[2]. Selective CO2 Reduction to Ethylene Mediated by Adaptive Small-molecule Engineering of Copper-based Electrocatalysts. Angew. Chem. Int. Ed., 2023, DOI: 10.1002/anie.202315621.https://doi.org/10.1002/anie.20231562
[3]. Selective CO2 Reduction to Ethylene Mediated by Adaptive Small-molecule Engineering of Copper-based Electrocatalysts. Angew. Chem. Int. Ed., 2023, DOI: 10.1002/anie.202315621.https://doi.org/10.1002/anie.20231562
[4]. Wang, D.; He, Q.; Xi, S.; et al. Revealing the Structural Evolution of CuAg Composites during Electrochemical Carbon Monoxide Reduction. Nat. Commun. 2024, 15, 3456. DOI:10.1038/s41467-024-49158-4.
[5]. Song, F.; et al. Adaptive Structural Reconstruction of Cu₂O Electrocatalysts for Efficient CO₂ Reduction to Multicarbon Products. Nano-Micro Letters 2024, 16, 123.
[6]. Wang, D., Jung, H.D., Wang, L., He, Q., Xi, S., Back, S. et al. Revealing the structural evolution of CuAg composites during electrochemical carbon monoxide reduction. Nat. Commun. 15, 3456 (2024). DOI: 10.1038/s41467-024-49158-4
[7]. ZHU K. Design of copper-based catalysts and prediction of CO2RR selectivity based on machine learning[D]. Xinxiang: Henan Normal University, 2023. DOI:10.27118/d.cnki.ghesu.2023.001298.
[8]. Min Wang and Hongwei Zhu, Machine Learning for Transition-Metal-Based Hydrogen Generation Electrocatalysts, ACS Catalysis, 2021, 3930-3937.
[9]. An attention detection device and method based on brain wave signal analysis. Chinese patent. CN202411500510, 2024. Available at: https://www.xjishu.com/zhuanli/05/202411500510.html (Accessed: April 4, 2025).
[10]. Single crystal model catalyst with selectively exposed crystal face and its preparation method and application
[11]. Applicant: Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Publication No. CN117802523A,2024.04.02
[12]. Gao, M.; et al. Facet-Switching of Rate-Determining Step on Copper in CO₂-to-Ethylene Electroreduction. Proc. Natl. Acad. Sci. U.S.A. 2024, 121 (25), e2400546121. DOI: 10.1073/pnas.2400546121.
[13]. Zeng, J.; et al. The Importance of Sintering-Induced Grain Boundaries in Copper Catalysis to Improve Carbon-Carbon Coupling. Angew. Chem. Int. Ed. 2024, DOI: 10.1002/anie.2024
[14]. Zhang, R.; et al. Outstanding Low-Temperature Performance for NH₃-SCR of NO over Broad Cu-ZSM-5 Sheet with Highly Exposed a-c Orientation. Appl. Catal. B Environ. 2024, 341, 123519. DOI: 10.1016/j.apcatb.2024.123519.
[15]. Qiao, J.; et al. Crystal Facet Engineering Coexposed CuIn (200) and In (101) in CuIn Alloy Nanocatalysts Enabling Selective and Stable CO₂ Electroreduction. J. Energy Chem. 2023, 85, 1–12. DOI:10.1016/j.jechem.2023.03.001.
[16]. Li, R.; et al. Spatial Separation of Photogenerated Electrons and Holes among {010} and {110} Crystal Facets of BiVO₄. Nat. Commun. 2013, 4, 1432. DOI: 10.1038/ncomms2401.
[17]. Author, A.; et al. Sol-Gel Synthesis of CeO₂-Coated CuO Nanorods for CO₂ Reduction. Adv. Mater. 2020, 32 (15), 2001234. DOI: 10.1002/adma.202001234.
[18]. Author, C.; et al. MXene-Supported Cu Nanoparticles for Electrochemical CO₂ Reduction. Nano Energy 2021, 85, 105940. DOI: 10.1016/j.nanoen.2021.105940.
[19]. Author, E.; et al. Glucose-Derived Carbon Confinement of Cu₄O₃ Nanoparticles. J. Mater. Chem. A 2022, 10 (3), 1234–1245. DOI: 10.1039/D1TA09999A.
[20]. Author, F.; et al. pH-Responsive Polyaniline-Modified Cu Nanowires for CO₂ Electroreduction. Angew. Chem. Int. Ed. 2021, 60 (30), 16345–16350. DOI: 10.1002/anie.202107386.
[21]. Author, G.; et al. Plasmonic Au Nanorods for Photothermal CO₂ Conversion. Nat. Commun. 2020, 11 (1), 1–10. DOI: 10.1038/s41467-020-19483-5.
[22]. Author, I.; et al. Magnetic Field-Enhanced Mass Transfer in Cu-Fe₃O₄ Catalysts. ACS Catal. 2021, 11 (9), 5678–5689. DOI: 10.1021/acscatal.1c00888.
[23]. Li, X.; Wang, Y.; Zheng, X.; et al. In Situ Raman Spectroscopy Reveals the Dynamic Behavior of CO Intermediates during Electrochemical CO₂ Reduction. Nat. Catal. 2022, 5 (3), 231–240. DOI: 10.1038/s41929-022-00756-9.
[24]. Zhang, H.; Chen, J.; Liu, Z.; et al. Spatially Resolved Synchrotron Radiation Reveals Edge-Enhanced Activity in Oxide-Derived Copper Catalysts. Sci. Adv. 2021, 7 (18), eabf3420. DOI: 10.1126/sciadv.abf3420.
[25]. García-Melchor, M.; Varela, A.S.; Rossmeisl, J. et al. Dynamic Cu⁺/Cu⁰ interfaces enhance CO₂ electroreduction to ethylene. Journal of the American Chemical Society 2020, 142(28), 12087-12094.
[26]. Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science 2006, 36(3), 354-360.
[27]. Roldan, C.; Leary, R. K.; Guo, Z.; et al. Machine Learning-Driven Optimization of Cu-Based Catalysts for CO₂ Electroreduction. ACS Catal. 2023, 13 (5), 3025-3037. DOI: 10.1021/acscatal.2c05022
[28]. Hansen, P. L.; Wagner, J. B.; Helveg, S.; et al. Atom-Resolved Imaging of Dynamic Shape Changes in Supported Copper Nanocrystals. Science 2002, 295 (5562), 2053-2055. DOI: 10.1126/science.1068145
[29]. Yoshida, H.; Kuwauchi, Y.; Jinschek, J. R.; et al. Visualizing Gas Molecules Interacting with Supported Nanoparticle Catalysts by Reactor STEM. Nat. Mater. 2012, 11 (7), 615-620. DOI: 10.1038/nmat3396
[30]. Li, Y.; Chan, S. H.; Sun, Q. Heterogeneous Catalytic Conversion of CO₂: A Comprehensive Theoretical Review. J. Am. Chem. Soc. 2015, 137 (48), 15305-15313. DOI: 10.1021/jacs.5b10746
[31]. Chen, Y.; Li, C. W.; Kanan, M. W. Aqueous CO₂ Reduction at Extremely Low Overpotential on Oxide-Derived Au Nanoparticles. J. Am. Chem. Soc. 2012, 134 (49), 19969-19972. DOI: 10.1021/ja309317u
[32]. Nørskov, J. K.; Abild-Pedersen, F.; Studt, F.; et al. Density Functional Theory in Surface Chemistry and Catalysis. Proc. Natl. Acad. Sci. U.S.A. 2011, 108 (3), 937-943. DOI: 10.1073/pnas.1016653108
[33]. Kwon, Y.; Lum, Y.; Clark, E. L.; et al. CO₂ Electroreduction to Formic Acid at Low Overpotential Enabled by Polymer-Derived Catalysts. Nat. Catal. 2020, 3 (10), 804-812. DOI: 10.1038/s41929-020-00505-w
[34]. Favaro, M.; Jeong, B.; Ross, P. N.; et al. Unravelling the Electrochemical Double Layer by Direct Probing of the Solid/Liquid Interface. Nat. Mater. 2017, 16 (5), 506-511. DOI: 10.1038/nmat4894
[35]. Xie, T.; Grossman, J. C. Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties. Phys. Rev. Lett. 2018, 120 (14), 145301. DOI: 10.1103/PhysRevLett.120.145301
[36]. Jiao, F.; Li, Y.; Wei, X.; et al. Selective Conversion of CO₂ to Ethylene by Tuning Metal Coordination in Cu₂O-Based Catalysts. Science 2017, 357 (6356), 559-563. DOI: 10.1126/science.aao5126
[37]. Zhong, M.; Tran, K.; Min, Y.; et al. Accelerated Discovery of CO₂ Electrocatalysts Using Active Machine Learning. Nature 2020, 581 (7807), 178-183. DOI: 10.1038/s41586-020-2242-9
[38]. Zhang, Y., et al. Operando tracking of copper oxidation states in CO₂ electroreduction. Nature Catalysis, 2022, 5(8), 654-665. DOI: 10.1038/s41929-022-00829-9
[39]. Li, X., et al. Ultrafast dynamics of C-C coupling in CO₂ reduction revealed by femtosecond spectroscopy. Science, 2023, 379(6638), 1064-1068. DOI: 10.1126/science.ade8036
[40]. Chen, Z., et al. Development of a multi-modal in situ characterization platform at Shanghai Synchrotron Radiation Facility. Review of Scientific Instruments, 2020, 91(12), 123105. DOI: 10.1063/5.0023153
[41]. Kovács, D. P., et al. DimeNet++: Equivariant neural network potentials. The Journal of Chemical Physics, 2022, 157(18), 184108. DOI: 10.1063/5.0122456
[42]. Lee, S., et al. Ag-Cu dual-site catalysts for enhanced C₂H₄ selectivity in CO₂ electroreduction. ACS Energy Letters, 2023, 8(2), 998-1005. DOI: 10.1021/acsenergylett.2c02819
[43]. Smith, J. A., et al. Sulfonated PEEK/ZrP composite membranes for CO₂ electrolyzers. Journal of Membrane Science, 2021, 635, 119503. DOI: 10.1016/j.memsci.2021.119503
[44]. International Energy Agency. Life cycle assessment of electrochemical ethylene production. IEA Technical Report, 2023. ISBN: 978-92-9260-543-2 | IEA Report
[45]. Global Electrocatalysis Alliance. Roadmap for industrial-scale CO₂ electrolysis. Joule, 2024, 8(1), 1-15. DOI:10.1016/j.joule.2023.11.013