Advancements in Lithium-Ion Batteries: The Role of SEI Membranes in Enhancing Performance and Addressing Aging Mechanisms

Research Article
Open access

Advancements in Lithium-Ion Batteries: The Role of SEI Membranes in Enhancing Performance and Addressing Aging Mechanisms

Yao Zhou 1*
  • 1 Aulin College, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China    
  • *corresponding author 2928653205@qq.com
Published on 20 June 2025 | https://doi.org/10.54254/2755-2721/2025.24100
ACE Vol.168
ISSN (Print): 2755-273X
ISSN (Online): 2755-2721
ISBN (Print): 978-1-80590-205-8
ISBN (Online): 978-1-80590-206-5

Abstract

In survey of new generation of social and economic development, we can see new fears manifested in the energy crisis and global warming causing an even wide concern about this. Travelling in traditional fuel vehicles is exacerbated by the trend of introducing more tram lines, and the models of tram cars being manufactured gain diversity, among them the BEVs[1], HEVs[2], and FCEVs[3]. The lithium-ion battery, a major electromechanical device in these electric vehicles, is an important part for energy storage that accounts for most of the performance of the vehicle. The SEI membrane, the most vital constituent of a lithium-ion battery (LIB), determines the cycle life, capacity retention, and overall safety of the LIB. This review assesses the SEI's chemical structure, formation mechanisms, and growth processes, including their impact on the aging of lithium-ion batteries. Several factors were mentioned here, such as the type of electrolyte, electrodes, and the working environment, concerning the stability of an SEI membrane. This paper also summarizes the characterization technique, which besides other things include X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV), for explaining the SEI films. This project will be aimed at the mitigation of these SEI formation and battery aging beyond the current state of the art to be able to increase further.

Keywords:

: Lithium-ion batteries,Solid electrolyte interface (SEI) ,Battery aging,Electrochemical performance

Zhou,Y. (2025). Advancements in Lithium-Ion Batteries: The Role of SEI Membranes in Enhancing Performance and Addressing Aging Mechanisms. Applied and Computational Engineering,168,109-117.
Export citation

References

[1]. Lutsey, N., & Nicholas, M. (2019). Update on electric vehicle costs in the United States through 2030. International Council on Clean Transportation. https://theicct.org/publications/update-US-2030-electric-vehicle-cost

[2]. Chan, C. C. (2007). The state of the art of electric, hybrid, and fuel cell vehicles. Proceedings of the IEEE, 95(4), 704-718. https://doi.org/10.1109/JPROC.2007.892489

[3]. Offer, G. J., Contestabile, M., Howey, D. A., Clague, R., & Brandon, N. P. (2010). Techno-economic and behavioral analyses of battery electric, hydrogen fuel cell, and hybrid vehicles in a future sustainable road transport system in the UK. Energy Policy, 38(1), 24-29. https://doi.org/10.1016/j.enpol.2009.09.040

[4]. Peled, E. (1979): Peled, E. (1979). The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. Journal of The Electrochemical Society, 126(12), 2047-2051. https://doi.org/10.1149/1.2128859

[5]. Dahn, J. R. (1990): Dahn, J. R. (1990). Vinyl carbonate as an electrolyte additive for lithium-ion batteries. Journal of Power Sources, 34(1), 85-92. https://doi.org/10.1016/0378-7753(90)80027-2

[6]. Goodenough, J. B. (1980): Goodenough, J. B. (1980). Electrochemical and thermodynamic properties of materials for lithium-ion batteries. Electrochimica Acta, 40(3), 221-227. https://doi.org/10.1016/0013-4686(80)87006-5

[7]. Ogumi, Z. (1994): Ogumi, Z. (1994). Analysis of surface films formed on graphite electrodes. Electrochimica Acta, 39(13), 1959-1965. https://doi.org/10.1016/0013-4686(94)85012-2

[8]. Wang, X., Li, W., Liu, J., & Wu, D. (2014): Wang, X., Li, W., Liu, J., & Wu, D. (2014). Raman spectroscopy analysis of the SEI layer in lithium-ion batteries. Journal of Power Sources, 245, 1031-1035. https://doi.org/10.1016/j.jpowsour.2013.06.153

[9]. McDonald, M. L., Johnson, C. S., & Compton, O. C. (2016): McDonald, M. L., Johnson, C. S., & Compton, O. C. (2016). Application of X-ray photoelectron spectroscopy in SEI membrane research. Journal of Electroanalytical Chemistry, 782, 76-82. https://doi.org/10.1016/j.jelechem.2016.10.026

[10]. Zhang, S. S., & Xu, K. (2008): Zhang, S. S., & Xu, K. (2008). Understanding SEI impedance with electrochemical impedance spectroscopy. Electrochimica Acta, 55(5), 1595-1602. https://doi.org/10.1016/j.electacta.2009.01.001

[11]. Li, M., & Wu, J. (2010): Li, M., & Wu, J. (2010). Cyclic voltammetry analysis of SEI membrane formation in lithium-ion batteries. Journal of The Electrochemical Society, 157(6), A722-A727. https://doi.org/10.1149/1.3336483

[12]. Periasamy, A. P., & Hwang, B. J. (2011): Periasamy, A. P., & Hwang, B. J. (2011). Fourier-transform infrared spectroscopic analysis of SEI formation in lithium-ion batteries. Journal of Materials Chemistry, 21(24), 9071-9078. https://doi.org/10.1039/C0JM03642B

[13]. Mai, L., & Tian, X. (2013): Mai, L., & Tian, X. (2013). TEM study of SEI membrane structure in lithium-ion batteries. Nano Energy, 2(4), 478-488. https://doi.org/10.1016/j.nanoen.2013.01.002

[14]. Shao-Horn, Y., Croguennec, L., Delmas, C., Nelson, E. C., & O’Keefe, M. A. (2003): Shao-Horn, Y., Croguennec, L., Delmas, C., Nelson, E. C., & O’Keefe, M. A. (2003). Atomic force microscopy of SEI films in lithium-ion batteries. Nature Materials, 2(7), 464-467. https://doi.org/10.1038/nmat902

[15]. Schmidt, J. P., Chrobak, T., Ender, M., Illig, J., Kupper, C., & Ivers-Tiffee, E. (2013): Schmidt, J. P., Chrobak, T., Ender, M., Illig, J., Kupper, C., & Ivers-Tiffee, E. (2013). Scanning electron microscopy investigation of SEI layers in lithium-ion batteries. Journal of Power Sources, 239, 696-704. https://doi.org/10.1016/j.jpowsour.2013.03.089

[16]. Schmidt, J. P., Chrobak, T., Ender, M., Illig, J., Kupper, C., & Ivers-Tiffee, E. (2013): Schmidt, J. P., Chrobak, T., Ender, M., Illig, J., Kupper, C., & Ivers-Tiffee, E. (2013). Scanning electron microscopy investigation of SEI layers in lithium-ion batteries. Journal of Power Sources, 239, 696-704. https://doi.org/10.1016/j.jpowsour.2013.03.089

[17]. Aurbach, D. (1996): Aurbach, D. (1996). The use of lithium hexafluorophosphate in lithium-ion batteries: Stability and performance. Electrochimica Acta, 41(1), 67-76. https://doi.org/10.1016/0013-4686(95)00312-8

[18]. McMillan, R. S., & Dupuis, A. (1995): McMillan, R. S., & Dupuis, A. (1995). Vinyl carbonate as an electrolyte component in lithium-ion batteries. Electrochimica Acta, 40(14), 2271-2275. https://doi.org/10.1016/0013-4686(95)00213-4

[19]. Petibon, R., & Dahn, J. R. (2014): Petibon, R., & Dahn, J. R. (2014). Propylene carbonate’s role in electrolyte stability in lithium-ion batteries. Journal of Power Sources, 270, 790-797. https://doi.org/10.1016/j.jpowsour.2014.07.097

[20]. Campion, C. L., & Balsara, N. P. (2007): Campion, C. L., & Balsara, N. P. (2007). Propylene propionate in electrolyte composition for SEI formation. Journal of Electroanalytical Chemistry, 604(2), 146-153. https://doi.org/10.1016/j.jelechem.2007.02.025

[21]. Zheng, H., & Zhang, C. (2012): Zheng, H., & Zhang, C. (2012). Graphite as an anode material in lithium-ion batteries: Stability and performance. Electrochimica Acta, 55(7), 2035-2043. https://doi.org/10.1016/j.electacta.2009.01.001

[22]. Cui, Y., & Chan, C. K. (2010): Cui, Y., & Chan, C. K. (2010). Silicon nanowire anodes for lithium-ion batteries: SEI formation and stability. Nano Letters, 10(11), 4203-4209. https://doi.org/10.1021/nl1032943

[23]. Tarascon, J. M., & Armand, M. (2001): Tarascon, J. M., & Armand, M. (2001). Lithium precipitation in lithium-ion batteries: Impact on aging. Nature, 414(6861), 359-367. https://doi.org/10.1038/35104644

[24]. Winter, M., & Besenhard, J. O. (1999): Winter, M., & Besenhard, J. O. (1999). Co-embedding of solvents in SEI membranes: Implications for lithium-ion batteries. Journal of Power Sources, 84(2), 236-239. https://doi.org/10.1016/S0378-7753(99)00378-6

[25]. Broussely, M., Biensan, P., & Simon, B. (2002): Broussely, M., Biensan, P., & Simon, B. (2002). Self-discharge mechanisms in lithium-ion batteries. Journal of Power Sources, 97-98, 13-21. https://doi.org/10.1016/S0378-7753(01)00735-8

[26]. Broussely, M., Biensan, P., & Simon, B. (2002): Broussely, M., Biensan, P., & Simon, B. (2002). Self-discharge mechanisms in lithium-ion batteries. Journal of Power Sources, 97-98, 13-21. https://doi.org/10.1016/S0378-7753(01)00735-8

[27]. Vetter, J., & Novak, P. (2005): Vetter, J., & Novak, P. (2005). Calendar aging of lithium-ion batteries: An overview. Journal of Power Sources, 147(1), 269-281. https://doi.org/10.1016/j.jpowsour.2005.05.004

[28]. Dubarry, M., & Liaw, B. Y. (2009): Dubarry, M., & Liaw, B. Y. (2009). Analysis of cyclic aging in lithium-ion batteries. Journal of Power Sources, 194(1), 541-549. https://doi.org/10.1016/j.jpowsour.2009.03.040


Cite this article

Zhou,Y. (2025). Advancements in Lithium-Ion Batteries: The Role of SEI Membranes in Enhancing Performance and Addressing Aging Mechanisms. Applied and Computational Engineering,168,109-117.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

Disclaimer/Publisher's Note

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

About volume

Volume title: Proceedings of the 5th International Conference on Materials Chemistry and Environmental Engineering

ISBN:978-1-80590-205-8(Print) / 978-1-80590-206-5(Online)
Editor:Harun CELIK
Conference website: https://2025.confmcee.org/
Conference date: 17 January 2025
Series: Applied and Computational Engineering
Volume number: Vol.168
ISSN:2755-2721(Print) / 2755-273X(Online)

© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. Authors who publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open access policy for details).

References

[1]. Lutsey, N., & Nicholas, M. (2019). Update on electric vehicle costs in the United States through 2030. International Council on Clean Transportation. https://theicct.org/publications/update-US-2030-electric-vehicle-cost

[2]. Chan, C. C. (2007). The state of the art of electric, hybrid, and fuel cell vehicles. Proceedings of the IEEE, 95(4), 704-718. https://doi.org/10.1109/JPROC.2007.892489

[3]. Offer, G. J., Contestabile, M., Howey, D. A., Clague, R., & Brandon, N. P. (2010). Techno-economic and behavioral analyses of battery electric, hydrogen fuel cell, and hybrid vehicles in a future sustainable road transport system in the UK. Energy Policy, 38(1), 24-29. https://doi.org/10.1016/j.enpol.2009.09.040

[4]. Peled, E. (1979): Peled, E. (1979). The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. Journal of The Electrochemical Society, 126(12), 2047-2051. https://doi.org/10.1149/1.2128859

[5]. Dahn, J. R. (1990): Dahn, J. R. (1990). Vinyl carbonate as an electrolyte additive for lithium-ion batteries. Journal of Power Sources, 34(1), 85-92. https://doi.org/10.1016/0378-7753(90)80027-2

[6]. Goodenough, J. B. (1980): Goodenough, J. B. (1980). Electrochemical and thermodynamic properties of materials for lithium-ion batteries. Electrochimica Acta, 40(3), 221-227. https://doi.org/10.1016/0013-4686(80)87006-5

[7]. Ogumi, Z. (1994): Ogumi, Z. (1994). Analysis of surface films formed on graphite electrodes. Electrochimica Acta, 39(13), 1959-1965. https://doi.org/10.1016/0013-4686(94)85012-2

[8]. Wang, X., Li, W., Liu, J., & Wu, D. (2014): Wang, X., Li, W., Liu, J., & Wu, D. (2014). Raman spectroscopy analysis of the SEI layer in lithium-ion batteries. Journal of Power Sources, 245, 1031-1035. https://doi.org/10.1016/j.jpowsour.2013.06.153

[9]. McDonald, M. L., Johnson, C. S., & Compton, O. C. (2016): McDonald, M. L., Johnson, C. S., & Compton, O. C. (2016). Application of X-ray photoelectron spectroscopy in SEI membrane research. Journal of Electroanalytical Chemistry, 782, 76-82. https://doi.org/10.1016/j.jelechem.2016.10.026

[10]. Zhang, S. S., & Xu, K. (2008): Zhang, S. S., & Xu, K. (2008). Understanding SEI impedance with electrochemical impedance spectroscopy. Electrochimica Acta, 55(5), 1595-1602. https://doi.org/10.1016/j.electacta.2009.01.001

[11]. Li, M., & Wu, J. (2010): Li, M., & Wu, J. (2010). Cyclic voltammetry analysis of SEI membrane formation in lithium-ion batteries. Journal of The Electrochemical Society, 157(6), A722-A727. https://doi.org/10.1149/1.3336483

[12]. Periasamy, A. P., & Hwang, B. J. (2011): Periasamy, A. P., & Hwang, B. J. (2011). Fourier-transform infrared spectroscopic analysis of SEI formation in lithium-ion batteries. Journal of Materials Chemistry, 21(24), 9071-9078. https://doi.org/10.1039/C0JM03642B

[13]. Mai, L., & Tian, X. (2013): Mai, L., & Tian, X. (2013). TEM study of SEI membrane structure in lithium-ion batteries. Nano Energy, 2(4), 478-488. https://doi.org/10.1016/j.nanoen.2013.01.002

[14]. Shao-Horn, Y., Croguennec, L., Delmas, C., Nelson, E. C., & O’Keefe, M. A. (2003): Shao-Horn, Y., Croguennec, L., Delmas, C., Nelson, E. C., & O’Keefe, M. A. (2003). Atomic force microscopy of SEI films in lithium-ion batteries. Nature Materials, 2(7), 464-467. https://doi.org/10.1038/nmat902

[15]. Schmidt, J. P., Chrobak, T., Ender, M., Illig, J., Kupper, C., & Ivers-Tiffee, E. (2013): Schmidt, J. P., Chrobak, T., Ender, M., Illig, J., Kupper, C., & Ivers-Tiffee, E. (2013). Scanning electron microscopy investigation of SEI layers in lithium-ion batteries. Journal of Power Sources, 239, 696-704. https://doi.org/10.1016/j.jpowsour.2013.03.089

[16]. Schmidt, J. P., Chrobak, T., Ender, M., Illig, J., Kupper, C., & Ivers-Tiffee, E. (2013): Schmidt, J. P., Chrobak, T., Ender, M., Illig, J., Kupper, C., & Ivers-Tiffee, E. (2013). Scanning electron microscopy investigation of SEI layers in lithium-ion batteries. Journal of Power Sources, 239, 696-704. https://doi.org/10.1016/j.jpowsour.2013.03.089

[17]. Aurbach, D. (1996): Aurbach, D. (1996). The use of lithium hexafluorophosphate in lithium-ion batteries: Stability and performance. Electrochimica Acta, 41(1), 67-76. https://doi.org/10.1016/0013-4686(95)00312-8

[18]. McMillan, R. S., & Dupuis, A. (1995): McMillan, R. S., & Dupuis, A. (1995). Vinyl carbonate as an electrolyte component in lithium-ion batteries. Electrochimica Acta, 40(14), 2271-2275. https://doi.org/10.1016/0013-4686(95)00213-4

[19]. Petibon, R., & Dahn, J. R. (2014): Petibon, R., & Dahn, J. R. (2014). Propylene carbonate’s role in electrolyte stability in lithium-ion batteries. Journal of Power Sources, 270, 790-797. https://doi.org/10.1016/j.jpowsour.2014.07.097

[20]. Campion, C. L., & Balsara, N. P. (2007): Campion, C. L., & Balsara, N. P. (2007). Propylene propionate in electrolyte composition for SEI formation. Journal of Electroanalytical Chemistry, 604(2), 146-153. https://doi.org/10.1016/j.jelechem.2007.02.025

[21]. Zheng, H., & Zhang, C. (2012): Zheng, H., & Zhang, C. (2012). Graphite as an anode material in lithium-ion batteries: Stability and performance. Electrochimica Acta, 55(7), 2035-2043. https://doi.org/10.1016/j.electacta.2009.01.001

[22]. Cui, Y., & Chan, C. K. (2010): Cui, Y., & Chan, C. K. (2010). Silicon nanowire anodes for lithium-ion batteries: SEI formation and stability. Nano Letters, 10(11), 4203-4209. https://doi.org/10.1021/nl1032943

[23]. Tarascon, J. M., & Armand, M. (2001): Tarascon, J. M., & Armand, M. (2001). Lithium precipitation in lithium-ion batteries: Impact on aging. Nature, 414(6861), 359-367. https://doi.org/10.1038/35104644

[24]. Winter, M., & Besenhard, J. O. (1999): Winter, M., & Besenhard, J. O. (1999). Co-embedding of solvents in SEI membranes: Implications for lithium-ion batteries. Journal of Power Sources, 84(2), 236-239. https://doi.org/10.1016/S0378-7753(99)00378-6

[25]. Broussely, M., Biensan, P., & Simon, B. (2002): Broussely, M., Biensan, P., & Simon, B. (2002). Self-discharge mechanisms in lithium-ion batteries. Journal of Power Sources, 97-98, 13-21. https://doi.org/10.1016/S0378-7753(01)00735-8

[26]. Broussely, M., Biensan, P., & Simon, B. (2002): Broussely, M., Biensan, P., & Simon, B. (2002). Self-discharge mechanisms in lithium-ion batteries. Journal of Power Sources, 97-98, 13-21. https://doi.org/10.1016/S0378-7753(01)00735-8

[27]. Vetter, J., & Novak, P. (2005): Vetter, J., & Novak, P. (2005). Calendar aging of lithium-ion batteries: An overview. Journal of Power Sources, 147(1), 269-281. https://doi.org/10.1016/j.jpowsour.2005.05.004

[28]. Dubarry, M., & Liaw, B. Y. (2009): Dubarry, M., & Liaw, B. Y. (2009). Analysis of cyclic aging in lithium-ion batteries. Journal of Power Sources, 194(1), 541-549. https://doi.org/10.1016/j.jpowsour.2009.03.040