References
[1]. Jordan, B. R. (2019). Collecting field data in volcanic landscapes using small UAS (sUAS)/drones. Journal of Volcanology and Geothermal Research, 385, 231–241.
[2]. Mammarella, M., & Capello, E. (2018). A Tube-based Robust MPC for a Fixed-wing UAV: an Application for Precision Farming. arXiv (Cornell University).
[3]. Jiang, J., Atkinson, P. M., Zhang, J., Lu, R., Zhou, Y., Cao, Q., Tian, Y., Zhu, Y., Cao, W., & Liu, X. (2022). Combining fixed-wing UAV multispectral imagery and machine learning to diagnose winter wheat nitrogen status at the farm scale. European Journal of Agronomy, 138, 126537. https://doi.org/10.1016/j.eja.2022.126537
[4]. Gopalakrishnan, R., Ramakrishnan, N. R. R., Dennis, B. P. R., & Kuzhanthai, A. S. L. (2021). Performance study and analysis of an UAV airfoil at a Low Reynolds number. In Smart innovation, systems and technologies (pp. 107–113).
[5]. Nakhchi, M., Naung, S. W., & Rahmati, M. (2021). High-resolution direct numerical simulations of flow structure and aerodynamic performance of wind turbine airfoil at wide range of Reynolds numbers. Energy, 225, 120261. https://doi.org/10.1016/j.energy.2021.120261
[6]. Nakhchi, M., Naung, S. W., & Rahmati, M. (2021). High-resolution direct numerical simulations of flow structure and aerodynamic performance of wind turbine airfoil at wide range of Reynolds numbers. Energy, 225, 120261. https://doi.org/10.1016/j.energy.2021.120261
[7]. Nakhchi, M., Naung, S. W., & Rahmati, M. (2021). High-resolution direct numerical simulations of flow structure and aerodynamic performance of wind turbine airfoil at wide range of Reynolds numbers. Energy, 225, 120261. https://doi.org/10.1016/j.energy.2021.120261
[8]. Johnson, J. P., Iaccarino, G., Chen, K., & Khalighi, B. (2014). Simulations of high Reynolds number air flow over the NACA-0012 airfoil using the immersed boundary method. Journal of Fluids Engineering, 136(4). https://doi.org/10.1115/1.4026475
[9]. Brunner, C. E., Kiefer, J., Hansen, M. O. L., & Hultmark, M. (2021). Study of Reynolds number effects on the aerodynamics of a moderately thick airfoil using a high-pressure wind tunnel. Experiments in Fluids, 62(8). https://doi.org/10.1007/s00348-021-03267-8
[10]. He, W., Gioria, R. S., Pérez, J. M., & Theofilis, V. (2016). Linear instability of low Reynolds number massively separated flow around three NACA airfoils. Journal of Fluid Mechanics, 811, 701–741. https://doi.org/10.1017/jfm.2016.778
[11]. Cary, A. W., Chawner, J., Duque, E. P., Gropp, W., Kleb, W. L., Kolonay, R. M., Nielsen, E., & Smith, B. (2021). CFD Vision 2030 Road Map: Progress and Perspectives. AIAA AVIATION 2021 FORUM. https://doi.org/10.2514/6.2021-2726
[12]. Shabur, A., Hasan, A., & Ali, M. (2020). Comparison of Aerodynamic Behaviour between NACA 0018 and NACA 0012 Airfoils at Low Reynolds Number Through CFD Analysis. Zenodo (CERN European Organization for Nuclear Research).
[13]. Loutun, M. J. T., Didane, D. H., Batcha, M. F. M., Abdullah, K., Ali, M. F. M., Mohammed, A. N., & Afolabi, L. O. (2021). 2D CFD simulation study on the performance of various NACA airfoils. CFD Letters, 13(4), 38–50. https://doi.org/10.37934/cfdl.13.4.3850
[14]. Spalart, P. R., & Garbaruk, A. V. (2020). Correction to the Spalart–Allmaras turbulence model, providing more accurate skin friction. AIAA Journal, 58(5), 1903–1905. https://doi.org/10.2514/1.j059489
[15]. Jacobs, E. N., & Sherman, A. (1937). Airfoil section characteristics as affected by variations of the Reynolds number. NACA Technical Report, 586(1), 227-267.
[16]. Timmer, W. (2008). Two-Dimensional Low-Reynolds Number wind tunnel results for Airfoil NACA 0018. Wind Engineering, 32(6), 525–537.
[17]. Hassan, G. E., Hassan, A., & Youssef, M. E. (2014). Numerical investigation of medium range re number aerodynamics characteristics for NACA0018 airfoil. CFD letters, 6(4), 175-187.
Cite this article
Wang,Y.;Wen,X. (2025). Aerodynamic Characteristics of NACA 0018 Based on CFD Method at Low Reynolds Number. Applied and Computational Engineering,168,45-54.
Data availability
The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.
Disclaimer/Publisher's Note
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
About volume
Volume title: Proceedings of the 5th International Conference on Materials Chemistry and Environmental Engineering
© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license. Authors who
publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons
Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this
series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published
version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial
publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and
during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See
Open access policy for details).
References
[1]. Jordan, B. R. (2019). Collecting field data in volcanic landscapes using small UAS (sUAS)/drones. Journal of Volcanology and Geothermal Research, 385, 231–241.
[2]. Mammarella, M., & Capello, E. (2018). A Tube-based Robust MPC for a Fixed-wing UAV: an Application for Precision Farming. arXiv (Cornell University).
[3]. Jiang, J., Atkinson, P. M., Zhang, J., Lu, R., Zhou, Y., Cao, Q., Tian, Y., Zhu, Y., Cao, W., & Liu, X. (2022). Combining fixed-wing UAV multispectral imagery and machine learning to diagnose winter wheat nitrogen status at the farm scale. European Journal of Agronomy, 138, 126537. https://doi.org/10.1016/j.eja.2022.126537
[4]. Gopalakrishnan, R., Ramakrishnan, N. R. R., Dennis, B. P. R., & Kuzhanthai, A. S. L. (2021). Performance study and analysis of an UAV airfoil at a Low Reynolds number. In Smart innovation, systems and technologies (pp. 107–113).
[5]. Nakhchi, M., Naung, S. W., & Rahmati, M. (2021). High-resolution direct numerical simulations of flow structure and aerodynamic performance of wind turbine airfoil at wide range of Reynolds numbers. Energy, 225, 120261. https://doi.org/10.1016/j.energy.2021.120261
[6]. Nakhchi, M., Naung, S. W., & Rahmati, M. (2021). High-resolution direct numerical simulations of flow structure and aerodynamic performance of wind turbine airfoil at wide range of Reynolds numbers. Energy, 225, 120261. https://doi.org/10.1016/j.energy.2021.120261
[7]. Nakhchi, M., Naung, S. W., & Rahmati, M. (2021). High-resolution direct numerical simulations of flow structure and aerodynamic performance of wind turbine airfoil at wide range of Reynolds numbers. Energy, 225, 120261. https://doi.org/10.1016/j.energy.2021.120261
[8]. Johnson, J. P., Iaccarino, G., Chen, K., & Khalighi, B. (2014). Simulations of high Reynolds number air flow over the NACA-0012 airfoil using the immersed boundary method. Journal of Fluids Engineering, 136(4). https://doi.org/10.1115/1.4026475
[9]. Brunner, C. E., Kiefer, J., Hansen, M. O. L., & Hultmark, M. (2021). Study of Reynolds number effects on the aerodynamics of a moderately thick airfoil using a high-pressure wind tunnel. Experiments in Fluids, 62(8). https://doi.org/10.1007/s00348-021-03267-8
[10]. He, W., Gioria, R. S., Pérez, J. M., & Theofilis, V. (2016). Linear instability of low Reynolds number massively separated flow around three NACA airfoils. Journal of Fluid Mechanics, 811, 701–741. https://doi.org/10.1017/jfm.2016.778
[11]. Cary, A. W., Chawner, J., Duque, E. P., Gropp, W., Kleb, W. L., Kolonay, R. M., Nielsen, E., & Smith, B. (2021). CFD Vision 2030 Road Map: Progress and Perspectives. AIAA AVIATION 2021 FORUM. https://doi.org/10.2514/6.2021-2726
[12]. Shabur, A., Hasan, A., & Ali, M. (2020). Comparison of Aerodynamic Behaviour between NACA 0018 and NACA 0012 Airfoils at Low Reynolds Number Through CFD Analysis. Zenodo (CERN European Organization for Nuclear Research).
[13]. Loutun, M. J. T., Didane, D. H., Batcha, M. F. M., Abdullah, K., Ali, M. F. M., Mohammed, A. N., & Afolabi, L. O. (2021). 2D CFD simulation study on the performance of various NACA airfoils. CFD Letters, 13(4), 38–50. https://doi.org/10.37934/cfdl.13.4.3850
[14]. Spalart, P. R., & Garbaruk, A. V. (2020). Correction to the Spalart–Allmaras turbulence model, providing more accurate skin friction. AIAA Journal, 58(5), 1903–1905. https://doi.org/10.2514/1.j059489
[15]. Jacobs, E. N., & Sherman, A. (1937). Airfoil section characteristics as affected by variations of the Reynolds number. NACA Technical Report, 586(1), 227-267.
[16]. Timmer, W. (2008). Two-Dimensional Low-Reynolds Number wind tunnel results for Airfoil NACA 0018. Wind Engineering, 32(6), 525–537.
[17]. Hassan, G. E., Hassan, A., & Youssef, M. E. (2014). Numerical investigation of medium range re number aerodynamics characteristics for NACA0018 airfoil. CFD letters, 6(4), 175-187.