References
[1]. Water Overview: Development news, research, data | World Bank. https://www.worldbank.org/en/topic/water/overview (accessed 2024-07-20).
[2]. Huang, Y.; Zhang, J.; Ren, Z.; Xiang, W.; Sifat, I.; Zhang, W.; Zhu, J.; Li, B. Next Generation Decentralized Water Systems: A Water-Energy-Infrastructure-Human Nexus (WEIHN) Approach. Environ. Sci. Water Res. Technol. 2023, 9 (10), 2446–2471. https://doi.org/10.1039/D3EW00506B.
[3]. van Duuren, D.; van Alphen, H.-J.; Koop, S. H. A.; de Bruin, E. Potential Transformative Changes in Water Provision Systems: Impact of Decentralised Water Systems on Centralised Water Supply Regime. Water 2019, 11 (8), 1709. https://doi.org/10.3390/w11081709.
[4]. Lu, S.; Pei, L.; Bai, X. Study on Method of Domestic Wastewater Treatment through New-Type Multi-Layer Artificial Wetland. Int. J. Hydrog. Energy 2015, 40 (34), 11207–11214. https://doi.org/10.1016/j.ijhydene.2015.05.165.
[5]. Philip, L.; Ramprasad, C.; Krithika, D. Sustainable Wastewater Management Through Decentralized Systems: Case Studies. In Water Scarcity and Ways to Reduce the Impact: Management Strategies and Technologies for Zero Liquid Discharge and Future Smart Cities; Pannirselvam, M., Shu, L., Griffin, G., Philip, L., Natarajan, A., Hussain, S., Eds.; Springer International Publishing: Cham, 2019; pp 15–45. https://doi.org/10.1007/978-3-319-75199-3_2.
[6]. Zheng, Y.; Wang, X. C.; Dzakpasu, M.; Ge, Y.; Zhao, Y.; Xiong, J. Performance of a Pilot Demonstration-Scale Hybrid Constructed Wetland System for on-Site Treatment of Polluted Urban River Water in Northwestern China. Environ. Sci. Pollut. Res. 2016, 23 (1), 447–454. https://doi.org/10.1007/s11356-015-5207-y.
[7]. Chinese emission standards.Ministry of Ecological Environment of the People's Republic of China. https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/shjbh/swrwpfbz/199801/t19980101_66568.shtml (accessed 2024-08-17).
[8]. Yadav, R. K.; Chiranjeevi, P.; Sukrampal; Patil, S. A. Integrated Drip Hydroponics-Microbial Fuel Cell System for Wastewater Treatment and Resource Recovery. Bioresour. Technol. Rep. 2020, 9, 100392. https://doi.org/10.1016/j.biteb.2020.100392.
[9]. Yadav, R. K.; Sahoo, S.; Patil, S. A. Performance Evaluation of the Integrated Hydroponics-Microbial Electrochemical Technology (iHydroMET) for Decentralized Domestic Wastewater Treatment. Chemosphere 2022, 288, 132514. https://doi.org/10.1016/j.chemosphere.2021.132514.
[10]. Zhang, Q.; Wang, X.; Liang, R.; Xie, J.; Zhou, M. A Pilot Scale of Electrochemical Integrated Treatment Technology and Equipment Driven by Solar Energy for Decentralized Domestic Sewage Treatment. Chemosphere 2023, 340, 139991. https://doi.org/10.1016/j.chemosphere.2023.139991.
[11]. Sirés, I.; Brillas, E.; Oturan, M. A.; Rodrigo, M. A.; Panizza, M. Electrochemical Advanced Oxidation Processes: Today and Tomorrow. A Review. Environ. Sci. Pollut. Res. 2014, 21 (14), 8336–8367. https://doi.org/10.1007/s11356-014-2783-1.
[12]. Wang, C.-N.; Nguyen, T. T. T.; Dang, T.-T.; Hsu, H.-P. Exploring Economic and Environmental Efficiency in Renewable Energy Utilization: A Case Study in the Organization for Economic Cooperation and Development Countries. Environ. Sci. Pollut. Res. 2023, 30 (28), 72949–72965. https://doi.org/10.1007/s11356-023-27408-0.
[13]. Cheng, H.; Lee, W.; Wen, C.; Dai, H.; Cheng, F.; Lu, X. A Sustainable Integrated Anoxic/Aerobic Bio-Contactor Process for Simultaneously in-Situ Deodorization and Pollutants Removal from Decentralized Domestic Sewage. Heliyon 2023, 9 (11), e22339. https://doi.org/10.1016/j.heliyon.2023.e22339.
[14]. Molecules | Free Full-Text | Optimising the Hydraulic Retention Time in a Pilot-Scale Microbial Electrolysis Cell to Achieve High Volumetric Treatment Rates Using Concentrated Domestic Wastewater. https://www.mdpi.com/1420-3049/25/12/2945 (accessed 2024-07-30).
[15]. Gong, W.; Liu, X.; Wang, J.; Zhao, Y.; Tang, X. A Gravity-Driven Membrane Bioreactor in Treating the Real Decentralized Domestic Wastewater: Flux Stability and Membrane Fouling. Chemosphere 2023, 334, 138948. https://doi.org/10.1016/j.chemosphere.2023.138948.
[16]. Liu, R.; Wang, L.; Yang, L.; Liu, Q.; Gao, Y.; Ye, J.; Xiao, J.; Hu, Q.; Zhang, X. Ultrafiltration and Microfiltration Membrane Performance, Cleaning, and Flux Recovery for Microalgal Harvesting. J. Appl. Phycol. 2020, 32 (5), 3101–3112. https://doi.org/10.1007/s10811-020-02204-2.
[17]. Zou, H.; Yang, X.; Zhu, J.; Wang, F.; Zeng, Z.; Xiang, C.; Huang, D.; Li, J.; Wang, R. Solar-Driven Scalable Hygroscopic Gel for Recycling Water from Passive Plant Transpiration and Soil Evaporation. Nat. Water 2024, 2 (7), 663–673. https://doi.org/10.1038/s44221-024-00265-y.
[18]. Liu, X.; Mishra, D. D.; Wang, X.; Peng, H.; Hu, C. Towards Highly Efficient Solar-Driven Interfacial Evaporation for Desalination. J. Mater. Chem. A 2020, 8 (35), 17907–17937. https://doi.org/10.1039/C9TA12612K.
[19]. Li, X.; Ren, B.; Kou, X.; Hou, Y.; Buque, A. L.; Gao, F. Recent Advances and Prospects of Constructed Wetlands in Cold Climates: A Review from 2013 to 2023. Environ. Sci. Pollut. Res. 2024, 31 (32), 44691–44716. https://doi.org/10.1007/s11356-024-34065-4.
[20]. Enhanced Wastewater Nutrients Removal in Vertical Subsurface Flow Constructed Wetland: Effect of Biochar Addition and Tidal Flow Operation. Chemosphere 2022, 286, 131742. https://doi.org/10.1016/j.chemosphere.2021.131742.
[21]. Ülgüdür, N.; Demirer, G. N. Anaerobic Treatability and Residual Biogas Potential of the Effluent Stream of Anaerobic Digestion Processes. Water Environ. Res. 2019, 91 (3), 259–268. https://doi.org/10.1002/wer.1048.
[22]. Hekmatnia, M.; Ardakani, A. F.; Isanezhad, A.; Monibi, H. A Novel Classification of Virtual Water Trade for the Sustainability of Global Freshwater Resources. Environ. Dev. Sustain. 2024, 26 (3), 7377–7408. https://doi.org/10.1007/s10668-023-03012-7.
Cite this article
Wang,R.;Chen,M. (2025). From Centralized to Decentralized: a Comparative Analysis of Six Decentralized Domestic Wastewater Treatment Technologies. Applied and Computational Engineering,168,99-108.
Data availability
The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.
Disclaimer/Publisher's Note
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
About volume
Volume title: Proceedings of the 5th International Conference on Materials Chemistry and Environmental Engineering
© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license. Authors who
publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons
Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this
series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published
version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial
publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and
during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See
Open access policy for details).
References
[1]. Water Overview: Development news, research, data | World Bank. https://www.worldbank.org/en/topic/water/overview (accessed 2024-07-20).
[2]. Huang, Y.; Zhang, J.; Ren, Z.; Xiang, W.; Sifat, I.; Zhang, W.; Zhu, J.; Li, B. Next Generation Decentralized Water Systems: A Water-Energy-Infrastructure-Human Nexus (WEIHN) Approach. Environ. Sci. Water Res. Technol. 2023, 9 (10), 2446–2471. https://doi.org/10.1039/D3EW00506B.
[3]. van Duuren, D.; van Alphen, H.-J.; Koop, S. H. A.; de Bruin, E. Potential Transformative Changes in Water Provision Systems: Impact of Decentralised Water Systems on Centralised Water Supply Regime. Water 2019, 11 (8), 1709. https://doi.org/10.3390/w11081709.
[4]. Lu, S.; Pei, L.; Bai, X. Study on Method of Domestic Wastewater Treatment through New-Type Multi-Layer Artificial Wetland. Int. J. Hydrog. Energy 2015, 40 (34), 11207–11214. https://doi.org/10.1016/j.ijhydene.2015.05.165.
[5]. Philip, L.; Ramprasad, C.; Krithika, D. Sustainable Wastewater Management Through Decentralized Systems: Case Studies. In Water Scarcity and Ways to Reduce the Impact: Management Strategies and Technologies for Zero Liquid Discharge and Future Smart Cities; Pannirselvam, M., Shu, L., Griffin, G., Philip, L., Natarajan, A., Hussain, S., Eds.; Springer International Publishing: Cham, 2019; pp 15–45. https://doi.org/10.1007/978-3-319-75199-3_2.
[6]. Zheng, Y.; Wang, X. C.; Dzakpasu, M.; Ge, Y.; Zhao, Y.; Xiong, J. Performance of a Pilot Demonstration-Scale Hybrid Constructed Wetland System for on-Site Treatment of Polluted Urban River Water in Northwestern China. Environ. Sci. Pollut. Res. 2016, 23 (1), 447–454. https://doi.org/10.1007/s11356-015-5207-y.
[7]. Chinese emission standards.Ministry of Ecological Environment of the People's Republic of China. https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/shjbh/swrwpfbz/199801/t19980101_66568.shtml (accessed 2024-08-17).
[8]. Yadav, R. K.; Chiranjeevi, P.; Sukrampal; Patil, S. A. Integrated Drip Hydroponics-Microbial Fuel Cell System for Wastewater Treatment and Resource Recovery. Bioresour. Technol. Rep. 2020, 9, 100392. https://doi.org/10.1016/j.biteb.2020.100392.
[9]. Yadav, R. K.; Sahoo, S.; Patil, S. A. Performance Evaluation of the Integrated Hydroponics-Microbial Electrochemical Technology (iHydroMET) for Decentralized Domestic Wastewater Treatment. Chemosphere 2022, 288, 132514. https://doi.org/10.1016/j.chemosphere.2021.132514.
[10]. Zhang, Q.; Wang, X.; Liang, R.; Xie, J.; Zhou, M. A Pilot Scale of Electrochemical Integrated Treatment Technology and Equipment Driven by Solar Energy for Decentralized Domestic Sewage Treatment. Chemosphere 2023, 340, 139991. https://doi.org/10.1016/j.chemosphere.2023.139991.
[11]. Sirés, I.; Brillas, E.; Oturan, M. A.; Rodrigo, M. A.; Panizza, M. Electrochemical Advanced Oxidation Processes: Today and Tomorrow. A Review. Environ. Sci. Pollut. Res. 2014, 21 (14), 8336–8367. https://doi.org/10.1007/s11356-014-2783-1.
[12]. Wang, C.-N.; Nguyen, T. T. T.; Dang, T.-T.; Hsu, H.-P. Exploring Economic and Environmental Efficiency in Renewable Energy Utilization: A Case Study in the Organization for Economic Cooperation and Development Countries. Environ. Sci. Pollut. Res. 2023, 30 (28), 72949–72965. https://doi.org/10.1007/s11356-023-27408-0.
[13]. Cheng, H.; Lee, W.; Wen, C.; Dai, H.; Cheng, F.; Lu, X. A Sustainable Integrated Anoxic/Aerobic Bio-Contactor Process for Simultaneously in-Situ Deodorization and Pollutants Removal from Decentralized Domestic Sewage. Heliyon 2023, 9 (11), e22339. https://doi.org/10.1016/j.heliyon.2023.e22339.
[14]. Molecules | Free Full-Text | Optimising the Hydraulic Retention Time in a Pilot-Scale Microbial Electrolysis Cell to Achieve High Volumetric Treatment Rates Using Concentrated Domestic Wastewater. https://www.mdpi.com/1420-3049/25/12/2945 (accessed 2024-07-30).
[15]. Gong, W.; Liu, X.; Wang, J.; Zhao, Y.; Tang, X. A Gravity-Driven Membrane Bioreactor in Treating the Real Decentralized Domestic Wastewater: Flux Stability and Membrane Fouling. Chemosphere 2023, 334, 138948. https://doi.org/10.1016/j.chemosphere.2023.138948.
[16]. Liu, R.; Wang, L.; Yang, L.; Liu, Q.; Gao, Y.; Ye, J.; Xiao, J.; Hu, Q.; Zhang, X. Ultrafiltration and Microfiltration Membrane Performance, Cleaning, and Flux Recovery for Microalgal Harvesting. J. Appl. Phycol. 2020, 32 (5), 3101–3112. https://doi.org/10.1007/s10811-020-02204-2.
[17]. Zou, H.; Yang, X.; Zhu, J.; Wang, F.; Zeng, Z.; Xiang, C.; Huang, D.; Li, J.; Wang, R. Solar-Driven Scalable Hygroscopic Gel for Recycling Water from Passive Plant Transpiration and Soil Evaporation. Nat. Water 2024, 2 (7), 663–673. https://doi.org/10.1038/s44221-024-00265-y.
[18]. Liu, X.; Mishra, D. D.; Wang, X.; Peng, H.; Hu, C. Towards Highly Efficient Solar-Driven Interfacial Evaporation for Desalination. J. Mater. Chem. A 2020, 8 (35), 17907–17937. https://doi.org/10.1039/C9TA12612K.
[19]. Li, X.; Ren, B.; Kou, X.; Hou, Y.; Buque, A. L.; Gao, F. Recent Advances and Prospects of Constructed Wetlands in Cold Climates: A Review from 2013 to 2023. Environ. Sci. Pollut. Res. 2024, 31 (32), 44691–44716. https://doi.org/10.1007/s11356-024-34065-4.
[20]. Enhanced Wastewater Nutrients Removal in Vertical Subsurface Flow Constructed Wetland: Effect of Biochar Addition and Tidal Flow Operation. Chemosphere 2022, 286, 131742. https://doi.org/10.1016/j.chemosphere.2021.131742.
[21]. Ülgüdür, N.; Demirer, G. N. Anaerobic Treatability and Residual Biogas Potential of the Effluent Stream of Anaerobic Digestion Processes. Water Environ. Res. 2019, 91 (3), 259–268. https://doi.org/10.1002/wer.1048.
[22]. Hekmatnia, M.; Ardakani, A. F.; Isanezhad, A.; Monibi, H. A Novel Classification of Virtual Water Trade for the Sustainability of Global Freshwater Resources. Environ. Dev. Sustain. 2024, 26 (3), 7377–7408. https://doi.org/10.1007/s10668-023-03012-7.