
Proceedings	of	CONF-CDS	2025	Symposium:	Data	Visualization	Methods	for	Evaluatio
DOI:	10.54254/2755-2721/2025.PO25411

©	2025	The	Authors.	This	is	an	open	access	article	distributed	under	the	terms	of	the	Creative	Commons	Attribution	License	4.0
(https://creativecommons.org/licenses/by/4.0/).

40

Optimization Implementation and Performance Analysis of
Divide-and-Conquer Algorithm Based on Python in Big Data

Sorting and Retrieval

Yixuan Zheng

Newcastle University, Newcastle, England
zhengyixuan0929@outlook.com

Abstract. This paper offers an in-depth look at divide-and-conquer algorithms, especially in
big data sorting and retrieval, with a particular focus on how these techniques are
implemented in Python. As data sizes grow and become more complex, having scalable
algorithms that are both efficient and flexible is more important than ever. Divide-and-
conquer approaches are naturally suited for this task because they break down problems into
smaller parts, making it easier to run tasks in parallel or across distributed systems—
something that's incredibly useful in big data projects. In our review, we explore recent
Python implementations of popular sorting algorithms like merge sort and quicksort. We
compare how they perform when using multiprocessing or hybrid methods. While Python
makes development straightforward and flexible, it also comes with some challenges—
things like the Global Interpreter Lock (GIL), recursion limits, and the overhead of
managing inter-process communication can impact performance. Our findings indicate that
merge sort tends to perform better than quicksort when it comes to using Python’s parallel
processing capabilities. Besides, tools like PySpark or Dask can help overcome certain
language-specific obstacles, making large-scale data processing more manageable. Overall,
this review provides practical guidance for researchers and engineers aiming to strike a good
balance between algorithm design and efficient implementation in systems that handle
massive amounts of data.

Keywords: Divide-and-conquer, Python, Big data, Sorting algorithms, Parallel computing,
Performance optimization

1. Introduction

1.1. Background and motivation

In today's data-driven environment, the fast expansion in data volume, variety, and processing speed
is revolutionizing how we handle, interpret, and use information. Many sectors — including
healthcare, finance, and environmental management — are increasingly dependent on large-scale
datasets, which heightens the need for scalable and efficient processing methods. As emphasized in
Song [1], big data analytics plays a critical role in revealing hidden patterns and supporting



Proceedings	of	CONF-CDS	2025	Symposium:	Data	Visualization	Methods	for	Evaluatio
DOI:	10.54254/2755-2721/2025.PO25411

41

decision-making in complex systems. To address this, innovative processing frameworks like
Apache Spark have emerged, offering enhanced parallelism and in-memory computing capabilities.
According to Shaikh [2], Spark delivers substantial performance gains for both batch and streaming
tasks compared to traditional Hadoop setups. These technological advancements emphasize the
critical importance of developing algorithms that are both theoretically sound and adaptable to
today's distributed environments. In this setting, divide-and-conquer algorithms become particularly
appealing—providing natural parallelism and modularity. Implemented using modern programming
tools like Python, these algorithms are well-suited to meet current data processing challenges.

1.2. Research gap

While sorting and retrieval algorithms have been extensively studied in classical computer science,
their performance and adaptability in large-scale, real-world data environments remain inadequately
explored. Traditional algorithmic analysis often focuses on theoretical complexity under idealized
conditions, yet practical scenarios involving massive, heterogeneous data introduce new constraints
such as memory bottlenecks, parallel execution overhead, and scalability limitations [2,3]. As noted
by Chen et al. [4], many statistical and machine learning tasks require scalable estimation
techniques, but few studies offer a unified perspective on their computational frameworks. Although
divide-and-conquer algorithms are generally a good fit for big problems, most of the research
doesn’t include detailed tests of how they actually perform when you try to put them into real code,
especially in common programming languages like Python. Yang [5] and Durrani [6] demonstrate
the potential and limitations of Python-based sorting, but a comprehensive synthesis of such works
is still missing. This disconnect underscores the requirements for a structured review bridging
algorithm theory, language implementation, and big data execution contexts.

1.3. Language focus

Python has become one of the most widely adopted languages in data science, machine learning, and
big data analytics, owing to its rich ecosystem of libraries, ease of use, and strong community
support. Tools such as NumPy, pandas, and multiprocessing provide accessible interfaces for
implementing and experimenting with algorithmic designs, including divide-and-conquer strategies.
However, Python is often criticized for performance limitations, particularly in CPU-bound tasks
such as sorting and recursion-heavy algorithms. Yang [7] demonstrates that parallel implementations
of merge sort using Python's multiprocessing module can yield substantial speedups under the right
configurations. In contrast, Durrani and AbdulHayan [6] reveal that Python's recursion model and
interpreter overhead may hinder the performance of quicksort-like algorithms, especially when
compared to Java. These findings suggest that while Python may not always match the raw speed of
lower-level languages, it offers a highly accessible environment for prototyping and evaluating
scalable algorithmic strategies—a key advantage in real-world big data scenarios.

1.4. Purpose of this review

Given these considerations, this paper aims to provide a comprehensive review of divide-and-
conquer algorithms applied to big data sorting and retrieval, with a particular emphasis on Python-
based implementations. The review focuses on three interrelated dimensions: (1) the evolution and
parallelization of divide-and-conquer algorithms in big data contexts; (2) the implementation
practices, challenges, and optimizations of such algorithms using Python; and (3) the comparative



Proceedings	of	CONF-CDS	2025	Symposium:	Data	Visualization	Methods	for	Evaluatio
DOI:	10.54254/2755-2721/2025.PO25411

42

performance and adaptability of sorting and retrieval techniques under large-scale data conditions.
This study doesn't introduce a brand new algorithm. Instead, it reviews what others have done,
pointing out common patterns, pros and cons, and areas where more research is needed. It’s meant to
give a clear starting point for future work.

2. Divide-and-conquer algorithms for big data processing

2.1. Theoretical foundations of divide-and-conquer algorithms

Divide-and-conquer is a common way to tackle tricky problems. It works by splitting the big
problem into smaller parts, solving each one on its own, and then putting everything back together.
This approach is well-known for its elegance and effectiveness in a wide range of computational
problems, including sorting, matrix multiplication, and geometric computation.

A canonical example is merge sort, which recursively divides an array into halves, sorts each half,
and then merges the sorted halves. This yields a time complexity of O(n log n), with a well-
structured recursive process that lends itself naturally to parallel execution.

Bentley [7] was the first to clearly describe how the divide-and-conquer approach works in
multiple dimensions. This method is more than good on paper; it’s also very practical for tackling
complex, high-dimensional geometric problems. Horowitz and Zorat [8] later analysed how divide-
and-conquer maps onto parallel architectures, showing that its modularity aligns well with
distributed or multicore computation models.

The key strength of divide-and-conquer lies in its inherent decomposition structure, which
enables:

• Independent subproblem execution (parallelism),
• Localized memory access (cache efficiency),
• Simplified reasoning about correctness and complexity.
These features make divide-and-conquer an attractive candidate for optimization in large-scale

data processing, especially in systems where data can be naturally partitioned or streamed.

2.2. Applicability of divide-and-conquer in big data processing

Divide-and-conquer algorithms work well with big data because they're made up of smaller,
manageable parts that can be processed at the same time. In large data tasks like sorting, searching,
or calculating statistics, the data is often split across multiple computers or processors. This
approach is so effective because each small piece can be handled independently, reducing the need
for constant communication between parts.

For instance, when you're sorting a huge dataset—like a terabyte of information—you can adapt
algorithms like merge sort to work in parallel. You can do this either on one machine with multiple
cores or across several machines using tools like Apache Spark. This way, each part is sorted
separately, which helps keep data close to where it’s processed and cuts down on unnecessary data
transfer, leading to faster overall performance [2,4].

As Zikri [3] and Chen et al. [4] have pointed out, many divide-and-conquer strategies perform
well on a large scale. They often beat traditional, single-block algorithms in speed. Plus, because
they're recursive—meaning they regularly break problems down into smaller pieces—they fit nicely
with frameworks like MapReduce, where the “divide” phase corresponds to the map step, and the
“combine” phase mirrors reduce operations.



Proceedings	of	CONF-CDS	2025	Symposium:	Data	Visualization	Methods	for	Evaluatio
DOI:	10.54254/2755-2721/2025.PO25411

43

Another advantage is that divide-and-conquer methods are not tied to any one specific platform.
You can write them in high-level languages like Python, then scale them up using multiprocessing or
run them on distributed systems like Spark, even for handling petabytes of data. This flexibility
makes them a top choice for optimizing algorithms in real-world big data setups.

3. Python-based implementation practices

3.1. Overview of Python’s role in big data

Python has become one of the top choices for data science, analytics, and machine learning. People
love it because it's easy to read, there's a huge range of libraries like NumPy, pandas, and scikit-
learn, and it has a very active community. In big data projects, Python often sits at a high level,
making it simple for researchers and engineers to try out ideas quickly, test new approaches, and
implement algorithms without getting stuck in complex details.

While Python is not the fastest language out there—especially when compared to compiled
languages like C++ or Java—it makes up for that with its flexibility and ability to work smoothly
with modern computing frameworks. For example, it integrates well with tools like Apache Spark
through PySpark, and libraries like multiprocessing, joblib, and Dask make parallel processing
easier.

These features have encouraged numerous implementations of divide-and-conquer algorithms in
Python, particularly for sorting and retrieval tasks. Researchers have used Python not only for
algorithm prototyping, but also to benchmark performance and test parallel strategies on multi-core
systems or distributed clusters.

3.2. Parallel implementation of mergesort

In her 2022 study, Yang [5] looked at different ways to speed up merge sort in Python. She mainly
tried using the multiprocessing module and MPI with mpi4py to make sorting big arrays faster. The
study showed that even though Python’s Global Interpreter Lock (GIL) can be a bit of an obstacle, it
can still boost performance by running tasks in parallel. Using multiprocessing to split jobs across
multiple CPU cores makes things run much faster.

Yang [5] tested out different versions of merge sort, including a cool hybrid approach that
combines multiprocessing with NumPy operations. When they ran this on a dataset of 10 million
integers, the hybrid method was up to 34 times faster than doing everything sequentially. It even
beat Python’s built-in sorted() by about 50%. These tests were done on Indiana University’s
Carbonate supercomputer, using up to 24 cores.

They also investigated some of the main challenges. While multiprocessing worked well on
systems where everything shares memory, its ability to scale was limited by the time it took to
communicate between processes and to serialize data [5]. Using MPI-based approaches allowed for
better scaling across multiple computers, but that came with more complexity in managing data and
needed more advanced setup.

Overall, Yang’s work shows that, if done carefully, using a divide-and-conquer approach to
sorting in Python can really make effective use of multiple CPU cores [5]. This is helpful for anyone
trying to find the right balance between making development easier and getting the best performance
when working with big data.



Proceedings	of	CONF-CDS	2025	Symposium:	Data	Visualization	Methods	for	Evaluatio
DOI:	10.54254/2755-2721/2025.PO25411

44

3.3. Python vs Java in sorting algorithms

While many appreciate Python for its simplicity and easy-to-read code, some folks worry about how
fast it runs compared to languages that are compiled, like Java. Back in 2022, researchers Durrani
and AbdulHayan [6] did a thorough test comparing how quickly different sorting algorithms—such
as quicksort, merge sort, insertion sort, selection sort, and bubble sort—performed when written in
Python versus Java. Their tests showed some big differences in how long things took to run in the
two languages. For instance, Java could sort 100,000 items in just about 0.112 seconds, while
Python took over 17 seconds for the same task. This slowdown in Python is mainly because of limits
on recursion stacks and the extra work the interpreter needs to do. On the flip side, merge sort
performed better in Python, taking around 2.69 seconds compared to quicksort’s 17.46 seconds,
making it a more practical choice for Python users [6].

The researchers explained these differences by pointing out how each language executes codes.
Java uses techniques like Just-In-Time (JIT) compilation and better memory management, which
helps boost performance, especially for tasks like sorting. Python, on the other hand, runs through an
interpreter and is affected by the Global Interpreter Lock (GIL), which can slow down CPU-heavy
tasks. That said, the study also emphasized that Python’s still a great option for quickly testing out
ideas and algorithms, especially when combined with tools like multiprocessing to run things in
parallel.

Overall, these findings show that when planning sorting methods or other performance-critical
tasks, it’s important to think about what the programming language is effective at and optimize
based on your specific environment [6].

4. Discussion

4.1. Practical limitations of Python implementations

Python provides handy tools for implementing divide-and-conquer algorithms, but it does have
some limitations, especially when working with large amounts of data or running multiple tasks at
the same time. One big obstacle is the Global Interpreter Lock (GIL), which stops true
multithreading in Python. This means that even CPU-heavy tasks like sorting can't take full
advantage of multi-core processors just by using threads. To do this efficiently, you need to use more
advanced approaches like multiprocessing or tools like joblib.

Moreover, Python imposes a limitation on recursion depth, and recursive calls are comparatively
costly due to the language's interpreted nature. This affects the efficacy of algorithms such as
quicksort, which depend significantly on extensive recursion. Durrani and AbdulHayan [6] indicated
that Python's quicksort was markedly slower than that of Java, mostly due to this factor.

Another issue is memory management. Python dynamically allocates objects unlike statically
typed languages, which causes overhead and less predictable rendering of trash collecting during
high throughput sorting operations. Multiprocessing clearly shows the communication overhead
since data must be serialised and sent across processes, therefore reducing performance.

Python's simplicity and adaptability help it to be constantly used despite these challenges.
Understanding these constraints is essential while deciding on Python as the platform for parallel or
high-performance algorithms implementation.



Proceedings	of	CONF-CDS	2025	Symposium:	Data	Visualization	Methods	for	Evaluatio
DOI:	10.54254/2755-2721/2025.PO25411

45

4.2. Summary of observations and trade-offs

The papers reviewed reveal some interesting trends about how divide-and-conquer methods are used
in Python to handle large-scale data sorting and retrieval. For starters, because merge sort tends to
have better recursion features and lower overhead [6], it often outperforms quicksort in Python.
Also, even multiprocessing provides considerable speedups, but its benefits diminish as inter-
process communication and data serialization introduce new bottlenecks [5].

These findings emphasize the many trade-offs that developers need to consider. Sometimes, they
must choose between keeping things simple or pushing for better performance. For example, Python
can’t match the raw speed of languages like Java, even though it’s easier to learn and has strong
library support. Similarly, while tools like NumPy or PySpark can help you complete tasks faster,
they might make it harder to fine-tune every detail or have precise control.

In the end, while divide-and-conquer approaches align well with ideas of parallel and distributed
computing, how well they work in practice really depends on implementation choices, programming
language features, and the platform you're working on. Picking the right algorithm for big data
projects means carefully weighing these trade-offs to make the best decision.

4.3. Implications for algorithm design in big data

The outcomes of this review suggest several design problems for the implementation of divide-and-
conquer techniques in applications of big data. First, programmers of algorithms must adapt their
implementations to the guidelines and limitations of the targeted platform. Python can struggle
somewhat with demanding duties like deep recursion or simultaneous operation of numerous
processes, even if it is user-friendly and makes it easy to get things done swiftly. That emphasises
the need to choose the right algorithms and implement them.

Second, split-and-conquer remains a potent and adaptable technique. However, it performs best
when the effort is evenly distributed and the issue can be resolved orderly. In the actual world, where
data can be mixed or arriving constantly, you often need additional techniques like energetic load
balancing or combining several algorithms to handle things smoothly.

Third, decisions on language and structure should be taken knowing their trade-offs. Dask or
PySpark tools enable developers to run jobs in parallel and increase the efficiency of divide-and-
conquer strategies. They should also be conscious, though, of the possible loss in control and the
learning curve these systems bring in.

Finally, big data algorithm design should not treat implementation and theory as separate phases.
Instead, architectural decisions—including language, parallel model, and data structure assumptions
—should be integrated into the early stages of algorithm design.

5. Conclusion

This paper reviewed recent advances in the implementation and optimization of divide-and-conquer
algorithms for big data sorting and retrieval, with a particular emphasis on Python-based
approaches. Through a systematic comparison of key studies, we observed that merge sort is
consistently more suitable than quicksort for Python environments, especially when parallelized
using multiprocessing. In addition, divide-and-conquer strategies align well with modern big data
frameworks, offering natural decomposability and scalability.

Even though Python has some built-in limits, like the GIL, recursion depth, and communication
costs, our analysis shows that, when designed carefully and with the right tools, it’s still a solid



Proceedings	of	CONF-CDS	2025	Symposium:	Data	Visualization	Methods	for	Evaluatio
DOI:	10.54254/2755-2721/2025.PO25411

46

choice for developing and testing algorithms. By consolidating research findings across multiple
works, this paper provides a structured reference for researchers and practitioners seeking to
understand the trade-offs involved in applying divide-and-conquer techniques to large-scale data
problems.

Future research could benefit from more empirical evaluations of divide-and-conquer algorithms
in distributed environments, particularly using hybrid tools such as PySpark or Dask. Moreover,
deeper exploration into dynamic load balancing and fault tolerance in recursive frameworks would
further enhance the practicality of these algorithms in real-world big data systems.

References

[1] M.-L. Song, R. Fisher, J.-L. Wang, and L.-B. Cui, ‘Environmental performance evaluation with big data: theories
and methods’, Ann. Oper. Res., vol. 270, no. 1, Art. no. 1, Nov. 2018, doi: 10.1007/s10479-016-2158-8.

[2] E. Shaikh, I. Mohiuddin, Y. Alufaisan, and I. Nahvi, ‘Apache Spark: A Big Data Processing Engine’, in 2019 2nd
IEEE Middle East and North Africa COMMunications Conference (MENACOMM), Nov. 2019, pp. 1–6. doi:
10.1109/MENACOMM46666.2019.8988541.

[3] Zikri, ‘Performance Analysis of Sorting Algorithms in Big Data Environments: Efficiency, Scalability, and Practical
Applications | Idea: Future Research’. Accessed: May 15, 2025. [Online]. Available: https:
//idea.ristek.or.id/index.php/idea/article/view/8

[4] X. Chen, J. Q. Cheng, and M. Xie, ‘Divide-and-conquer methods for big data analysis’, Feb. 22, 2021, arXiv:
arXiv: 2102.10771. doi: 10.48550/arXiv.2102.10771.

[5] A. Yang, ‘Approaches to the Parallelization of Merge Sort in Python’, Nov. 26, 2022, arXiv: arXiv: 2211.16479.
doi: 10.48550/arXiv.2211.16479.

[6] O. K. Durrani and S. AbdulHayan, ‘Performance Measurement of Popular Sorting Algorithms Implemented using
Java and Python’, in 2022 International Conference on Electrical, Computer, Communications and Mechatronics
Engineering (ICECCME), Nov. 2022, pp. 1–6. doi: 10.1109/ICECCME55909.2022.9988424.

[7] J. L. Bentley, ‘Multidimensional divide-and-conquer’, Commun ACM, vol. 23, no. 4, Art. no. 4, Apr. 1980, doi:
10.1145/358841.358850.

[8] Horowitz and Zorat, ‘Divide-and-Conquer for Parallel Processing’, IEEE Trans. Comput., vol. C–32, no. 6, Art. no.
6, Jun. 1983, doi: 10.1109/TC.1983.1676280.


