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Lung cancer, a high-mortality malignancy, suffers from delayed primary diagnosis.
To address limitations in traditional pathological diagnosis—specifically, insufficient local
perceptual ability in medical image analysis and the high computational load of classical
Transformers—we propose CMT, a hybrid CNN-Transformer model. CMT employs a
convolutional encoder to extract multi-scale local features from input images. These features
are transformed into global representations via Cross-Scale Feature Aggregation (CSFA) and
processed by a Transformer decoder for final classification. The model is optimized using a
weighted combination of cross-entropy and Dice loss functions, enhancing both accuracy
and localization capability. Evaluated on the TCIA dataset, CMT achieved an accuracy of
92.8%, outperforming comparative methods.

CMT Model, NSCLC, Local-Global Feature Integration, Deep learning

Lung cancer exhibits the highest global incidence and mortality, causing 2.481 million deaths in
2022. In China, it remains the most commonly diagnosed malignancy and leading cause of cancer-
related mortality [1].Histologically, lung cancer is categorized into non-small cell lung cancer
(NSCLC) and small cell lung cancer (SCLC). NSCLC constitutes 80-85% of lung cancer cases and
has slower progression than SCLC [2].Early precise diagnosis is therefore critical for prognosis
improvement.

Current clinical practice utilizes X-ray and CT for initial screening, but definitive diagnosis
necessitates invasive biopsy with histological examination [3].This approach carries risks, is time-
consuming, and suffers from subjectivity and inefficiency, potentially delaying treatment. While
Computer-Aided Diagnosis (CAD), particularly deep learning, offers promise in medical image
analysis, significant challenges persist in lung cancer recognition [4]. Convolutional Neural
Networks (CNNs) excel at local feature extraction but inadequately model global dependencies
crucial for complex lung textures [5].Transformers effectively capture long-range dependencies but
incur high computational costs, especially for high-resolution medical images, and require extensive
annotated data, limiting clinical deployment.
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To address these limitations, this work proposes leveraging a hybrid Convolutional neural
network and transformers architecture (CMT) [6].CMT synergistically integrates CNN’s local
perceptual strengths with the Transformer’s global modeling capacity via self-attention. This
integration enhances feature representation for lesion identification. Crucially, CMT mitigates the
Transformer’s computational burden through integrated convolutions, achieving comparable
accuracy with fewer parameters and greater efficiency, accelerating recognition. Furthermore, CMT
demonstrates superior data efficiency. Its multi-scale hierarchical feature extraction enables robust
performance even with limited, challenging-to-annotate medical datasets, enhancing model
generalizability compared to pure Transformer or CNN approaches.

Significant progress has occurred in applying medical image recognition to lung cancer diagnosis,
primarily through two methodological paradigms: traditional radiomics-based feature engineering
and deep-learning-based end-to-end modeling. Radiomics, formalized by Lambin et al. (2012) [7],
utilizes high-throughput extraction of handcrafted features (texture, shape, intensity) from medical
images. Its standardized workflow encompasses image preprocessing, lesion segmentation, feature
extraction, and modeling analysis [8]. For instance, Zhu et al. (2024) employed Lasso regression to
select 19 key texture features from 300 candidates, integrating these with clinical data via logistic
regression to create a classifier for solitary pulmonary nodule malignancy, achieving >85% accuracy
[9]. However, reliance on manually specified feature sets inherently limits the ability to capture
complex spatial relationships within lesions, constraining generalizability and robustness.

Deep learning (DL) approaches emerged circa 2010 to overcome these limitations. Initial
applications focused on classification tasks (e.g., breast cancer) using architectures like LeNet [10].
The success of AlexNet in ILSVRC 2012 spurred wider adoption of CNNs in medical imaging [11].
U-Net (2015) became a benchmark segmentation architecture via its symmetric encoder-decoder
structure with skip connections, excelling in tasks involving MRI/CT data. Nevertheless, CNNs'
constrained local receptive fields impede learning of long-range dependencies, hindering global
structural representation.

The advent of Transformers, leveraging self-attention mechanisms, addressed global context
modeling. TransUNet (Chen et al., 2021) pioneered integrating Transformers with U-Net,
significantly enhancing global modeling and pixel-level segmentation accuracy [12]. Subsequently,
Swin UNETR (Hatamizadeh et al., 2021) incorporated a Swin Transformer module utilizing local
window-based self-attention to manage computational cost while maintaining superior context
modeling, particularly effective for large medical images [13].Despite mitigating global modeling
constraints, Transformers demand exceptionally high computational resources and vast annotated
datasets—requirements often impractical given the scarcity of annotated medical imaging data.

Hybrid architectures reconciling CNN and Transformer strengths have consequently gained
prominence. The CMT model exemplifies this trend, employing a hierarchical structure:
convolutional layers for efficient local feature extraction precede Transformer modules capturing
long-range dependencies and global structure. This synthesis optimizes the balance between feature
extraction accuracy, computational efficiency, and generalization capability. Critically, its modular
design enables adaptive processing across diverse image scales and spatial regions, proving
advantageous in complex tasks like lung cancer detection. Unlike pure CNNs or Transformers,
which typically compromise at least one aspect of computational efficiency, feature extraction
power, or generalization, CMT achieves a favorable equilibrium. This balance renders it particularly
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suitable for medical applications with constrained computational resources or limited training data
availability.

The lung cancer recognition method proposed in this paper is based on the CMT model.By fusing
the complementary strengths of convolutional neural networks(CNNs)and vision Transformers ,
CMT achieves synergistic optimization of local feature extraction and global context modeling for
lung cancer images. This section details the core architectural design, feature fusion mechanism,
and key mathematical formulations.

CMT adopts a hierarchical hybrid design (as shown in Fig. 1). This design ingeniously integrates the
advantage of CNNs in extracting local features with the capability of Transformers in capturing
global dependencies. The overall architecture consists of two parts: a Convolutional Feature
Encoder and a Transformer Feature Decoder. The input image is first processed by the convolutional
encoder to extract multi-scale local features. Subsequently, a Spatial Reorganization module
transforms the feature maps into a sequence of embedding vectors, which are then input into the
Transformer decoder for global dependency modeling. The specific workflow is as follows:

1.Convolutional Feature EncoderThe encoder comprises 4 convolutional stages (Stage 1 - 4),
each containing several convolutional blocks. To balance computational efficiency and feature
representation capability, its design incorporates depthwise separable convolution and residual
connections .

Let Fj; 1 denote the input feature map of the j -th convolutional block in the ¢ -th
convolutional stage, and F;; denote its output feature map. The depthwise separable convolution
operation can be decomposed into depthwise convolution and pointwise convolution . Depthwise
convolution applies convolution separately to each channel of the input feature map. Pointwise
convolution then performs a 1 x 1 convolution on the output of the depthwise convolution to
combine information across different channels.

The depthwise separable convolution operation DSC(-) can be expressed as:

DSC(F) = PW(DW(F)) (1)

where DW(F') denotes the depthwise convolution operation and PW/(F) denotes the
pointwise convolution operation.
The output of the j -th block in stage ¢ can be represented as:

Fi;=F;j 1+ DSC(F;j;-1) (2)

The addition operation + represents the residual connection. It allows the model to learn
identity mappings more easily during training, mitigating issues like vanishing or exploding
gradients, and enabling more effective feature learning.

Through progressive downsampling across stages, assuming the input image sizeis H x W x C

(height, width, channels), the feature map size gradually reduces to 2—1,€ of the original input after

the k -th convolutional stage, i.e., Hy = 2% , Wi = g . Simultaneously, the channel dimension
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expands to 512 dimensions, forming high-level semantic local feature representations. Taking the

4th convolutional stage as an example, the final feature map size is 1% X % x 512.

2.Spatial Reorganization ModuleTo adapt to the sequential processing paradigm of the
Transformer, the three-dimensional feature map F € RT>*WxC  output by the convolutional
encoder needs to be transformed into a two-dimensional sequence Z € RN*P? (N=H x W, D
is the embedding dimension). This is achieved via linear projection:

Z=F -W+b 3)

where W € RE*P s a learnable projection matrix, and b € R is a bias term.

Mathematically, for each element Fy,. (h=1,---,H; w=1,---,W; ¢=1,---,C ) in
feature map F', after linear projection, the element Z,; (n=(h—1)W +w; d=1,---,D)in
sequence Z is obtained as:

Zn,d - chzl Fh,w,ch,d + bd (4)

This process preserves the spatial positional information of the feature map because the relative
positional relationships of elements are maintained during the transformation to a sequence.
Furthermore, by adjusting the dimensionality of the projection matrix W , the dimensionality is
reduced to adapt to subsequent computations, decreasing computational load and memory
consumption.

3. Transformer Feature DecoderThe decoder consists of stacked Transformer layers. Each layer
contains a Multi-Head Self-Attention (MHSA) mechanism and a Locally-Enhanced Feed-Forward
Network (LeFF).

Multi-Head Self-Attention (MHSA)The self-attention mechanism captures global contextual
dependencies by computing correlation weights between sequence elements. Let the input sequence
be Z € RY*P | First, linear transformations map the input sequence into Query (Q), Key (K), and
Value (V) matrices:

Q=2 -we (5)
K=27 WK (6)
V=2-WY (7)

where W@ € RP*Pr WK ¢ RP*Pe - WV ¢ RP*Dv are learnable projection matrices, and
Dy, and D, are the dimensionalities of the key and value vectors, respectively.
The self-attention computation is expressed as:

Attention(Q, K, V) — softmax (%_T )V ®)
k

where softmax(-) is the softmax function, used to normalize the correlation weights such that
their sum is 1.

The multi-head mechanism splits the input into h  parallel heads, computes attention
independently per head, and concatenates the results. Let @Q; , K;, V; denote the query, key, and
value matrices for the ¢ -th head. The attention output for the ¢ -th head is:
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Attention; (Qi, K;, V¢> = softmax ( ?/lll)(_;j ) Vi 9)

where Dy, = % .
The final multi-head self-attention output is:

MHSA (Z) = Concat(Attentiony, - - - , Attentiony) - W© 10
(10)

where Concat(-) denotes the concatenation operation, and WY € RM»*P s a learnable
projection matrix. The multi-head mechanism enhances the model's ability to represent different
semantic subspaces, allowing it to capture relationships between sequence elements from multiple
perspectives.

Locally-Enhanced Feed-Forward Network (LeFF)To prevent pure Transformers from
overlooking local details, the LeFF module introduces a depthwise convolution operation to enhance
local features. Let the input be X € RY*P | The computation process of the LeFF module can be
expressed as:

LeFF(X) = MLP(DW(MLP(X))) (11)

where MLP(-) is a Multi-Layer Perceptron and DW{(+) is Depthwise Convolution.
The MLP can be represented as:

MLP(X) = WoReLU(W1 X + by) -+ by (12)

where W, € RP*Pmir - W, € RPw*P are learnable weight matrices, b; € RPm» | by € RP
are bias terms, and ReLU(-) is the Rectified Linear Unit activation function.

The depthwise convolution operation DW(X) applies convolution separately to each channel of
the input, enhancing local features. This design preserves local spatial continuity on top of global
modeling, making it particularly suitable for capturing subtle lesion structures in lung cancer
images.

In medical images of lung cancer, lesions often exhibit multi-scale characteristics. Lesions of
different sizes and morphologies may coexist within an image. Small cancerous regions may be
crucial indicators of early-stage lung cancer, while larger lesions may represent more advanced
disease progression. To accurately identify and classify these lesions with diverse scale features, the
CMT model introduces a Cross-Stage Feature Aggregation (CSFA) strategy during the decoding
phase.

Feature UpsamplingThe feature maps output by the convolutional encoder at different stages
possess varying sizes and semantic information. Feature maps from shallower stages retain more
image details, such as edges and textures of small lesions in lung images. Feature maps from deeper
stages contain higher-level semantic information, such as the overall morphology and structure of
lung cancer lesions. To effectively fuse these features from different stages, the output feature maps
from each convolutional encoder stage are first upsampled to a uniform size using bilinear
interpolation.
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Bilinear interpolation is a common image interpolation method that calculates the value of an
interpolated point by performing a weighted average of its four surrounding pixels. During feature
map upsampling, bilinear interpolation preserves the original information as much as possible while
increasing the feature map size. Assuming the feature map output by the £k -th stage of the
convolutional encoder is F} , with size Hjy x Wy x C (height, width, channels), its size is
adjusted to match the Transformer decoder output feature map size Hp X Wy via bilinear
interpolation, resulting in the upsampled feature map F,” .

Feature Fusion OperationAfter upsampling the convolutional encoder outputs to a uniform size,
these upsampled feature maps are concatenated with the Transformer decoder's output feature map
along the channel dimension. Channel concatenation connects different feature maps along the
channel axis. Assuming the Transformer decoder's output feature map is Fr , with size
Hr x Wr x Cr , the upsampled feature map F:p is concatenated with Fr , resulting in a
concatenated feature map Fiype,: With channel count Clppeqt = Cr + >, C , where k denotes

the convolutional encoder stages included.

While the concatenated feature map F,,,.,; contains rich multi-scale feature information, the
increased channel count may lead to a significant rise in model computational complexity. To reduce
complexity and further fuse these features, a 1x1 convolution is applied to the concatenated feature
map. A 1x1 convolution, with a kernel size of 1x1, adjusts the number of feature map channels by
modifying the number of kernels. Let the number of 1x1 convolution kernels be Clygcq . After the
1x1 convolution operation, the final fused feature map Fryseq , With size Hr X W1 X Cysed , 18
obtained.

Advantages of the Fusion StrategyThe Cross-Stage Feature Aggregation (CSFA) strategy
combines complementary shallow detail features and deep semantic featuresThis fusion significantly
boosts the model's sensitivity to small cancerous regions, improving lung cancer recognition and
classification performance.Simultaneously, CSFA reduces computational complexity using 1x1
convolution while preserving multi-scale information, enhancing training and inference efficiency.

In lung cancer recognition and classification tasks, the model's optimization objective must consider
both classification accuracy and lesion localization precision. The CMT model proposed in this
paper employs a weighted combination of Cross-Entropy Loss and Dice Loss as the optimization
objective to simultaneously optimize classification accuracy and lesion region overlap.

1. Cross-Entropy Loss (CE Loss)

The Cross-Entropy Loss primarily measures the discrepancy between the predicted class
probability distribution and the true label. For a multi-class problem with C' classes, given a sample
x , its true label y is a one-hot vector of length C', where only one element is 1 and others are 0.

The model's prediction ¢ is a probability distribution vector of length C', where each element .
represents the probability of the sample belonging to class ¢, and 200:1 Ye=1.
The Cross-Entropy Loss function L¢og is defined as:

=->, yCIOg(z}c> (13)

where y. is the c -th element of the true label vector gy, and . is the c -th element of the
predicted probability vector ¢ . When y. = 1, this term represents the log probability of correct
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classification; when y. = 0, it contributes 0 to the loss.
For a batch of N samples during training, the Cross-Entropy Loss is:

C ~
LCE = ]_ir 27]:]:1 - Zc:l yn,clog(yn,c> (14)

where yn. is the c -th element of the true label vector for the n -th sample, and yn is the c -
th element of the predicted probability vector for the n -th sample.

2. Dice Loss

The Dice Loss measures the overlap between the predicted segmentation result and the ground
truth mask. Let A be the set of pixels in the prediction and B be the set of pixels in the ground
truth mask. The Dice Coefficient D is defined as:

_ 2|AnB|
D= Tns (15)

where |A| and |B| denote the number of elements in sets A and B, respectively, and
|A N B| denotes the number of elements in their intersection.
The Dice Loss L p;ee 1s then defined as:

2|ANB|
Lpice =1 =D =1 — 75 (16)

Computationally, the prediction and ground truth mask can be represented as binary images,
where pixel value 1 indicates the target region and 0 indicates background. Let p; be the predicted
probability value for the % -th pixel in the segmentation result, £; be the true label (0 or 1) for the ¢

-th pixel in the ground truth mask, and NN be the total number of pixels. The Dice Loss can be
expressed as:

1 22?; pit;
Lche =1 Zf\;l p#ZL t (17)

3. Weighted Combined Loss Function

To simultaneously optimize classification accuracy and lesion localization precision, we combine
the Cross-Entropy Loss and Dice Loss using a weighted sum. Let a be a balancing coefficient (
0 < a < 1). The final optimization objective L is:

L=alLeg+ (1 - a)LDice (18)

Here, a balances the relative importance of the Cross-Entropy Loss and the Dice Loss. When «
is close to 1, the model focuses more on classification accuracy; when « is close to 0, the model
emphasizes lesion localization accuracy.

By jointly optimizing the Cross-Entropy Loss and Dice Loss, the model improves classification
accuracy while ensuring precise lesion localization. During training, we update the model
parameters by minimizing the loss function L to enhance performance in lung cancer recognition
and classification tasks.

Specifically, during backpropagation, the gradient of the loss function L with respect to the
model parameters 6 is computed. Using the chain rule:
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5 = a5+ (1-a) B (19

|

Then, an optimization algorithm (e.g., Stochastic Gradient Descent, Adam) updates the model
parameters based on this gradient:

0+ 0 —nik (20)

where 7 is the learning rate. Iteratively updating the parameters reduces the loss L , thereby
improving model performance.

3.4. Computational efficiency analysis

Compared to pure Transformer architectures like ViT, CMT significantly reduces the computational
complexity of self-attention through pre-downsampling by the convolutional encoder. Assuming an
input image size of HxW, the computational complexity of a standard ViT is O((HW)"2). In CMT,
after convolutional encoding, the feature map size reduces to H/16xW/16, lowering the complexity
to O((HW/256)*2 ). This represents a theoretical reduction in computation by approximately 256”2
times. This efficiency allows CMT to process high-resolution medical images effectively while
maintaining global feature modeling capability.
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Figure 1. Schematic diagram of the CMT model architecture

This hybrid architecture, through the synergistic action of CNN's local perception and
Transformer's global modeling, achieves a balance between accuracy and efficiency in lung cancer
recognition tasks, providing reliable technical support for rapid clinical diagnosis.
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4. Experiment and results
4.1. Experimental setup

Experiments in this paper utilized an NVIDIA RTX 4060 GPU, and the entire process of the model
training and test was based on the Pytorch framework in Python language, and used batch size as 32,
SGD optimizer was used to update the parameters with a momentum of 0.8, and learning rate set as
0.0001, all experiments were saved on wandb.

4.2. Datasets

In order to carry out better experiments and achieve the purpose of comparing results more clearly,
the dataset is divided into a training set and a validation set. Stratify the two sets according to
different factors, such as gender, smoking status, age ranges, and pneumonia types.

The presented work utilized 350 cases extracted from a hospital data set - 200 for the mutated-
gene pneumonia group and 150 for the wild-type pneumonia group.

The training set contained 5,000 mutated gene images and 5,000 wild gene images. Data
augmentation was performed using the image rotation technique as well as the flipping technique,
making the total number of images in this data set 20,000.

The validation dataset used in this study was obtained from the publicly available NSCLC dataset
provided by The Cancer Imaging Archive (TCIA). This dataset provides medical imaging data for
non-small cell lung cancer (NSCLC), which is the focus of this study. The TCIA dataset comprises
211 patients: 43 patients were classified as mutated-gene type, 129 as wild-type, and 39 as unknown
or not collected. The training and testing processes were performed on the hospital dataset, while
validation was conducted on the TCIA dataset. Further detailed information regarding the datasets is
presented in Table 1.

Table 1. Detailed information of training and validation sets

Item Training Dataset (n=350) Validation Dataset (n=211)
Gender
Male 170 76
Female 180 135
Smoking Status
Yes 256 163
No 94 48
Age Range
Min 40 43
Max 88 87
Median 64 69
Pneumonia Type
Mutated 200 43
Wild-type 150 129

Unknown/Not Collected 0 39
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[Note: The training dataset description mentions 350 cases but also 10,000 images (5k mutated + Sk wild) augmented to 20k. The
table reflects the case counts per the header. The validation dataset uses patient counts from TCIA.]

4.3. Experimental results

Based on the experiments, our model achieved an accuracy of 92.8% and a loss of 0.15%. We
visualized our model and the original model,as shown in the figure2 and figure3.
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Figure 3. CMT deep learning model visualization
5. Comparative work

This section presents a comparative analysis of the proposed CMT model with recent mainstream
methods in the field of lung cancer identification on the public TCIA dataset. The comprehensive
comparison results are shown in Table 2.
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Table 2. Performance comparison with state-of-the-art methods

Ref. Method Feature Acc(%)
Xiao [14] EfficientNet-V2 Deep features 80.32
Wang [15] CNN Deep features 75.62
Xiong[16] 3D CNN Deep features + Clinical features 75.43
Nair [17] Logistic regression Clinical features + Radiomics features 79.53
Chen [18] Stacked deep model Deep features + Clinical features 83.00
Silva [19] Unsupervised transfer learning model Deep features + Clinical features 68.00
Zhao [20] Denseformer Deep features 81.50
Wang [21] FAIS Deep features 79.90
Yoon [22] Hyun Deep features 78.3

Ours CMT Deep features 92.8

The EfficientNet-V2 employs PET/CT imaging for predicting EGFR mutations, with an AUC
value of 82.23%. Wang et al. developed an end-to-end deep learning approach with CT image input
which was able to reach an AUC value of 81.25% when doing prediction of gene mutation. Xiong et
al used a 3D-CNN model for predicting EGFR mutations in lung adenocarcinoma, and achieved an
AUC of 82.91% if joined with clinical data, compared with 76.57% of the situations without clinical
information, indicating that including clinical information may improve the performance of the
network model. In addition, Nair et al. use Logistic Regression to select the best radiomics feature
from Enhanced CT images, and achieve an AUC value of 83.92%; while Chen et al. built the
stacked deep model to integrate PET/CT and clinical data for predicting EGFR mutations, and got
the best AUC of 85%. Furthermore, Silva et al. applied a deep unsupervised transfer learning
method to assess EGFR mutations, expanding the evaluation range to nodule region alone and
obtaining an AUC of 68%, indicating that CMT is more accurate than recent mainstream methods in
distinguishing whether EGFR mutations are present or not based on imaging features.

This study proposes a novel hybrid CMT model for lung cancer image recognition, synergistically
integrating Convolutional Neural Networks (CNNs) in early layers for local feature extraction and
Vision Transformers (ViTs) in later layers for long-range dependency modeling, significantly
reducing computational costs compared to pure Transformer models through convolutional down-
sampling.
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