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Abstract. With the rapid development of renewable energy such as solar and wind power,
the matching of supply and demand in the power system faces greater challenges. Electric
vehicles (EVs) provide distributed energy storage services such as peak and valley
regulation and frequency regulation to the power grid through a two-way vehicle-to-grid
(V2G) system, which improves the flexibility and stability of the power grid. This paper
proposes a unified framework based on artificial intelligence (AI) that integrates load
forecasting, battery health-aware reinforcement learning scheduling, dynamic pricing, and
multi-agent collaborative control, aiming to achieve efficient V2G operation in large-scale
smart grids. By reviewing relevant literature, this paper analyzes the potential of the
framework in improving grid stability, reducing operating costs, promoting the use of
renewable energy, and extending battery life, and explores key challenges such as battery
degradation, network security, system interoperability, and regulatory complexity. The study
points out that the current model is mainly based on theory and simulation, lacking the
support of large-scale empirical data. In the future, it is necessary to combine actual
operation data and pilot projects to improve battery aging modeling and user behavior
differentiation analysis to promote the practical application and optimization of the
framework.
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1. Introduction

The accelerating trend toward renewable energy sources includes solar and wind, which
significantly increases the variability in power systems and is problematic for matching supply with
demand. EVs offer a partial solution too - EVs can serve as distributed energy storage by
implementing bidirectional Vehicle-to-Grid (V2G) systems such as peak shaving, frequency
regulation, and valley filling instead of using an EV solely for transportation. Integration of EVs
replaces Evs transport with grid services for a multi-hour parked state without compromising user
convenience. Smart grids serve to implement ICT thoroughly, have automated control
improvements, and decentralized coordination of resources - a compatible co-origin to respond to
changing electricity levels allowing EPSs to be able to provide appropriate schedule for user needs.
ICT typically implements communication standards, such as ISO 15118 to govern secure and trusted
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data for bidirectional power flow, or ISO 15118-20 to communicate the dynamic price with the user
when charging [1]. AI replaced the need for solver analysis improvements in quantifying control
problems in the energy grid. Using AI in complicated systems such as the energy grid adds
complexity, deep learning (DL) and reinforcement learning (RL) improvements in accuracy
exhibited anomaly detection, forecasting, and even scheduling in energy systems [2]. More recent
studies suggested promising results in employing RL to V2G scheduling successfully, and the
simulations produced other optimal outcomes for load variance and cash flow [3,4]. In summary,
few works proposed a coherent structure that integrated forecasting, scheduling, control, and pricing
parameters relative to battery health and cybersecurity. This study proposes to fill this gap in V2G
engineering literature.

This study proposes a broad theoretical framework to build and operate V2G systems at scale in
smart grids using artificial intelligence (AI) techniques including machine learning (ML) and
reinforcement learning (RL). The framework covers demand forecasting, scheduling with battery
health considerations, energy pricing, and multi-agent control methods. The paper reviews the
analysis results of the existing literature to highlight performance improvements, long-term
sustainability, technical challenges, and policy considerations.

2. AI-driven V2G system architecture and modeling

The system concept is to build an intelligent vehicle-to-grid (V2G) system based on artificial
intelligence. It is mainly composed of electric vehicle fleets, aggregators, distribution networks and
AI intelligent agents, aiming to achieve centralized coordination of charging/discharging scheduling,
load forecasting and dynamic pricing. The system adopts a multi-agent control architecture (see
Figure 1), modeling electric vehicle users, aggregators and grid operators as intelligent agents in a
cyber-physical environment. Electric vehicles have characteristics such as battery capacity, state of
charge (SOC) range and departure deadline, and all charging stations are under the management of
the aggregator. The aggregator receives real-time electricity prices, load forecasts and frequency
signals from the power grid and transmits this information to the AI agent. The AI agent makes
optimization decisions based on this, assists in managing the charging and discharging scheduling of
vehicles, and introduces restriction mechanisms in the regulation process to extend battery life.

Figure 1. V2G multi-agent control architecture coordinating EVs, aggregators, and grid operators
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Figure 2. System diagram of AI-driven forecasting and control loops among EV batteries, smart
chargers, grid, and edge-AI agents

The AI agents will also be able to communicate dynamically, and securely with one another
(Figure 2). Each agent will be specified in the RL formulation, the agent’s state (e.g., SOC value,
remaining time to depart, anticipated load, price), each agent’s possible actions (charging,
discharging, or idle), and the reward function for each agent’s action. The reward function will
represent multiple tasks: savings, load levelling, battery degradation, and keeping the grid stable.
The forecasting components will use Deep Learning (DL) algorithms, specifically those using deep
neural networks (like Long Short-Term Memory (LSTM) or convolutional neural networks (CNN)
to model short-term demand, renewable generated energy, and price movements in order for the
agent(s) to make informed decisions. Many papers have shown that DL can represent an
improvement in forecasting accuracy against traditional methods [5].

3. AI algorithm integration and scheduling

3.1. Predictive modeling

Accurately forecasting load demand, renewable energy output, and dynamic electricity price
trajectories is the cornerstone of any smart energy dispatch framework. High-precision forecasts are
critical not only for reducing operational uncertainty but also for improving overall system
efficiency and reliability. Martínez-Torres et al. demonstrated that long short-term memory (LSTM)
neural networks outperform traditional feed-forward architectures, reducing forecast error rates by
15% to 25%, especially in scenarios with large temporal variations [6]. Based on this insight, the
framework integrates multi-source data acquisition mechanisms, including smart meters for real-
time energy consumption monitoring, weather APIs for predicting solar and wind energy
availability, and historical charging behavior data of electric vehicles (EVs). These diverse data
streams form the basis for continuous reinforcement learning (RL) model training and deep
reinforcement learning (DRL)-based dispatch strategy development. By incorporating temporal
patterns, external factors (such as weather), and user-specific behavioral trends, the system improves
its ability to predict demand response events and dynamically optimize charging/discharging
decisions.

3.2. Reinforcement learning for V2G scheduling

Sequential decision-making under uncertainty is at the heart of DRL. Notably, DRL techniques, such
as Deep Deterministic Policy Gradient (DDPG) and Proximal Policy Optimization (PPO), and
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multi-agent RL (MARL) such as Zhang, Chen, and Li’s [3] multi-stakeholder hierarchical DRL
implementation, reduce the variance of load and enable conservation of State of Charge (SOC)/State
of Health (SOH), compared to standard methods of control. Beyond operational efficiency, their
reported metrics indicated that their simulations depicted a 97% variance reduction of load and 22%
increased use of renewable energy. Recent advancements of safety-aware DLR also employing
constrained-based Markov Decision Processes help to further address concerns of battery
degradation by including SOH constraints during training and ensuring real-time compliance when
making decisions, since obviously battery cells degrade. The experiment results indicate an increase
in average SOH of only 3% per year, but it also entails a 10% reduction in Lifecycle Replacement
Cost for customers when using an electric vehicle (EV). After all, without compliance for safe
electric vehicle behaviors and expectations, EV customers will not be willing to accept the increased
risk.

3.3. Dynamic pricing with AI agents

We consider the features of real-time pricing as the model includes them within the agent strategy
when forecasting total or scheduled buy/sell tariffs based on grid peak load level usage effects. Part
of Escoto et al.’s proposal considered the introduction of a dynamic pricing signal to the speed-
sensitive relay in comparison to the responses of the physical controller) or aggregator of the EV
behavior, in response to predictable grid behaviour, reflected in the price signal transparently. It also
highlighted price- based demand shifting methods could support reductions in peak load by an
average 10%, simultaneously improving GHG and social- economic performance outcomes of
stakeholders [6,7].

4. Coordination architecture and control strategies

Centralized control, enabled by aggregators, produces globally optimal decisions while scalability
and privacy restrictions apply. Alternatively, federated multi-agent structures afford better resilience
and privacy but require more sophisticated coordination protocols. For example, in the application
environment of Thailand's electric vehicle (EV) charging infrastructure, the multi-agent
reinforcement learning (MARL) protocol showed significant advantages over traditional benchmark
strategies, not only increasing the occupancy rate of charging stations by about 12%, but also
effectively shortening the average waiting time of users, significantly improving the overall service
efficiency and user experience. In addition, the edge computing nodes in the smart grid are
responsible for processing local real-time data streams, such as key parameters such as frequency,
voltage, and temperature, to ensure that the system can achieve rapid response and local decision-
making with a response delay of milliseconds or even lower, improving the dynamic adjustment
capability and stability of the system. In terms of communication security, the adoption of the
international standard ISO 15118-PKI framework and the construction of an AI-based intrusion
detection system have become the key to ensuring secure communication between electric vehicles
and charging infrastructure. Sharma et al [8]. introduced an anomaly detection model to effectively
distinguish between normal and abnormal behaviors, achieving a network security incident detection
rate of up to 98.9%, showing the strong potential of AI technology in network security protection.
Resilience is not only reflected in the effectiveness of system control, but also emphasizes being
ready to respond to various emergencies at any time to ensure the continuous and reliable operation
of the system [9]. This is of great significance for ensuring the stability and security of smart grids
and electric vehicle charging systems.
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5. Discussion

The effectiveness and feasibility of AI-driven V2G systems have been established through various
theoretical simulations and case studies, providing good evidence for their incorporation into future
smart grids. The synthesis of results across the literature provides evidence of substantial operational
and environmental advantages. For example, systems that employed reinforcement learning (RL)
and deep learning methods achieved a reduction of 76% to daily EV charging costs through optimal
scheduling and dynamic price forecasting [9]. Load variance at the grid level was reduced by as
much as 97%, improving power quality, frequency stability, and mitigating stress on transformers
and substations. The capacity to predict and flatten demand curves is especially important in grids
with a substantial penetration of intermittent renewable generation (i.e. wind and solar).
Additionally, the emissions reductions achieved in the literature ranged from 18% to 22% with the
more significant reductions contributing to EV charging and discharging being in line with periods
of surplus renewable generation [4]. The impact on battery health in terms of state of health was an
improvement of 10% to 15% in SOH life expectancy through intelligent scheduling strategies that
included State of Health (SOH) constraints, effectively extending the economic life of EV batteries
and delaying replacement costs in the long run. These performance metrics provide evidence of the
technical feasibility and real benefits of implementing AI-enabled V2G frameworks if developed
using the appropriate hardware and communication standards with collaboration from stakeholders.

Despite these promising outcomes, several critical challenges and limitations remain. First,
battery degradation continues to be a primary concern. The V2G operational process includes
frequent charging and discharging cycles leading to capacity fade which may discourage EV owners
from being participants. For now, AI models must develop a reward function that incorporates SOH-
aware constraints that prolong battery health while fulfilling their commitment to the grid [4].
Second, due to the level of connections associated, there is an increased cybersecurity risk within
V2G systems. The many interactions between EVs, aggregators, and the grid, with in-the-moment
connectivity for thousands of units, increases opportunities for attacks on all parties. While AI-based
anomaly detection algorithms have been quite effective so far - e.g., garnered 98% + detection
ability [8] - these will not eliminate the risk of zero-day attacks or adversarial attacks. This means
specification-based encryption, intrusion detection systems (IDS), and the ability to propagate
security patches will remain critical. This said, the scope of V2G will require a coordinated policy
and regulatory effort to mitigate the challenges of V2G and fully leverage the opportunities of AI-
enhanced V2G systems. Moreover, through e.g., tax incentives, grants for V2G-compatible
infrastructure development and smart chargers and bidirectional inverters, governments can play a
uniquely impactful role. Compliance with communication protocols such as ISO 15118 would also
contribute to improved interoperability throughout the ecosystem. Likewise, developing a licensing
regime in which aggregators were legally recognized as intermediaries between EV owners and grid
operators would engender a new role that both enhanced oversight/responsibility, and reflected the
smart and modernized relationship between these entities. Tariff designs that are dynamic are
continuously adapted based on modelling from AI forecasting exercises, meaning more predictable
and equitable pricing mechanisms can be developed without sacrificing grid reliability.

Pilot programs in places like the United Kingdom and California have demonstrated the
feasibility of V2G integration at scale and the lessons learned can support more significant
deployments. These pilot initiatives should ramped up through public-private partnerships to
stimulate commercial readiness. On the global stage, authorities such as the Institute of Electrical
and Electronics Engineers (IEEE) and the International Electrotechnical Commission (IEC) would
need to come together to harmonize jurisdictional standards, notably in cybersecurity certification,
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transparency in AI algorithms, and data protection across standards. Only by coming together will
communities and the coordinated effort of AI-based V2G systems move from the promise of their
theoretical potential, to future intelligent sustainable energy systems.

6. Conclusion

In conclusion, this paper creates a unified AI-enabled framework for V2G integration in smart grids.
It integrates predictive modelling, battery-aware RL scheduling, dynamic pricing, and multi-agent
coordination across an edge-enabled architecture to provide measurable improvements to grid
stability, costs, renewable penetration and battery health. Within image schematics, EVs were shown
to have coordinated layered relationships with aggregators and distribution grid. While the benefits
are clear, there are still significant challenges still, including battery degradation, cybersecurity,
interoperability, as well as regulatory complexity. However, this research has certain limitations.
Due to the theoretical and simulation-based nature of the study, it lacks extensive empirical
validation with real-world V2G operational data. The effectiveness and scalability of the proposed
framework under diverse grid conditions and user behaviors remain to be fully tested. For future
research, incorporating large-scale real-world datasets and pilot project results will be essential to
validate and refine the AI algorithms and system design. More comprehensive modeling of battery
aging processes and user heterogeneity can improve scheduling accuracy and user acceptance.
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