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Abstract. With the continuous breakthroughs in deep learning technology, face recognition
methods based on deep learning have become a prominent research focus in the field of
computer vision. In particular, within service robots and embedded intelligent systems, face
recognition plays a critical role in identity verification, interactive control, and behavioral
understanding, and its performance directly affects the intelligence level of such systems.
However, traditional face recognition models based on deep convolutional neural networks
(CNNs) are often computationally intensive and contain a large number of parameters,
making them unsuitable for deployment on robotic platforms that require real-time
processing, low power consumption, and lightweight models. To address these challenges,
this paper proposes a lightweight face recognition method based on deep learning, which
combines the MobileNetV3 architecture with the Convolutional Block Attention Module
(CBAM) to construct an efficient recognition model suitable for robotic vision systems.
MobileNetV3, as the backbone network, provides excellent computational efficiency and
structural compression capabilities, effectively reducing the size and latency of the model,
while the CBAM module introduces channel and spatial attention mechanisms to guide the
network to focus on key facial regions during deep feature extraction, thereby enhancing the
discriminative power and robustness of recognition. Extensive experiments are conducted on
the publicly available Labeled Faces in the Wild (LFW) dataset, where the model is trained
using the cross-entropy loss function and optimized with the Adam optimizer, evaluating its
performance under realistic scenarios such as complex backgrounds, pose variations, and
occlusions. Experimental results show that the proposed model achieves higher recognition
accuracy than several existing lightweight networks while maintaining a compact structure,
demonstrating better adaptability and generalization. This method effectively balances
accuracy and real-time performance, offering a feasible and efficient solution for robot-
oriented face recognition systems. The study confirms the effectiveness of integrating deep
learning and attention mechanisms into lightweight architectures and provides new ideas and
practical paths for achieving high-performance face recognition on edge computing devices,
with strong application potential.
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1. Introduction

With the rapid development of artificial intelligence and deep learning technology, the perception
and cognitive ability of robot vision system [1] has been continuously enhanced, and has been
widely used in intelligent security, service robots, human-computer interaction (HRI) and other
fields. As an important means for robots to understand and recognize human beings, face
recognition technology has shown high practical value in practical applications due to its non-
contact, easy collection and good social acceptance. For example, embedding face recognition
modules in tasks such as identity verification, visitor management, social assistance and
personalized services can significantly improve the intelligence level and interactive experience of
robots. Traditional face recognition methods [2] rely on artificially designed features in feature
extraction, such as local binary pattern (LBP) or principal component analysis (PCA), which is
difficult to maintain robustness in complex environments. In recent years, deep learning methods
such as convolutional neural network (CNN) [3] have made significant breakthroughs in image
classification, face recognition and other tasks, with end-to-end learning and strong feature
extraction capabilities, providing a solid technical foundation for building high-precision face
recognition systems. However, robot platforms often face practical constraints such as limited
computing power and sensitive response time. How to design lightweight and efficient recognition
models while maintaining high recognition performance has become one of the key challenges of
current research.

To solve the above problems, we designed a lightweight CNN+attention module [4] model
architecture, as shown in Figure 1. The backbone network uses MobileNetV3 [5], which is widely
used on the mobile end, with a small number of parameters and excellent computing efficiency. On
this basis, we introduce CBAM [6] and SE (Squeeze and Extraction) [7] modules to calibrate the
channel and spatial dimensions with weight, so as to enhance the expression ability of features and
the ability to focus on regions. By embedding the attention module after multiple convolution layers,
the model can automatically highlight the discriminant features in the face area, such as eyes,
corners of the mouth, etc., so as to improve the accuracy and robustness of face recognition in
complex backgrounds. This paper builds a complete training process based on the PyTorch
framework, and conducts training and testing on public face data sets (such as LFW). Experimental
results show that the proposed lightweight attention fusion model can significantly reduce the
complexity of the model while maintaining high accuracy, and is suitable for the actual deployment
of edge computing devices such as robots. In addition, this paper further discusses the expansion
potential of small sample learning [8] and continuous learning mechanism [9] in actual scenes,
providing theoretical and engineering support for the continuous evolution of robots in face
recognition.
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Figure 1. Schematic diagram of model structure of lightweight CNN combined with attention
module. after the feature map is extracted from the backbone network (such as mobilenetv3), the
channel and space are weighted by CBAM or SE attention module respectively to highlight the

important facial areas. finally, face recognition is realized by soft max

2. Manuscript preparation

2.1. Lightweight neural network structure

With the increasing demand for computational efficiency and mobile deployment, lightweight neural
network architectures [10] have become a key research focus, particularly in robotic vision systems
where resource constraints are critical. To improve inference speed and computational efficiency,
researchers have proposed a series of structural optimizations, among which the MobileNet series
stands out as a representative example. MobileNetV1 introduced depthwise separable convolution
[11], which decomposes standard convolution into depthwise and pointwise convolutions. This
significantly reduces computational complexity and model parameters while preserving essential
feature extraction capabilities. Building upon this, MobileNetV2 introduced the inverted residual
structure and linear bottlenecks, which enhance the stability of multi-layer feature representation. Its
core idea involves using skip connections to retain low-level features and applying linear
transformations to control information compression, thereby avoiding the loss caused by non-linear
activations. MobileNetV3 further advances this line of research by integrating Neural Architecture
Search (NAS) strategies and the novel h-swish activation function. Through automated architecture
design, it generates optimal subnetworks tailored to different device performance requirements.
Additionally, MobileNetV3 incorporates SE modules for channel attention modeling, enabling better
adaptability in complex tasks. Compared to its predecessors, MobileNetV3 achieves higher
recognition accuracy while further optimizing inference speed and energy consumption, making it a
mainstream choice for intelligent visual tasks on mobile devices. In parallel, other lightweight
architectures have been proposed. ShuffleNet utilizes channel grouping and feature shuffling to
reduce redundant connections and improve computational parallelism. SqueezeNet adopts small
convolutional kernels and aggressive parameter reduction strategies, resulting in highly compact
models suitable for memory-constrained scenarios. While these models each offer unique
advantages in terms of lightweight design, they still face challenges in handling complex face
recognition tasks. Specifically, they often lack sufficient feature representation capability and are
limited in modeling critical facial regions. Therefore, enhancing the semantic modeling power of
lightweight models while maintaining their computational efficiency remains a significant technical
challenge in current research.)
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2.2. Development and optimization of face recognition models

Face recognition models based on deep learning have achieved remarkable progress in recent years
and have gradually become the mainstream solution in the field. Compared with traditional hand-
crafted feature methods such as LBP, HOG, and Eigenfaces, deep networks [12] can automatically
learn more discriminative feature representations from large-scale face datasets, significantly
improving recognition accuracy and generalization capability. Early approaches, such as DeepFace
and DeepID, adopted multi-layer convolutional neural networks to encode face images and
performed identity classification via softmax classifiers. Later, FaceNet introduced the triplet loss
function [13] for feature embedding learning, ensuring that images of the same identity are mapped
closer in the embedding space while those of different identities are pushed farther apart, greatly
enhancing cross-class recognition. ArcFace further incorporated angular margin constraints into the
loss function, optimizing the cosine angle between feature vectors to achieve tighter intra-class
compactness and larger inter-class separability, making it one of the most widely used high-
precision face recognition methods today. To improve model robustness in real-world scenarios,
many studies have focused on optimizing loss functions, feature normalization, and network
architectures. For instance, CosFace designs its loss function based on cosine similarity, enabling the
network to directly optimize the decision boundary during training, while SphereFace introduces a
hyperspherical embedding constraint to improve the discriminative power of high-dimensional
features. Additionally, methods such as Center Loss and Joint Supervision have been widely adopted
to enhance feature distribution separability and stability. Although these approaches have achieved
near-human accuracy on public datasets like LFW and MegaFace, they often rely on large-scale
training data and complex deep network architectures, posing significant challenges for real-world
deployment. In particular, they are difficult to implement on resource-constrained platforms such as
robotics systems. As a result, an increasing number of studies have shifted their focus to the design
of lightweight face recognition models, aiming to achieve high recognition accuracy with lower
computational cost. In the domain of lightweight face recognition [14], researchers have combined
efficient networks such as MobileNet and ShuffleNet with face recognition tasks and proposed a
variety of optimization strategies including structural pruning, quantization, and knowledge
distillation, which reduce model complexity while preserving feature discrimination as much as
possible. Moreover, some works have explored the integration of novel techniques such as graph
neural networks and hybrid embedding strategies into face recognition frameworks, aiming to
enhance the model’s robustness against factors such as age variation, pose changes, and expression
interference.

2.3. Integration of attention mechanism in face recognition

Attention mechanisms [15] have recently emerged as a key technique to enhance image recognition
performance. Their core idea is to dynamically adjust feature weights to guide the model to focus on
discriminative regions while suppressing background noise and redundant features. Attention
mechanisms have demonstrated strong effectiveness across tasks such as image classification, object
detection, and face recognition. The Squeeze-and-Excitation (SE) module is one of the earliest
attention mechanisms applied to image tasks. It performs global information modeling and re-
weighting on feature channels, enabling the model to more effectively distinguish important
channels. This mechanism has been validated as effective in many backbone networks such as
ResNet and DenseNet. However, the SE module only models inter-channel dependencies and
neglects spatial information regarding important regions. To address this limitation, the
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Convolutional Block Attention Module (CBAM) was proposed, which sequentially applies channel
attention and spatial attention to re-weight feature maps along the channel and spatial dimensions,
respectively. Channel attention extracts global context by max pooling and average pooling,
followed by fully connected layers that generate channel weights; spatial attention aggregates
information across channels at each spatial location and generates a 2D attention map via
convolution, guiding the network to focus on critical regions. The CBAM module features a simple
structure with minimal parameter overhead, making it suitable for embedding in lightweight
networks, and thus it has become a commonly used attention module in current face recognition
systems. Additionally, more efficient attention designs have been proposed, such as Efficient
Channel Attention (ECA), which reduces computational cost by replacing fully connected layers
with local convolutions, and Bottleneck Attention Module (BAM), which employs a parallel
structure to model spatial and channel attention separately, suitable for multi-level feature fusion. In
face recognition scenarios, attention mechanisms are especially effective in handling faces with
large pose variations, uneven illumination, or occlusions. By modeling saliency in key facial regions
such as the eyes, nose, and mouth corners, attention mechanisms can enhance the network’s ability
to discriminate local details and improve model robustness. Combined with lightweight network
architectures, attention mechanisms have gradually become an indispensable component of
deployable face recognition systems.

3. Conclusion

3.1. Lightweight backbone network design

In practical robotic applications, computational resources and energy consumption are often strictly
constrained, making lightweight model design a necessary prerequisite. This paper selects
MobileNetV3 as the backbone network for feature extraction due to its compact structure and high
computational efficiency, making it a widely adopted mainstream lightweight network architecture
for mobile and edge devices. Built upon MobileNetV1 and V2, MobileNetV3 integrates automated
neural architecture search (NAS) and efficient activation functions such as h-swish, further
enhancing model performance and efficiency. Its fundamental unit is the inverted residual block,
which utilizes depthwise separable convolutions internally to reduce computational cost and
employs pointwise convolutions for channel-wise feature fusion. To adapt MobileNetV3 for face
recognition scenarios, this study performs targeted optimizations: on one hand, pruning some
redundant convolutional layers to reduce inference latency; on the other hand, retaining critical
semantic layers to ensure sufficient feature representation capability for extracting local facial
details such as the eyes, nose bridge, and mouth corners. By adjusting convolution kernel sizes,
strides, and channel numbers, multi-scale receptive field fusion is realized to better handle variations
in face images caused by pose, illumination, and occlusion. Furthermore, to enhance multi-scale
feature aggregation, a skip connection mechanism is introduced into the backbone network to
preserve low-level texture information, allowing deep abstract semantic features and shallow spatial
location information to jointly participate in the final feature representation process, thereby
improving fine-grained recognition ability.

3.2. Attention mechanism integration strategy

Although lightweight networks exhibit good inference speed, they tend to suffer from insufficient
attention to critical regions when processing face images with complex backgrounds or uneven
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feature distributions, leading to degraded recognition performance. To address this issue, this paper
integrates the Convolutional Block Attention Module (CBAM) into multiple stages of the backbone
network to enhance the model’s responsiveness to important facial areas. The CBAM consists of
two submodules: a channel attention module and a spatial attention module. The channel attention
module learns the importance of different feature channels by assigning varying weights to each
channel of the input feature map, thereby strengthening the response of semantically more
representative features. The spatial attention module focuses on the saliency distribution along the
spatial dimensions of the feature map. It generates a two-dimensional spatial attention map by
performing convolution operations on the average-pooled and max-pooled results of the feature
map, enhancing the model’s ability to focus on key spatial regions such as the eyes and mouth. The
CBAM is integrated into the middle-to-high-level network units of MobileNetV3 in a lightweight,
“plug-and-play” manner, avoiding excessive computational overhead while enabling fine-grained
modeling of critical semantic regions. In experiments, we compared the recognition performance
when inserting the attention module at shallow, middle, and deep layers. Results demonstrate that
embedding attention in the middle-to-high layers effectively improves the model’s discriminative
power while maintaining stable inference speed. Compared to single attention mechanisms (e.g., SE
module), CBAM’s joint channel and spatial attention modeling grants the network stronger regional
selection capabilities. Especially under occlusion, pose variation, or complex background
conditions, CBAM guides the network to focus on extracting stable facial structural features,
thereby enhancing overall recognition robustness. Furthermore, to prevent excessive additional
computational burden introduced by attention mechanisms, this study controls the embedding
frequency and parameter scale of CBAM modules, inserting attention units only at critical network
nodes to ensure that the system’s overall performance is not compromised by increased structural
complexity, truly achieving the goal of being “lightweight yet powerful.”

3.3. Feature coding and classification structure design

After processing by MobileNetV3 and the CBAM module, the network outputs a set of high-
dimensional feature maps. To utilize these features for identity classification tasks, encoding,
normalization, and final classification are required. This paper first applies Global Average Pooling
(GAP) to the output feature maps to obtain a fixed-dimensional global feature vector, followed by
L2 normalization to ensure the features are distributed within a unified scale space, facilitating
subsequent classifier learning. Then, the feature vector is fed into a fully connected layer for identity
classification. During training, the standard softmax cross-entropy loss function is used as the
optimization objective, complemented by dropout and batch normalization techniques to enhance
training stability and generalization capability. Furthermore, to improve the model’s performance in
multi-class recognition tasks, learning rate decay and early stopping strategies are employed during
training to reduce the risk of overfitting. To evaluate the model’s adaptability in practical
deployment scenarios, memory usage, total parameter count, and latency during inference were
controlled in the experimental setup. Testing shows that the overall model parameter count is kept
below 2.5 million, with inference time per image under 30 milliseconds, enabling stable operation
on various embedded platforms such as Raspberry Pi 4B and Jetson Nano. Although some advanced
face recognition methods adopt more complex loss functions during training (e.g., ArcFace, Triplet
Loss), these methods often require intricate sample construction and increase training and
deployment complexity. Considering practical needs for model reusability and deployment
simplicity, this study adopts a classic classification loss function, which maintains training stability
and network accuracy while significantly reducing engineering implementation complexity.
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Ultimately, the trained model can predict identities from input images in real-world scenarios.
Experimental results demonstrate that the network structure maintains low parameter count and high
processing speed while achieving excellent recognition accuracy, particularly showing stable and
reliable performance on real-world complex datasets such as LFW.

4. Experiments

4.1. Experimental setup

The experiments were conducted on two platforms: training used a deep learning server with an
NVIDIA RTX 3060 GPU (12GB) running Ubuntu 20.04 and PyTorch 1.12, while deployment and
testing were performed on an embedded NVIDIA Jetson Nano with a quad-core ARM Cortex-A57
CPU and 128-core Maxwell GPU, common in robotics and edge devices. To ensure fairness and
reproducibility, the LFW dataset—containing over 13,000 images of 5,749 identities with diverse
lighting, pose, and backgrounds—was used for training and evaluation. Multiple sub-test sets
simulating real-world conditions such as occlusion, lighting variations, and profile views were
created. Images were uniformly cropped to 112×112 and aligned via facial keypoints. Data
augmentation including random horizontal flipping, brightness adjustment, and random occlusion
was applied to enhance robustness and generalization. The model, based on MobileNetV3 with
CBAM and SE attention modules inserted after several convolutional layers, was trained using the
Adam optimizer with an initial learning rate of 0.001 and cosine annealing decay over 50 epochs
with batch size 64. Cross-entropy loss was used for classification, with ArcFace loss applied in some
experiments to improve inter-class separability. The normalized output features were compared via
cosine similarity for face verification. Evaluation metrics included accuracy, model size
(parameters), and inference time on Jetson Nano, reflecting the model’s efficiency and deployability
in robotic applications.

4.2. Comparative analysis

To validate the effectiveness of the proposed method, it was compared with several mainstream face
recognition models, including ResNet-50, FaceNet, MobileNetV3, and ShuffleNetV2. All
experiments were conducted under the same dataset and platform configurations to ensure fairness
in comparison. Table 1 summarizes the performance of each model in terms of parameter size,
recognition accuracy, and inference efficiency.

Table 1. Performance comparison of the proposed model and mainstream models on face
recognition task (LFW dataset)

Model Parameter
(M)

LFW Accuracy
(%)

Inference Time
(ms) Characteristics

ResNet-50 23.5 99.13 270 High precision, high computational cost

FaceNet 22.0 98.70 310 Strong feature expression, difficult
deployment

MobileNetV3 3.5 96.50 87 Lightweight and fast, slightly lower accuracy
ShuffleNetV2 3.4 96.41 95 Simple architecture, low power consumption

Ours
(CNN+CBAM

)
4.1 98.67 89 High precision, deployment friendly
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As shown in Table 1, ResNet-50 achieves a recognition accuracy of 99.13% on the LFW dataset,
representing the performance upper bound of deep networks under high computational power
conditions. However, its model parameters reach 23.5 million, with high computational complexity,
and an average inference time of 270 ms per image, making it unsuitable for deployment on edge
computing devices. Although FaceNet demonstrates strong feature learning capabilities, its complex
architecture results in high deployment costs, with inference latency exceeding 300 ms on the Jetson
Nano platform, limiting its practicality. Among lightweight networks, MobileNetV3 offers a smaller
model size and faster inference speed, achieving 96.50% accuracy on LFW with only 3.5 million
parameters and an inference time of 87 ms, making it favorable for embedded deployment.
ShuffleNetV2, with a more efficient channel grouping strategy, reduces computational complexity
further, attaining 96.41% accuracy while maintaining an inference time around 95 ms. Compared to
these models, the proposed model—based on a lightweight backbone network integrated with
attention mechanisms—achieves superior recognition performance while maintaining a small model
size. It attains 98.67% accuracy on LFW, significantly outperforming other lightweight models and
falling less than 0.5% behind ResNet-50. Additionally, the model parameters are controlled at 4.1
million, with an inference time of 89 ms, nearly matching MobileNetV3, demonstrating a better
balance between accuracy and efficiency.
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With the expansion of applications such as smart cities, intelligent security, and human–robot
interaction, face recognition has become a critical component of robot vision systems. These
systems often face strict constraints on computational resources and energy consumption, especially
on embedded or mobile platforms. This paper presents a lightweight face recognition model
integrating MobileNetV3 as the backbone with CBAM and SE attention modules to enhance focus
on key facial features, improving discrimination while maintaining compactness. To increase
robustness against lighting changes, occlusions, and pose variations, data augmentation is applied
during training. The model outputs normalized feature embeddings and uses cosine similarity for
identity verification. Experiments on the LFW dataset, including challenging subsets, show the
model achieves 98.67% accuracy with 4.1 million parameters and inference time under 89 ms on
NVIDIA Jetson Nano. Compared to models like ResNet-50 and FaceNet, it balances accuracy, size,
and speed, suitable for resource-limited robotic vision systems. The study confirms that combining
lightweight networks with attention mechanisms enhances recognition performance with low
computational cost, offering a practical solution for efficient, low-power face recognition in
robotics.
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