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The widespread adoption of smart cameras in areas such as security monitoring,
intelligent transportation, and industrial quality inspection is fueled by the growing number
of Internet of Things (IoT) devices and continuous progress in artificial intelligence (Al)
algorithms. However, traditional video surveillance systems rely on cloud computing and
face challenges like limited bandwidth, high latency, and privacy risks. Edge computing, a
distributed architecture that brings computation and storage closer to the data source, offers
an effective way to improve smart camera video processing and recognition. Therefore, the
paper investigates smart camera video processing and recognition systems based on edge
computing reviewing key technologies and implementation methods via recent research and
typical applications. In addition, it examines the progress and features of edge platform
architecture, video analysis and object detection algorithms, resource scheduling and energy
management, model compression, and data security and privacy protection. The results
show that edge-intelligent video systems are effective in reducing network load, lowering
response latency, and improving the security of local data processing. However, they still
face technical challenges in heterogeneous resource management, real-time scheduling, and
multi-task collaboration. As such, this paper further reviews the main existing issues and
offers a practical outlook on system optimization and future applications.
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The growth of smart security, intelligent transportation, and the urban Internet of Things (IoT) has
sharply increased video processing demands, driving smart cameras to evolve into edge artificial
intelligence (Al) terminals integrating sensing, analysis, and feedback. As such, video now accounts
for over 80% of [oT data traffic [1]. Traditional cloud-based processing, which uploads raw video to
servers, faces issues such as bandwidth strain, latency, and privacy risks, making it unsuitable for
scenarios demanding low latency and high privacy. For this reason, edge computing has emerged as
a solution. By placing computing resources near the data source, it enables cameras to perform tasks
like object detection and behavior recognition locally, reducing latency, improving efficiency, and
enhancing user privacy protection [2]. Combined with embedded Al chips such as Jetson and Coral
Tensor Processing Units (TPUs), smart cameras can operate independently or collaborate with edge
servers to handle complex scenarios like cross-view tracking and multi-camera coordination. This
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shift of computation to the edge significantly improves system response speed and adaptability [3].
However, most current research still focuses on model compression and single-point deployment,
with limited attention to co-design, integration, and privacy protection, which are key to reliable
video recognition on constrained devices. Accordingly, this paper examines video processing and
recognition in smart cameras under edge computing, reviewing hardware architectures, deployment
strategies, algorithm optimization, and security design, while summarizing current progress and key
challenges. Meanwhile, it highlights the practicality of edge platforms, algorithm adaptability, and
deployment challenges, while outlining future directions in multimodal fusion, adaptive reasoning,
and trusted Al to inform subsequent research and applications.

2. Fundamentals of edge computing and architecture of intelligent camera systems
2.1. The composition and framework of intelligent camera systems

As the key terminal of edge intelligence, smart cameras need to efficiently complete the closed-loop
processing from video capture to preliminary analysis on the end side. The system typically consists
of four modules, including video acquisition, computation processing, communication transmission,
and data management, and forms a complete perception-to-decision pipeline via the coordination of
data and control flows. The video acquisition module handles image sensing and preprocessing,
ensuring input quality under varying lighting and motion conditions. The computational processing
module performs image analysis, feature extraction, and local inference, to balance performance and
energy efficiency. The communication module manages data exchange with the edge or cloud,
adjusting bandwidth usage based on task demands. The data management module supports local
caching, task scheduling, and model updates, boosting scalability and overall system efficiency. In
addition, smart cameras must address power limits, harsh environments, and remote maintenance.
Due to limited on-device capacity, edge platforms are necessary to handle complex tasks locally.

2.2. The empowerment of camera systems by edge computing

Based on multi-module collaboration, edge computing effectively supports the end-side inference of
smart cameras by allocating computational resources nearby, boosting response time and processing
performance. Compared with the traditional remote processing relying on the cloud, local inference
can complete target detection and behavior analysis, significantly reduce latency and bandwidth
consumption, and reduce the dependence on network stability. Currently, low-power Al chips paired
with lightweight models are widely applied in real-time demanding scenarios, such as intelligent
transportation and security surveillance. For example, the Jetson platform runs lightweight detection
models to enable real-time local analysis with limited power consumption. For better performance,
embedded platforms, fast inference engines, and model compression techniques are widely used to
ensure stable device operation [5]. Edge computing can also complete the preliminary analysis on
the end side and only upload key features or results, reducing network load and privacy leakage risk,
which is suitable for crowded or private areas. However, limited computing power and storage make
it challenging for a single edge node to handle large-scale analysis in complex scenarios, making
cloud-edge collaboration a key development direction for intelligent video systems.

2.3. The evolution and structure of cloud-edge collaborative architectures

To address the limitations of edge devices in computing power and storage, smart camera systems
increasingly adopt a three-layer “cloud-edge-end” cooperative architecture, as illustrated in Figure 1
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[6]. This architecture enables large-scale, high-precision video analysis via layered task allocation
and the combined computing strengths of each layer. The end-side camera handles data collection
and initial inference for rapid local response, while the edge node aggregates multiple video streams,
performs regional analysis, and manages device coordination. Meanwhile, ,the cloud is responsible
for model training, cross-scene optimization, and historical data mining. In this workflow, task flow
moves upward from the end to the cloud. Conversely, control flow moves downward, with the cloud
issuing models and commands. Thus, the edge and end collaborate in response, enabling intelligent
sensing across time and space. Besides, edge nodes can share resources through device-to-device
(D2D) communication to support collaborative inference among multiple cameras. This architecture
combines the real-time responsiveness of the end, the near-field computing capability of the edge,
and the powerful computational resources of the cloud, and has been widely applied in smart cities,
traffic monitoring, and other scenarios requiring high real-time processing capability [7,8].
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Figure 1. Cloud—edge—end collaborative architecture
3. Edge computing platform architecture and system implementation technologies
3.1. Embedded edge computing platforms and acceleration chips

In the cloud-edge-end collaborative architecture, embedded computing platforms and acceleration
chips form the essential hardware basis for enabling edge computing. They provide the necessary
computational power to process multiple video streams and perform deep learning inference in real
time, all within constrained space and power budgets. At present, mainstream embedded platforms
commonly use the ARM architecture, featuring multi-core CPUs and embedded GPUs to enable
both general computing and visual processing. They are also well-suited for mainstream lightweight
deep learning frameworks, supporting efficient deployment in edge scenarios. Widely used in areas
like city surveillance and traffic monitoring, NVIDIA Jetson and Huawei’s Ascend Atlas series are
representative examples of current embedded platforms [9]. Paired with dedicated Al acceleration
chips such as Edge TPU and Movidius, these platforms can greatly boost neural network inference
performance while supporting low-power, high-concurrency deployment at the edge. In customized
and highly flexible scenarios, such as in-vehicle or industrial inspection, FPGAs can be optimized
for specific models by relying on programmable logic, while ASICs commonly used in large-scale
deployments can achieve efficient inference through high integration and extreme power control.
The actual choice should consider factors such as computational load, power constraints, cost, and
ecosystem support. For example, road surveillance places greater emphasis on energy efficiency and
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cost, whereas tasks such as industrial quality inspection or high-precision analysis call for more
powerful computing to ensure recognition accuracy [10].

3.2. Operating systems and lightweight deployment frameworks

In addition to embedded hardware, reliable operating systems and deployment frameworks play a
vital role in enabling stable operation and efficient updates of Al on the end side of smart cameras.
This is especially important, as edge intelligence scenarios place high demands on system real-time
performance, stability, and resource scheduling. Embedded Linux distributions like Ubuntu Core
and Buildroot, are widely used for video stream processing and general system management due to
their customizability and strong hardware compatibility. In contrast, real-time operating systems
(RTOS) like FreeRTOS and RT-Thread are better suited for latency-sensitive applications, offering
millisecond- or even microsecond-level responsiveness via efficient multi-thread scheduling and
interrupt handling. The efficient multi-thread scheduling and interrupt response mechanism supports
millisecond or even microsecond fast processing. On top of the system layer, containerization and
lightweight deployment solutions are key to enabling agile delivery of edge Al services. Tools like
Docker and K3s encapsulate Al applications and dependencies into portable modules, supporting
remote updates and rapid deployment. Besides, open-source frameworks such as EdgeX Foundry
enhance software-hardware decoupling, lowering the adaptation cost across different edge hardware
platforms. Limited edge computing power requires lightweight and efficient inference frameworks.
In this context, operating systems and containers are crucial for stable, scalable deployment [11].

3.3. System scheduling and energy consumption optimization strategies

Supported by hardware and software platforms and containerized deployment, efficient system
scheduling and energy efficiency management is a key part of ensuring sustainable operation of
edge reasoning. In the face of multiple video streams, limited computing power and dynamic scene
changes, traditional static task scheduling is difficult to adapt to the complex and changing load
requirements at the edge. Dynamic-aware scheduling mechanism flexibly adjusts resource allocation
and processing priority by real-time sensing task urgency, content complexity and node load status.
For example, the VideoEdge system combines frame content analysis and multi-layer response
strategies to switch task execution between local and cloud based on scene changes, reducing
bandwidth pressure and node power consumption [12]. Heterogeneous arithmetic scheduling further
improves the hardware utilization of edge devices, where CPU, GPU, NPU, and other arithmetic
units can be dynamically allocated according to the task characteristics and model complexity, and
the CoEdge framework dynamically switches and load balances the tasks by estimating the latency
and power consumption of each processing unit, which is a good balance between real-time
performance and energy efficiency [13]. To reduce the overhead of repetitive inference, feature
caching and reuse mechanisms are also common optimizations. For low-dynamic video streams, the
system can cache the key region features of the previous frame at the edge node and reuse them to
reduce redundant computation; while in high dynamic environments, the cache can be dynamically
refreshed in combination with the change detection algorithm to ensure the accuracy of the results.
At the hardware level, energy-efficiency management techniques such as Dynamic Voltage
Frequency Regulation (DVFS) automatically adjust the voltage and operating frequency of the
computing units through real-time load prediction, balancing the arithmetic power and power
consumption without affecting the core reasoning task [14].
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4. Edge-side video recognition and data security mechanisms
4.1. Video task classification and recognition process

In edge environments, video analytics involves tasks like object detection, classification, tracking,
and behavior analysis. Through effective module coordination, edge-side video analytics forms a
closed-loop framework that enables intelligent decision-making directly from real-time visual input.
At its core, this approach leverages advanced object detection techniques to identify key targets,
such as pedestrians and vehicles, in complex scenes with high efficiency. Thereafter, classification
and attribute recognition methods extract detailed semantic information to distinguish between fine-
grained object categories. To preserve temporal consistency and support deeper insight into dynamic
behaviors, multi-object tracking algorithms generate continuous trajectories across video frames.
These interlinked methods collectively enable the system to recognize patterns, infer intent, and
detect anomalies, thus enhancing the responsiveness and intelligence of edge video systems. In
public safety, intelligent transportation, and related domains, event analysis plays a critical role in
identifying complex behaviors, such as retrograde motion, perimeter breaches, or falls, which can in
turn trigger timely alerts to enhance system responsiveness and practical utility. Besides, specialized
functions like facial recognition and crowd analysis are often integrated with detection and tracking
modules to support a range of application scenarios, including access control and passenger flow
monitoring. To address the constraints of edge computing, various input-stage pre-processing
techniques like dynamic frame rate adjustment, region of interest (ROI) extraction, and resolution
compression are widely adopted to streamline computations and reduce energy consumption. By
minimizing redundancy, focusing on key targets, and lowering data volume, these methods enable
real-time and accurate video analysis even under limited hardware conditions, as shown in Figure 2.
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Figure 2. Edge-side video processing pipeline
4.2. Mainstream recognition algorithms and lightweight models

The advancement of edge video recognition is largely driven by deep learning, where lightweight
convolutional neural network (CNN) architectures play a key role in enabling efficient deployment
on embedded smart camera systems. In light of resource constraints inherent to edge computing,
efficient neural architectures have been actively explored. For detection tasks, YOLO models have
become a mainstream choice in traffic and surveillance applications, benefiting from anchor-free
strategies and multi-scale feature fusion. In parallel, MobileNet variants achieve superior parameter
efficiency and inference performance via depthwise separable convolutions and attention modules,
making them ideal for embedded deployment. These models are particularly well-suited for edge
applications such as face recognition and action classification, where computational efficiency and
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real-time responsiveness are essential. Furthermore, architectures such as ShuffleNet and GhostNet
minimize computational load and memory bandwidth by using advanced convolutional strategies
like channel grouping and feature reuse. These models are well-suited for multitask scenarios, such
as pedestrian detection and behavior analysis, where accuracy and energy efficiency are critical. For
tasks requiring multi-scale detection and segmentation, EfficientDet integrates the BiFPN structure
to enhance small object recognition, while lightweight segmentation networks like PP-LiteSeg
achieve an effective trade-off between speed and accuracy in applications such as industrial defect
inspection and traffic sign recognition. In recent years, lightweight visual Transformer architectures
like MobileViT and EfficientFormer have been developed to incorporate long-range dependencies
into the local perception framework of CNNs, enhancing global modeling capabilities at the edge.
Concurrently, neural architecture search (NAS) like TinyNAS and Once-for-All (OFA) enables fast
generation of hardware-adaptive models, improving flexibility and deployment on edge devices.

In edge camera applications, achieving real-time and efficient performance for complex video tasks
depends on model compression and structural optimization. To reduce computational and memory
overhead, pruning is commonly employed in edge-optimized models like YOLO and ResNet by
eliminating redundant neurons and channels. Quantization accelerates inference and improves
computational efficiency by compressing weights and activations from 32-bit floating-point to 8-bit
or lower precision integers, with minimal accuracy loss. Meanwhile, knowledge distillation, which
leverages a high-capacity teacher network to supervise a compact student model, offers an effective
trade-off between model size and representational power, particularly in recognition tasks requiring
both efficiency and accuracy. In addition to manual optimization, NAS has become an important
tool for edge model design in recent years, combining hardware constraints and multi-objective
optimization to generate adaptive model architectures with a better balance of power, storage, and
real-time performance. Meanwhile, event-driven inference and dynamic scheduling mechanisms are
adopted in certain scenarios. By triggering inference only upon relevant visual changes or detected
events, these methods reduce redundant computations. Besides, they cooperate with hardware-level
load sensing and power management to support sustainable edge Al operations.

Despite the advantages of reduced latency and bandwidth usage, the extensive deployment and open
interfaces of smart cameras continue to pose risks to data, model, and hardware security, especially
in sensitive environments such as transportation and healthcare. Empirical studies have indicated
that physical attacks, such as adversarial patterns or light manipulation, can disrupt model inference,
while insufficient local inference and weak transmission encryption may lead to leakage of facial
data and location information [17]. To protect identity privacy, differential privacy techniques such
as Differential Identity Protection (DIP) apply controlled perturbations to local features, striking a
balance between recognition accuracy and anonymity [18]. However, threats like model inversion
and leakage during collaborative inference still pose challenges. Though techniques such as task
pruning and phased reasoning (e.g., PATROL, Secolnfer) help reduce exposure, they require careful
balancing between system performance and security guarantees [19,20]. Complementing these
software-level defenses, Trusted Execution Environments (TEE) and hardware-level isolation have
emerged as critical safeguards against side-channel and architectural vulnerabilities such as Spectre
and Meltdown [21]. A commonly adopted strategy is to perform identity recognition locally and
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transmit only structured results to the cloud, which necessitates lightweight models and efficient
inference frameworks. Homomorphic encryption allows direct computation on encrypted data while
ensuring data confidentiality. For example, dedicated system-on-chip architectures can boost energy
efficiency up to 6,000 times, while CNNs with homomorphic encryption support secure inference
with manageable trade-offs, though ciphertext computation remains a key bottleneck. Federated
learning mitigates privacy risks by conducting local training and sharing only model parameters,
thus eliminating the need to upload raw data; its applicability has been shown in multi-camera edge
scenarios [22-24]. Moreover, the integration of differential privacy, fuzzy obfuscation, and trusted
execution environments like ARM TrustZone and Intel SGX has increasingly reinforced edge video
system security in public surveillance and behavioral analysis [25].

The advancement of edge computing enables smart cameras to integrate multimodal sensing, which
greatly strengthens their perception and recognition capabilities in complex environments. Notably,
the integration of infrared and visible spectrum data markedly boosts the effectiveness of nighttime
surveillance and boosts perception reliability. The multi-scale edge gradient enhancement method
facilitates IR-assisted night surveillance on edge devices, demonstrating the practical advantages of
multimodal fusion [26]. To further optimize performance under resource constraints, smart cameras
are adopting adaptive reasoning mechanisms that adjust model structure and inference depth based
on scene complexity. In particular, the Adaptive Reasoning Model reduces redundant inference,
lowers token usage, and improves both training efficiency and resource utilization [27]. Besides, the
evolution of the end-edge-cloud architecture has enabled edge devices to collaborate across nodes in
both data processing and model execution. By sharing recognition results, multi-camera systems
improve cross-view accuracy, while systems like CONVINCE reduce redundancy and bandwidth
consumption via task offloading and collaborative inference [28]. Meanwhile, The cloud manages
historical data and models, while a semantics-driven edge-cloud framework optimizes task division,
allowing edge devices to offload tasks only when necessary [29]. Driven by regulations like GDPR,
edge Al must ensure privacy and compliance, thus leading to the widespread adoption of federated
learning, differential privacy, and cryptographic inference. Federated learning, differential privacy,
and trusted hardware ensure over 90% accuracy in camera tasks with strong privacy protection [30].

Edge smart cameras are challenged by limited computational capacity in the face of increasingly
complex models, insufficient generalization across varying scenes, inconsistent standards due to
hardware-software heterogeneity, and escalating system security requirements. Firstly, the rising
complexity of video analysis tasks requires smart cameras to support multi-task recognition and
object tracking with high accuracy and low latency. However, constrained by size and power, edge
devices cannot directly run large-scale deep neural networks. Achieving accurate, low-power, and
low-latency inference has thus become a core deployment challenge. Secondly, smart cameras are
deployed in diverse environments such as urban roads, industrial plants, and commercial spaces, yet
current models often struggle to generalize effectively across scenarios. Their limited cross-scene
adaptability often results in performance degradation or even recognition failure under data-scarce
conditions, making improved generalization a core challenge for large-scale deployment. Moreover,
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the heterogeneity of hardware and software lacks unified standards. Edge Al systems run on various
hardware platforms (e.g., NPU, GPU, FPGA) and software frameworks (e.g., TensorRT, TFLite),
with significant differences in chip architectures, arithmetic libraries, and deployment interfaces
across vendors. This fragmentation hinders model deployment and cross-platform migration. The
absence of unified model formats, API standards, and inference specifications severely limits system
scalability and maintainability. Finally, system security remains a critical challenge. In edge
deployment environments, smart cameras are vulnerable to physical attacks, malicious firmware
tampering, and model theft. As models grow in complexity and scale, traditional protection methods
are no longer sufficient to address all potential attack surfaces. Therefore, a secure edge system with
authentication, traceability, and update mechanisms is essential for reliable operation.

This paper reviews smart camera video processing and recognition under edge computing, covering
embedded platforms, Al acceleration hardware, model optimization techniques such as compression,
quantization, and distillation, as well as security and privacy measures at the edge. The study shows
that edge computing boosts the real-time performance and privacy protection of smart cameras but
remains constrained by limited computing resources and the trade-off between model complexity
and inference efficiency. Additionally, weak generalization across scenarios and the absence of
unified standards for heterogeneous software and hardware hinder system versatility and scalability.
In addition, system security remains a key challenge in edge intelligence deployment. Future efforts
should investigate the synergistic optimization of multimodal perception, adaptive inference, and
edge-cloud collaboration, integrated with trusted Al and privacy-preserving computing to enhance
system intelligence and security. As a core driver of smart camera development, edge intelligent
vision technology holds significant research value and broad application potential.
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