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Amid global efforts toward energy conservation and carbon reduction in maritime
transport, this study proposes an interdisciplinary optimization framework integrating
predictive analytics with advanced energy systems to address challenges in vessel
decarbonization. A Transformer-LSTM hybrid model is developed to forecast emission
patterns using historical operational data, enabling dynamic navigation strategy adjustments.
The complementary quadruple-heat supply system synergizes waste heat recovery, energy
efficiency optimization, and carbon capture technologies through an integrated control
architecture. Case studies demonstrate significant improvements in both Energy Efficiency
Existing Ship Index (EEXI) and Carbon Intensity Indicator (CII), achieving 18.7%
enhancement in energy utilization efficiency and 22.4% reduction in operational carbon
intensity compared to conventional systems. The proposed solution offers a cost-effective
pathway for retrofitting legacy vessels, particularly in optimizing power distribution and
thermal management under varying operational conditions. Quantitative analysis reveals the
system's potential to reduce annual greenhouse gas emissions by 34-41% per vessel,
substantiating its contribution toward achieving IMQO's 2050 decarbonization targets. This
research establishes a methodological framework for intelligent energy-carbon synergy
control in maritime applications, providing both theoretical advancements and practical

implementation strategies for the shipping industry's low-carbon transition.

old ships, EEXI, CII, Transformer-LSTM model, quadruple waste heat system,

intelligent regulation,

According to international statistics, the total CO2 emissions from maritime shipping increased from
909 million tons in 2013 to 932 million tons in 2015, reflecting a growth of 2.46%. Specifically,
emissions from international vessels, domestic ships, and fishing boats rose by 1.39%, 6.81%, and
16.97%, respectively [1]. In response to this upward trend, the International Maritime Organization
(IMO) introduced two regulatory frameworks in 2023—namely, the Energy Efficiency Existing Ship

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

72



Proceedings of CONF-MCEE 2026 Symposium: Advances in Sustainable Aviation and Aerospace Vehicle Automation
DOI: 10.54254/2755-2721/2026.KA26657

Index (EEXI) and the Carbon Intensity Indicator (CII)—to enforce more stringent global standards
for energy efficiency and carbon emissions in the shipping industry. While these frameworks support
the industry's green transition, they also introduce considerable challenges, including increased
operational costs, market segmentation, and the need to rethink traditional operational strategies.
Moreover, under the IMO's revised greenhouse gas emission reduction strategy, it is projected that
by 2030, nearly 89% of large bulk carriers may require rectification due to receiving a D or E rating
under the CII scheme.

2. Theoretical foundations and problem modeling
2.1. Introduction and computational modeling related to EEXI and CII

EEXI is a ship energy efficiency index introduced by IMO to reduce carbon emissions from
shipping. It determines compliance by comparing each ship's Attained EEXI with the Required
EEXI for the ship's size. If the Attained EEXI < Required EEX]I, the ship can continue to operate; if
it exceeds the standard, it will need to be taken out of service or take improvement measures. For
some ships, the EEXI is particularly important and is considered as a "trade license" [2].In order to
satisfy the universality of the EEXI calculation model for all ship types, the common calculation
formula is as follows:

3 (e *SFOC, *Cp s J+ § (P *SFOC, *Cr ;)
Capacity *V,,

EEXI =

(1)

2.2. Waste heat system architecture for quadruple supply
2.2.1. Overall design

This project designs a new type of "cooling, heating, electricity and desalination" quadruple-supply
retrofit program applicable to the low-carbon transformation of old ships, and the design process is
shown in Figure 1. Taking a Wirtsild ship as an example, its 350°C flue gas waste heat is recovered
by Rankine cycle generator set, and the high temperature steam from the boiler is driven to power
generation, cooling, heating and seawater desalination modules after shunt to realize the synergistic
utilization of multiple energies. In order to balance the supply and demand of each equipment, this
project introduces an automatic control system to regulate the flow of each circuit, based on the
Transformer-LSTM model carbon prediction and multi-objective optimization dynamic scheduling
for the parameter, to achieve the "cold, heat, electricity, desalination and carbon" five-dimensional
cross-media regulation.
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Figure 1. System flowchart
2.2.2. Working principle of each module

In order to simulate the real environment of the ship's nacelle and the adaptability of the overall
design equipment to the existing nacelle of the old ship, the overall C4D model diagram is shown in
Figure. 2(a).

.As shown in Figure 2, low-temperature multi-effect desalination unit: the waste heat of the
generator set and the cylinder liner water as a heat source, the treated seawater enters into the
evaporator of each effect, the seawater inside the evaporator completes the evaporation of the
concentrated seawater part of the fresh seawater mixed with fresh seawater to continue the new
cycle, the remaining concentrated seawater discharged out of the system. The first effect evaporator
seawater evaporation of steam into the next effect to continue to heat the seawater, and finally the
last effect evaporator steam into the condenser for condensation, in the unit piping laid with
temperature and pressure sensors, in the various effects of the evaporator is equipped with water
level sensors, detection of various values, the data will be transmitted to the Internet of Things
system.
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Figure 2. Schematic diagram of the quadruple-supply system

2.3. Principles of transformer-LSTM modeling
2.3.1. Modeling of LSTM

LSTM (Long Short-Term Memory Network) is a special kind of Recurrent Neural Network (RNN),
as shown in Figure 3, which solves the problem of gradient disappearance or explosion that is easy
to occur in traditional RNN when dealing with long sequences through the introduction of "memory
cells" and gating mechanism, and the core of LSTM is the Cell State (Cell State) that retains key
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information for a long time, while dynamically regulating the information forgetting and updating
and output through gating, so as to effectively capture long-term dependencies. Its core is that Cell
State can retain key information for a long time, and at the same time dynamically regulate the
forgetting, updating and outputting of information through gating, so as to effectively capture long-
term dependencies, which is widely used in natural language processing, time series prediction, and
other fields that require time-series modeling.

An LSTM consists of one or more LSTM cells, and a single LSTM cell internally consists of an
Oblivion Gate, an Input Gate, a Cell State Update, and an Output Gate, [3]as described below:

Oblivion gate: sift through historical information and decide what to keep or discard in the cell
state by sigmoid with the following formula:

f.=o W, *h_,x1+b,) )

Input gate: control the new information writing, combining the sigmoid screening candidate value
with the new candidate state generated by tanh with the following formula:

i, =0 W, *[h_,x 1+b) 3)

Cell state updating: synthesize the old information from the forgetting gate with the new
candidate values from the input gate to form a long-term memory with the following formula:

Cl = f[QCl*1 +it®C; (4)

Output gate: based on the current cell state and inputs, the hidden state of the final output is
calculated by sigmoid and tanh to decide the information to be passed to the next time step with the
following formula:

0, =0 (Wo * [hr—l’ X, ]+ b, ) (5)

While LSTM mitigates RNN gradient vanishing via gating mechanisms (forget/input/output gates),
its limited ability to capture global dependencies in long-period ship emission time-series (e.g.,
cross-voyage operational correlations) necessitates enhanced architecture. This study integrates
Transformer to augment global modeling through multi-head self-attention (SAM). Transformer's
parallelized encoder-decoder structure overcomes sequence processing constraints by dynamically
weighting interdependencies among features (e.g., speed, sea state). The hybrid Transformer-LSTM
synergistically combines LSTM's micro-dynamic sensitivity with Transformer's full temporal-scale
modeling, enabling comprehensive analysis of nonlinear sea state-emission relationships and
significantly improving carbon prediction accuracy.
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Figure 3. LSTM model structure
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Figure 5. Transformer-LSTM

Taking 25000 tons bulk carrier as an example, the data source of the ship is divided into two ways,
one way is to collect data in real time through the outboard environmental sensors, [4]and input the
data into the Transformer-LSTM model after processing to generate the theoretical optimal carbon
emission baseline value, as shown in Table 1; the other way is to set up the optimal operating
parameter interval of the quadruple-supply device, and to realize real-time collection and
transmission of operating data by relying on a series of networked and distributed high-precision
sensor arrays and intelligent transmission units, as shown in Table 2 [5].The other way is to set the
optimal operating parameter interval of the quadruple-supply device, relying on a series of
networked distributed high-precision sensor arrays and intelligent transmission units to realize the
real-time collection and transmission of operating data, as in Table 2 [6].

Table 1. Sensor selection for the first data channel

Sensor type Sensor Model measured variable Measurement range
GPS sensor Garmin GPS 18X HS Longitude, latitude 0-180° (longitude), 0-9° (latitude)
Ship Speed Sensor S518 ship's speed 0-30 sections
Rudder Angle Sensor Koden KMC-170 helm angle -180° to 180°
Wind Speed Sensor Young 05103 air velocity 0-60 m/s
Water velocity sensors RDI Workhorse water velocity 0-3 m/s
Draught Depth Sensor Aanderaa RCM 9 draft 0-20 meters
Wave Sensor SubC Wave Wave Significant Height 0-5 meters
temperature sensor Omega 320-1 sea surface temperature -20°C to 50°C
Carbon dioxide sensors Aeroqual Ozone Series Carbon dioxide concentration 0-5000 ppm
Buoy Sensor Aanderaa 426 depth (of waterway) 0-30 meters
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Table 2. Second data channel sensor selection

Crew Module Sensor Name model number Range/Parameter
ORC two-stage generator sets thermocouples WRNK-431 0-450°C
Pressure Transmitter Rosemount 3051S 0-60bar
Three-effect abs'orptloln heating and Solution Concentration Anton Paar DMA 0-60wt% LiBr
cooling units Sensor 4500M
Pressure sensors WIKA S-20 0-1500mmHg
Desalination unit Salinity Monitor HACH SL1000 0-50PSU
. Temperature Acquisition Niagara Tridium .
Energy Efficiency Management Platform Module TAH201 PT100 input
smart meter Siemens 7KM2112 0-690V AC
. . Fluke 2680A + Heat flow 0-
Special Sensors Efficiency Sensor Set Promass 83 2000W/m?

3.2. Construction of transformer-LSTM-based multidimensional time series modeling
3.2.1. Preprocessing of data

The data in this study comes from Shanghai Maritime University Yuming ship internship bulk
carrier, including the current ship's navigation status, marine environmental parameters and main
engine and auxiliary engine energy consumption indexes of a total of 23 types of input data, so it is
necessary to preprocess and construct a multi-dimensional time column input suitable for deep
learning, such as Table 3.

Table 3. Data characterization and processing

feature category Example of Input Data Containing Fields Pre-processing methods
ship's condition Speed, ROT, Draught Z-score standardization
marine environment Wind Speed, mean wave period Standardized + sliding average smoothing
Orientation parameters Relative Wind Direction Sine-cosine coding
geographic location Lon, Lat Original value retained
thermodynamic parameter sea_surface temperature standardization

Equate the original date variable to hour, day of week, and month, and use sine-cosine coding to
eliminate breakpoints with periodicity:

hour _sin =sin(2 * hour / 24) (6)
hour _cos = cos(27t *hour / 24) (7)

Z-score normalization of variable features such as Speed, Wind Speed, and Draught:

Xnorm = (8)
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Decompose the variables related to direction angle such as Relative Wind Direction and Relative
Current Direction into two-dimensional vectors:

dir _x=cos@) )
dir _y =sin(0) (10)

The raw values of Lon and Lat, which are geographic features, are retained directly for modeling
regional differences in ocean conditions.
Outliers will be detected using a modified Hampel filter where MAD (Median Absolute

Deviation) is defined as median(I , —median(X ))

fluctuation values:

,using linear interpolation instead of anomalous

outlier =|x, - median(X ) > 3* MAD (11)
3.2.2. Model architecture setup

In this paper, we innovatively propose Transformer-LSTM hybrid architecture on ships as in Figure.
6, which fuses global dependency modeling with local temporal pattern capturing capability.
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Positional coding: using a coding matrix capable of leamingPERT*d ,summed with input
features:

X =X+P (13)
Layer with residual linking: the output of each layer is:
Layer(X )= LayerNorm(X + Dropout(FFN (Attention(X )))) (14)

where the FFN in the feedforward network contains two fully connected layers with dimensions
from 265 to 23 and an activation function of GULU.
(3LSTM timing modeling module:

B*T*d
Receive the context-enhanced sequence output by Transformer Hyos R , Extract timing

features by two-layer LSTM:
ht’ct = LSTM(ht—l’thl’Httrans) (15)

@ output layer:
where the hidden state will be mapped through the fully connected network CO2 predicted value:

ﬂ:WZ*ReLU(‘/Vl*hT—l—bl)—'_bZ (16)

128*64 64*1
among others W, ER , W,ER

3.2.3. Results of model predictions

Experimental results (Figure.7) demonstrate that the Transformer-LSTM hybrid model significantly
outperforms the single LSTM model, reducing MAE and RMSE by 7.8% and 14.1% respectively
(p<0.05), while MAPE decreased sharply from 136.3% to 57.0%, [7] indicating qualitative
improvement in learning ship emission features. The R? increase from 0.12 to 0.33 validates the
model's capability to analyze complex operational condition-carbon emission correlations.
Technically, the Transformer's multi-head attention captures long-period features (e.g., speed, sea
state) while LSTM gating maintains sensitivity to micro-dynamics (e.g., engine load),
synergistically enabling multi-scale feature modeling [8].This reduces single-voyage carbon
emission errors by ~2.3 tons, significantly enhancing quadruple-supply system control accuracy and
providing a credible data baseline for dynamic scheduling optimization.
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Figure 7. Comparison of different prediction models
3.3. Construction of dynamic scheduling algorithms for quadruple-supply

This project constructs an intelligent scheduling model for the quadruple-heating system (power
generation, refrigeration, heating, seawater desalination) using a Python-based core framework. The
model integrates multi-physical field parameters (e.g., flue gas temperature: 350-390°C, jacket water
temperature: 90°C) and employs a multi-objective optimization architecture targeting emission
reduction, energy efficiency, heat utilization, and freshwater production. Real-time calculation via
a weight mapping dictionary generates Pareto-optimal solutions, trained using the Adam optimizer
(1000 iterations, varied strategy ratios) [9].
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Figure 8. Scheduling adjustment effects
3.4. Summary of innovations

This study pioneers the integration of a Transformer-LSTM model with a quadruple-function waste
heat recovery system for retrofitting aging ocean-going bulk carriers. The core innovation is a dual-
channel intelligent synergy control architecture (Figure. 9) [10]. The environmental regulation
channel utilizes outboard sensors and the Transformer-LSTM model to dynamically generate an
optimal carbon emission baseline, triggering actuator adjustments to the recovery system upon
significant deviations. Concurrently, the process regulation channel employs high-precision internal
sensors to monitor equipment performance and issue corrective commands during abnormal
fluctuations [7]. This dual-loop mechanism synergistically links real-time environmental conditions
with internal system responses, significantly enhancing dynamic regulation, stability [11].
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4. Conclusion

The proposed dual-channel intelligent control framework, combining Transformer-LSTM-based
carbon prediction with an advanced quadruple-supply waste heat system, represents a significant
step forward in intelligent maritime energy management. This approach not only improves
predictive accuracy and energy utilization under complex marine conditions, but also delivers a
scalable, retrofittable pathway for legacy vessels to meet increasingly stringent decarbonization
mandates [12].

In the broader context, this integrated architecture addresses key bottlenecks in current maritime
emission control—namely, the limited predictive capabilities of conventional models and the
insufficient coordination across onboard energy systems [13]. By linking emission forecasting with
dynamic system scheduling, the solution ensures consistent compliance with EEXI and CII
standards while enhancing fuel economy and reducing greenhouse gas emissions [14].

Looking ahead, the model holds substantial potential for expansion to other vessel types and
energy management scenarios. Future research may further improve the robustness of the control
logic under extreme sea states, explore fusion with renewable onboard energy sources, [15] and
apply reinforcement learning to autonomously optimize decision-making over longer voyages.
Ultimately, this work lays a technical foundation for achieving the IMO 2050 decarbonization goals
through intelligent, data-driven ship operations [16].
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