
Design a 5-stage pipeline RISC-V CPU and optimise its ALU

Lifu Deng

Glasgow College, University of Electronic Science and Technology of China, 611731

Chengdu, China

2021190505028@std.uestc.edu.cn

Abstract. The RISC-V instruction set has advanced and expanded significantly in recent years.

It is an open instruction set architecture (ISA) based on the concept of Reduced Instruction Set

Computing (RISC). This article uses Verilog to design a 5-stage pipeline CPU based on RISC-

V architecture in Vivado 2022.2. The CPU can execute 38 instructions and optimises its

arithmetic logic unit (ALU) by optimising adders, shifters, and multipliers. Next, write a

testbench in the simulation software to verify the functionality of the CPU. RTL diagrams and

reports are then generated to verify the design structure and evaluate resource allocation. Finally,

the CPU successfully executes the instruction and obtains the correct operation result, and the

occupation of LUT resources in the shifter part is reduced. This work serves as an important

reference for system-on-chip (SoC) and computer design in general. It not only highlights the

potential of the RISC-V architecture but also demonstrates the success of optimisation efforts.

This paves the way for more powerful and efficient computing systems.

Keywords: RISC-V, Instructions, ALU, Testbench.

1. Introduction

RISC-V is an instruction set architecture (ISA) that is open and free. It has generated a lot of interest in

the field of computer science due to the fact that it has the potential to completely transform the way

that processors and systems are designed [1]. RISC-V has a wide range of applications thanks to its

versatility and flexibility. These applications include low-power embedded devices, high-performance

computation, computer security, and machine learning [1-3]. It is likely that RISC-V's influence on the

global chip industry, as well as the wider technological environment, will increase as it continues to

flourish [3]. This heralds a future that is both innovative and exciting.

This paper uses Verilog hardware description language to design a five-stage pipeline CPU. Using

the Vivado 2022.2 simulation software, the CPU is designed to support RV32I 37 basic instructions and

a multiplication extension instruction. The ALU module is optimised with carry look-ahead adders,

barrel shifters and multipliers combined with the Wallace tree booth algorithm. Create a test file to run

a mock test, then check the waveform it generates to see if it executes the instructions correctly. In

addition, synthesise generates RTL diagrams, judges whether the design structure requirements are met,

and analyses resource occupancy according to the synthesised report. The CPU has guiding significance

for the processor design of embedded and Internet of Things devices and also provides a new design

idea for the optimization of the pipeline and ALU in the processor.

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/34/20230334

© 2023 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

237

2. Basic theory of RISC-V and its development prospect

RISC-V refers to the fifth generation of reduced instruction set. The primary advantage of RISC-V is its

adaptability and customisation. The architecture is organised as a modest ISA foundation with several

optional extensions. This design methodology enables developers to customise RISC-V processors to

meet the specific needs of their applications, making them appropriate for a wide range of computing

devices. The European Processor Initiative has adopted RISC-V for designing and manufacturing

supercomputing CPUs [2].

The pervasive adoption of RISC-V across many domains demonstrates its versatility. RISC-V has

demonstrated its ability to operate a variety of embedded systems, from consumer devices and Internet

of Things (IoT) devices to automotive, industrial, and medical applications. In addition, the

telecommunications and mobile industries, as well as peripheral computing and data centres, have

embraced RISC-V [3]. As a consequence, RISC-V has become a crucial component in the advancement

of technology across multiple industries.

Growing interest in RISC-V extends to computer security research, where hardware- and

architecture-based security techniques are being investigated. Tao Lu's comprehensive survey

extensively explores the security aspects of the RISC-V architecture, covering various key areas,

including hardware and physical access security, etc. [1]. This demonstrates the capability of RISC-V

to address security issues and bolsters its importance in the field of cybersecurity.

Machine learning is another area where RISC-V is acquiring momentum. Researchers have provided

a quantitative taxonomy of RISC-V Systems-on-Chip (SoCs) and identified future machine learning

research opportunities using RISC-V open-source hardware designs [1]. The open nature of RISC-V

enables the construction of specialised hardware accelerators to improve the performance of machine

learning. This creates new opportunities for RISC-V substantially contributing to the growth of machine

learning technologies.

RISC-V's continual development and research indicate a bright future for the ISA. The fact that it is

accessible and free to use fosters a thriving ecosystem of research and development, resulting in

continuous enhancements and innovations. Recent research indicates that RISC-V has the potential to

remain at the vanguard of advances in computer science and the chip industry.

3. Design and implementation

3.1. instruction set selection

First, determine the instruction set to be implemented. To implement 37 instructions in RV32I and an

extended multiplication instruction shown in table. 1.

Table 1. Chosen instruction [4].

Instruction

Category

Example Instructions Description

R-Type

I-Type

U-Type

J-Type

B-Type

add, sub, sll, slt, sltu,

xor, srl, sra, or, and, mul

addi, slti, sltiu, ori, xori,

andi, slli, srli, srai

lui, auipc

jal, jalr

Performs arithmetic and logical operations on two

registers and stores the result in rd.

Performs arithmetic and logical operations on a register

(rs1) and an immediate value and stores the result in rd.

Loads a value into the highest 20 bits of a register (lui)

or adds a value to the PC (auipc).

Performs an unconditional jump (jal) or jump register

(jalr) to a target address specified by an immediate or

register value.

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/34/20230334

238

S-Type

beq, bne, blt, bltu, bge,

bgeu

sw, sh, sb lw, lh, lb, lhu,

lbu

Performs conditional branches based on the comparison

of two registers with an immediate value.

Loads or stores register data into memory. Two

registers and an instantaneous value calculate the

effective address.

There are six different types of instruction. Then use Verilog to develop and design a single-cycle

CPU that can execute the above instructions in Vivado 2022.2 [4, 5]. The whole CPU structure was

designed as shown in Figure 1.

Figure 1. CPU structure [4].

3.2. Data path

The data path includes four modules: Decoder, ALU, Registers, and Branch [5]. Decoder is responsible

for decoding instructions and splitting them into opcode, function code, registers number and immediate

counting parts. Then the ALU calculates a result based on the input control signal and the values in RS1

(operating register 1) and RS2 (operating register 2) for output. Registers serve as essential modules

within the CPU, responsible for storing both data and addresses. In the RISC-V fundamental ISA, there

are 31 general-purpose registers specifically designed for holding integer values. Notably, Register x0

is unique, as it always holds a constant value of 0 [5]. These registers play a crucial role in facilitating

efficient data manipulation and computation within the CPU, contributing to the overall performance

and functionality of the RISC-V architecture. A program counter (PC) register is also accessible to the

user and stores the address of the current instruction. The branch is the part of the CPU responsible for

implementing conditional jumps. It judges whether the branch condition is satisfied according to the

condition code (funct3) of the instruction and the value of two registers (rs1 and rs2). According to the

instruction's immediate value, it determines the destination address. Whenever the branch condition is

satisfied, write the target address to PC; otherwise, add 4 to PC and continue to execute the next

instruction.

3.3. Control unit

The control unit includes two modules, Main control and ALU control, which are the components in the

CPU responsible for generating control signals. It determines the type, format and function of the

instruction according to the operation code (opcode) and function code (funct3 and funct7) of the

instruction. It generates corresponding control signals to control the work of other components.

Instruction Memory

ROM

Data Memory

RAM

ALU controller Main controller

Control Unit

Data Path

Decoder ALU Registers Branch

Table 1. (continued).

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/34/20230334

239

3.4. 5-Stages flow

The processor's instruction execution is carried out through a well-structured five-stage pipeline:

fetching, decoding, executing, accessing memory, and writing back [6, 7]. This architectural approach

effectively divides the execution process into smaller, more manageable stages, akin to breaking down

a large combinational logic into five smaller combinational logics. Each of these smaller modules is

designed to be executed within a single cycle, resulting in a notable reduction in the CPU clock cycle

and the potential for increased CPU frequency.

Implementing the pipeline requires more than just reorganizing and packaging modules; it involves

a meticulous interruption of the "path" between each submodule. Despite the interruption, the original

signal circulation between the submodules must remain unaltered. To achieve this, a set of pipeline

registers is introduced between the two submodules, ensuring seamless data flow and synchronization

throughout the pipeline stages. This clever design approach optimizes the CPU's performance, enabling

it to execute instructions efficiently and enhance overall processing speed.

3.5. Optimisation of the ALU

The last is the optimization of the ALU module. The addition is the fundamental mathematical operation

and an essential ALU operation. Addition logic includes ripple adder, carry choose adder, and others.

These circuits have extensive propagation delays because the carry-sum of higher bits depends on the

carry-out of lower important bits. CLA resolves this issue. Inputs calculate each bit's carry-sum with

this method [8].

Theoretically, when designing a 32-bit CLA adder, all carry, and standard bits can be generated in

parallel at the same time, but this will make the circuit structure very complicated and greatly increase

the fan-in and fan-out of the circuit, which is not feasible in actual design. Therefore, a 32-bit adder is

implemented in parallel within a group and between groups; that is, a 4-bit CLA adder is implemented

first, and then a 16-bit CLA adder is implemented in parallel between groups of four 4-bit CLA adders,

and a 32-bit CLA adder is implemented in parallel between groups of two 16-bit CLA adders as figure

2 shown. This design scheme takes advantage of the low delay of CLA, shortens the longest calculation

path, and avoids making the circuit too complicated. It is an ideal 32-bit adder design scheme.

Figure 2. CLA adder [8].

A barrel shifter that can rotate or shift a data word by any number of bits in a single clock cycle. It

connects the input data word directly to the correct position of the output without cascading shifts over

multiple clock cycles. This increases the speed of the shifter and reduces latency [9]. The barrel shifter

can also realise different shift or rotation functions according to the control signal, such as logical left

4bit CLA

4bit CLA

16bit BCLA

16bit

𝐶28 𝐶24 𝐶20 𝐶8 𝐶12 4bit CLA 4bit CLA 4bit CLA 4bit CLA 4bit CLA 4bit CLA 𝐶4
𝐶0

32bit BCLA 𝐶32

 𝑥1 𝑥0 𝑥1 𝑥0
𝐶16

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/34/20230334

240

shift, arithmetic right shift, etc., which can meet the needs of the CPU and reduce time delay. The

integration of multiple shift functions also makes it highly versatile.

The multiplier is jointly optimised through the booth algorithm combined with the Wallace tree and

the CLA designed earlier to reduce the time delay. The Booth algorithm is a multiplication algorithm

using two's complement, which reduces the number of partial products, thereby reducing the complexity

and delay of the multiplier [10]. Wallace tree: A multiplier structure that uses a compressor, Wallace

trees are able to split the addition of partial products into numerous levels and utilise compressors at

each level to concurrently lower the number of bits in each partial product. Wallace trees are an efficient

way to decrease the multiplier's size and power requirements while increasing its speed. Figure 3

illustrates the construction of the whole Wallace tree structure utilising multiple 3-2 compressors and a

4-2 compressor reduction.

Figure 3. Wallace tree [10].

4. Simulation verification

Ripes is an open-source RISC-V CPU simulation software, which can convert the written assembly

language into the corresponding machine code and can run instructions and view the data in registers or

memory in real time. Vivado is a well-known development and simulation test tool that plays a key role

in the CPU design process. Its powerful capabilities include compilation, synthesis, and implementation

of hardware Verilog descriptions; during synthesis, Vivado efficiently configures various logic

resources, including look-up tables, flip-flops, and RAM, and strategically arranges them within the

FPGA to create well-structured circuits. This complex arrangement ensures the seamless integration of

different functions and enables our complex CPU design. First, use the open-source tool Ripes to convert

the selected assembly instructions into the machine code required for the test, and then write the test file

in Vivado to generate the waveform diagram and synthesise the circuit and report.

4.1. instruction verification

As shown in Figure 4, write a program that adds -0xff, 4, and 0xff to the value in the r0 register and

stores them in r1, r2, and r3, and then logically shifts the value in R1 to the left. Logical right shift and

arithmetic right shift are written back to the R4, R5, and R6 registers, respectively.

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/34/20230334

241

Figure 4. Instructions in Ripes (Photo/Picture credit: Original).

As can be seen from Figure 5, the adder and shifter can work normally and write the correct value

into the corresponding register. Finally, verify the multiplication, and multiply the value in R1 and R2

to get the correct result 0xfffffc04.

Figure 5. Waveform (Photo/Picture credit: Original).

4.2. Synthesise and resource occupation analysis

Use Vivado to synthesise the code and generate the RTL graph of the CPU, as Figure 6 shown. You can

see that the generated synthesis graph includes instr_memory (instruction memory), control_inst

(control unit) and datapath_inst (Datapath) three parts. It can also be seen that the output (PC value) of

the top-level module is on the right.

Figure 6. The RTL graph of the CPU (Photo/Picture credit: Original).

From the project report in Vivado, the data in Table. 2 can be accessed. It can be noticed that the

barrel shifter saves the occupation of LUT resources due to its structural design. The abbreviation "LUT"

stands for "Look-Up Table." A Look-Up Table is a data structure or a hardware component that, in the

context of computer science and digital logic, is used to execute logic functions or mathematical

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/34/20230334

242

operations in a way that is computationally efficient. This can be accomplished in a number of different

ways. Lt is an essential resource in FPGA.

Table 2. Resource usage comparison.

 Normal shifter Barrel shifter

LUT

IO

204

71

185

71

5. Conclusion

The designed pipeline CPU structure meets expectations. it executes instructions accurately and

produces expected results after ALU optimisation. The waveforms clearly correspond to register values

in Ripes, confirming proper CPU functionality. It successfully performs basic operations such as

addition, shift, and multiplication, demonstrating its versatility and computational power. Moreover, the

perfect execution cycle of the five stages of an instruction confirms the successful implementation of

the five-stage pipeline, which greatly enhances the performance and throughput of the CPU. A

comprehensive report analysis shows that the optimised barrel shifter effectively utilises 19 LUTs

compared to conventional shifters, which represents a significant saving of circuit resources.

Looking ahead, there are many opportunities for further improvement and expansion. Additional

designs can be incorporated into decode and control blocks, enabling the CPU to support a wider range

of instructions, enhancing its versatility and capabilities. Exploring innovative approaches, such as

combining shifters and adders, can further optimise multiplier structures, helping to improve circuit

resource efficiency. The successful development of this pipelined CPU lays a solid foundation for future

endeavours. Building on this achievement, it is also possible to create a complete SoC based on this

CPU to meet the needs of various computer systems and microprocessors. This holistic approach

promises to deliver enhanced performance and simplified integration, making CPU a compelling choice

for a wide variety of computing applications.

References

[1] Lu T. 2021. A Survey on RISC-V Security: Hardware and Architecture. arXiv.org. [Online].

Available at: https://arxiv.org/abs/2107.04175v1.

[2] Cui E, Li T, Wei Q. 2023. RISC-V Instruction Set Architecture Extensions: A Survey. IEEE

Access. 11: 24696-24711.

[3] Sharma M, Bhatnagar E, Puri K, Mitra A, Agarwal J. 2022. A survey of RISC-V CPU for IoT

applications. Available at SSRN 4033491

[4] Waterman A, Lee Y, Avizienis R, Patterson DA, Asanovic K. 2015. The RISC-V instruction set

manual volume II: Privileged architecture version 1.7. EECS Department, University of

California, Berkeley, Tech. Rep. UCB/EECS-2015-49.

[5] Dennis DK, Priyam A, Virk SS, Agrawal S, Sharma T, Mondal A and Ray KC. 2017, December.

Single cycle RISC-V microarchitecture processor and its FPGA prototype. In: Proceedings of

the 2017 7th International Symposium on Embedded Computing and System Design (ISED),

Durgapur, India, pp. 1-5.

[6] Avinash NJ, Mishra I, Ghorpade TC, Lokesh M, Nishanth H, Kumar M. 2023, January. Design

and Implementation of 32-Bit MIPS RISC Processor with Flexible 5-Stage Pipelining and

Dynamic Thermal Control. In: Proceedings of the 2023 International Conference on Intelligent

and Innovative Technologies in Computing, Electrical and Electronics (IITCEE), Bengaluru,

India, pp. 846-849.

[7] Lai J-Y, Chen C-A, Chen S-L, Su C-Y. 2021. Implement 32-bit RISC-V Architecture Processor

using Verilog HDL in: Proceedings of the 2021 International Symposium on Intelligent Signal

Processing and Communication Systems (ISPACS), Hualien City, Taiwan, pp. 1-2.

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/34/20230334

243

[8] Miao J, Li S. 2017. A novel implementation of a 4-bit carry look-ahead adder in Proceedings of

the 2017 International Conference on Electron Devices and Solid-State Circuits (EDSSC),

Hsinchu, Taiwan, pp. 1-2.

[9] Tiwari P, Kumar A. 2021. A 4-bit Barrel Shifter Design using Diverse Logic Styles. In:

Proceedings of the 2021 First International Conference on Advances in Computing and Future

Communication Technologies (ICACFCT), Meerut, India, pp. 131-134.

[10] Govekar D, Amonkar A. 2017. Design and implementation of high-speed modified Booth

multiplier using hybrid adder. In: Proceedings of the 2017 International Conference on

Computing Methodologies and Communication (ICCMC), Erode, India, pp. 138-143.

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/34/20230334

244

