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Abstract. The Multi-armed Bandit algorithm, a proficient solver of the exploration-and-

exploitation trade-off predicament, furnishes businesses with a robust tool for resource allocation 

that predominantly aligns with customer preferences. However, varying Multi-armed Bandit 

algorithm types exhibit dissimilar performance characteristics based on contextual variations. 

Hence, a series of experiments is imperative, involving alterations to input values across distinct 

algorithms. Within this study, three specific algorithms were applied, Explore-then-commit 

(ETC), Upper Confident Bound (UCB) and its asymptotically optimal variant, and Thompson 
Sampling (TS), to the extensively utilized MovieLens dataset. This application aimed to gauge 

their effectiveness comprehensively. The algorithms were translated into executable code, and 

their performance was visually depicted through multiple figures. Through cumulative regret 

tracking within defined conditions, algorithmic performance was scrutinized, laying the 

groundwork for subsequent parameter-based comparisons. A dedicated experimentation 

framework was devised to evaluate the robustness of each algorithm, involving deliberate 

parameter adjustments and tailored experiments to elucidate distinct performance nuances. The 

ensuing graphical depictions distinctly illustrated Thompson Sampling's persistent minimal 

regrets across most scenarios. UCB algorithms displayed steadfast stability. ETC manifested 

excellent performance with a low number of runs but escalate significantly along the number of 

runs growing. It also warranting constraints on exploratory phases to mitigate regrets. This 

investigation underscores the efficacy of Multi-armed Bandit algorithms while elucidating their 

nuanced behaviors within diverse contextual contingencies. 
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1.  Introduction 

In the contemporary dynamic and competitive landscape, understanding and meeting the preferences of 
clients is crucial for sustained success. However, applying an excessive number of resources to explore 
these preferences can lead to deficits and inefficiencies. Therefore, efficient resource allocation strategy 
is crucial. Businesses often allocate more funding for a marketing input with higher effectiveness (for 

example, higher sales) than one with lower effectiveness [1]. Due to the restricted marketing budget, 
marketers need to figure out how to get the most of their spending. [2] With a reasonable cost of 
promotional resources, high-efficiency marketing can quickly attract a big number of potential clients. 
Hence, it is necessary for businesses to achieve a balance of recourse spending on between conducting 
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market research to gather user's feedback on certain product or service and deploying innovative 
strategies to meet customer demands [2]. Relying on data-driven insights and advanced analytics can 
facilitate companies to focus their efforts on the most promising areas, avoiding wasteful spending and 
optimizing resource utilization.  

In this case, businesses are constantly looking for innovative ways to optimize their promotion and 
recommendation strategies. For instance, the Multi-armed Bandit algorithm, which offers a powerful 
framework for tackling the exploration-exploitation trade-off problem [3], is a remarkable tool in this 
field. Inspired by the concept of casino slot machines with multiple arms, the algorithm enables 
companies to intelligently allocate resources among various options to maximize rewards and minimize 
risks. In promotion strategies, the Multi-armed Bandit algorithm empowers marketers to efficiently 
allocate resources across a variety of channels, constantly adapting to instant feedbacks to maximize 
revenue conversion. Similarly, it can optimize the personalized suggestions and advertisements through 

the interactive learning of users in the recommender system to improve user satisfaction and maximize 
benefits. Therefore, by utilizing adaptive and data-driven nature of the Multi-armed Bandit algorithm, 
businesses can benefit from efficiency by an optimized Multi-armed Bandit algorithm. It is noteworthy 
that there are multiple types of Multi-armed Bandit algorithms, including Explore-Then-Commit (ETC) 
[4], Upper Confidence Bound (UCB) [5], and Thompson sampling [4]. These three algorithms apply 
through different methods to select the best arm based on the data explored. The ETC algorithm explores 
the arms by playing each arm a predetermined number of times before exploiting by committing to the 

arm that showed the most promise during exploration [4]. In comparison, UCB algorithms employ an 
optimistic approach, estimating the upper confidence bound for each arm's expected reward based on 
the number of times it has been pulled. It involves the UCB indices, which offer upper confidence limits 
on the rewards connected to the channels the secondary user may be able to exploit [5], and then selects 
the arm with the highest estimated upper bound. In addition, the Thompson Sampling algorithm employs 
a Bayesian approach to model the underlying distribution of each arm's reward. It adopts a posteriori 
sampling to determine the best optimal arm for exploitation [4]. The performance of these algorithms 

regarding regret, which measures the cumulative difference between the rewards earned and those that 
would have been obtained by always selecting the best arm, can vary in different scenarios. The 
motivation for researching regret differences in real-world applications arises from the need to make 
informed decisions in dynamic environments. As variables change over time and the number of 
experiments grows, the performance of MAB algorithms can fluctuate. Understanding which algorithm 
suits a particular scenario can optimize resource allocation and improve overall outcomes. Hence, it is 
important to research on different algorithms' performance under different scenarios to analyze the 
algorithm to utilize in suitable situations. Yağan optimized the Multi-armed Bandit algorithm by 

developing C-Bandit algorithms, effectively reducing the common K-arm bandit algorithm to a C-arm 
bandit algorithm [6]. Their research introduced the Correlated UCB algorithm (C-UCB), which required 

only 𝑂(1) time to select sub-optimal arms, while K-arm UCB algorithms required 𝑂(𝑙𝑜𝑔𝑇) time [6]. 
The utilization of loose pseudo-rewards in C-Bandit algorithms enabled them to perform at least as well 
as K-Bandit algorithms [6]. 

With the above regards, an experiment testing performance of different algorithms on a real dataset 
under different scenarios is required. Using the movie lens dataset as the object of analysis, this study 
considered the movie categories as arms. Each experimental individual for each movie were categorized 
into this movie category, and the study analyzed the frequency of ratings of movie categories to calculate 

the reward, considered as rating of a category, for selecting some genre. Depending on the different 
variables and parameters to control the environment the dataset is used to test the algorithms, the 
experimenter runs different algorithmic implementation programs to analyze the dataset and output the 
regrets obtained from each experiment. Through the simulation of each scenario, the research will 
produce a valid conclusion on performance of each algorithm to support the readers to make accurate 
selections of algorithms in real-world application. 
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2.  Methods 

2.1.   Dataset description and preprocessing 

The study aimed to investigate varying regret outcomes by conducting multiple iterations of the Multi-
armed Bandit algorithm on the MovieLens dataset, employing diverse parameter settings. The 
MovieLens dataset is a widely used and comprehensive movie recommendation dataset compiled by the 
GroupLens Research team at University of Minnesota. The dataset was originally released for research 
purposes to facilitate the development and evaluation of collaborative filtering algorithms for movie 
recommendations [6]. The MovieLens 1M dataset contains ratings and other user information collected 
from MovieLens [7], an online movie recommendation service. The data includes movie ratings given 

by users, demographic information. Specifically, the dataset comprises one million movie ratings given 
by 6,000 users on 4,000 movies. Each movie is rated on a scale of 1 to 5, with 1 being the lowest rating 
and 5 being the highest.  

To observe the performance of the three Multi-armed Bandit algorithm, this study selected the 
movies' genres as arms, and the user's rating on a genre as the reward received when the user selected 
the particular genre. In detail, the comparison of performance of the algorithms would be differences in 

terms of expected cumulative regret produced in round 𝑡, when 𝑡 =  1, 2, . . . , 𝑛. The value of 𝑛 here 
represented the horizon, signifying the total number of rounds the algorithm was used. As mentioned 
earlier, the MovieLens dataset contains abundant information that is unnecessary for testing the 
algorithms, such as demographic details about the users. To address this, the experiments conducted 

data analysis, to preprocess the raw data and extract only the relevant portion required for algorithm 
testing. Specifically, the dataset comprises three files containing information on ratings, user profiles, 
and movie details. While each file contains the necessary data for analysis, it also includes extraneous 
information. Consequently, the dataset files were opened and loaded separately using a comma-
separated values format. The preprocessing program then merged the files while appropriately 
separating the genres of movies, as a single movie could be classified under multiple genres. Following 
this, the program accessed the unique genres of each movie and mapped them into corresponding indices. 

Calculating the ratings and probabilities required for the subsequent steps, the frequency of ratings for 
each genre was computed from the preprocessed file. Finally, the preprocessing program developed a 
pull-arm function to determine the reward of selecting a genre based on the values of ratings and 
probabilities.  

2.2.  ETC 

The fundamental idea behind the ETC algorithm involves dividing the exploration and exploitation 
phases into distinct segments. During the initial exploration phase, the algorithm randomly selects arms 
to gather information about their rewards. After a predetermined number of rounds, which was defined 

as value 𝑚 in this study, the algorithm transitions to the exploitation phase, where it commits to the arm 
that appeared most promising during the exploration phase. The basic principle of explore-then-commit 
is to strike a balance between exploring different arms and exploiting the most promising one after 
sufficient exploration. In the implementation, the cumulative regret was calculated separately for the 
two phases by summing up the differences between the reward and the optimal reward. 

2.3.  UCB 

The UCB algorithm aims to balance exploration and exploitation effectively. It achieves this by 
calculating upper confidence bounds for each arm's expected reward based on observed rewards and 
confidence intervals. In each round, the algorithm selects the arm with the highest upper confidence 
bound, leading to a balance between choosing arms that appear promising based on existing data and 
exploring new arms to gather more information. As it runs over time, the algorithm will achieve near-
optimal cumulative rewards. In the implementation, the cumulative regret was calculated on the arm 

with the maximum number of UCB indices which sums up by empirical mean of rewards and the 
exploration bonus (confidence width). 
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2.4.  Thompson sampling 
The idea behind Thompson Sampling is to model uncertainty about the rewards of each arm using 
Bayesian probability distributions. The basic principle involves sampling from these distributions to 
make decisions. During each round, arms are randomly selected according to their respective 

probabilities of being the best arm, based on the sampled values. This randomization effectively balances 
exploration and exploitation. As the algorithm observes more data, the belief distributions get updated, 
allowing Thompson Sampling to adapt and converge to the best-performing arm over time. In the 
implementation, the cumulative regret was calculated on the arm selected from the sample. 

2.5.  Implementation details 

In general, the study started by fixing the number of experiments as 100 and choosing the horizon as 
50,000 rounds. By running the program and plotting the cumulative regret graph for each algorithm, 
observations of the algorithms' performance could be intuitively visualized. Also, the study conducted 
an environment where it chose the number of experiments as 10 and remained the rest variables to 
observe the variance of the algorithms clearly.  

To select the algorithm suitable in some specific real-world situations, this study not only changed 
the number of rounds but also changed the parameter individually for ETC and UCB algorithm to 

determine the conditions they perform best. First, the study adjusted the value of horizon, setting five 
different levels from 500 to 5,000,000, and tested the three algorithms to check whether they changed 
performance over number of rounds.  

The study then modified the parameters of ETC algorithm. Since ETC's exploration and exploitation 
are separated explicitly, the study wanted to learn ETC's performance from different length of 

exploration phase. Hence, it changed the controlled value 𝑚, which symbolized the length of exploration, 
to realize the objective.  

In addition, the study modified the experiment on UCB algorithm. It started with the regular UCB 
algorithm, shifting the time that sub-optimal arm was selected by controlling the constant value l. Then, 
it compared the performance of regular UCB algorithm with the asymptotically optimized UCB 

algorithm. To compare, while the common UCB algorithm uses a logarithmic exploration rate, the 
asymptotically optimized version employs a polynomial exploration rate. This modification leads to 
improved performance in certain scenarios, as the polynomial exploration rate helps the algorithm better 
adapt to changing reward distributions and reduces the risk of over-exploration. Hence, by comparison 
of asymptotic optimized UCB algorithm with regular UCB, the study could determine the best usage of 
UCB algorithm with different times of sub-optimal arm selection. Lastly, the study would compare once 
more among the three algorithms with asymptotically optimized UCB with horizon being 1,000,000. 

3.  Results and discussion 

3.1.  The performance of various algorithms 
The study conducted a series of experiments investigating various algorithms, yielding several sets of 

graphs to analyze the results. In Figure 1, the lines exhibited the cumulative regret when choosing 
number of experiments as 100 and horizons as 500, 5,000, 50,000, 500,000, and 5,000,000. As 
mentioned, Figure 2 explored the variance of the algorithms when running few experiments. Figure 3 

displayed the performance of ETC algorithm under different 𝑚 values. In addition, Figure 4 presented 
experimental outcomes for the regular UCB algorithm across varying 'l' values and compared them with 
the asymptotically optimal UCB algorithm. Ultimately, Figure 5 demonstrated the experiment on the 
original three algorithms with the asymptotically optimal UCB algorithm in the condition of horizon 
being 1,000,000. 
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Figure 1. Average Regret of ETC, UCB, TS for 100 Experiments with different Time Steps. 

 

Figure 2. Cumulative Regret of ETC, UCB, TS for 10 Experiments with 50,000 Time Steps. 
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Figure 3. Average Regret of ETC for 100 Experiments with different 𝑚 ∗  𝑘. 

 

 

 

Figure 4. Average Regret of Optimal UCB and 
UCB with different 𝑙  value for 100 

Experiments. 

 
Figure 5. Average Regret of ETC, UCB, Optimal 
UCB, TS for 100 Experiments with 1,000,000 
Time Steps. 
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3.2.  Discussion 
The figures in the study display cumulative regrets of various algorithms, distinguished by four different 
colors of curves and lines. In Figure 1, the orange line represents the ETC algorithm, the blue curve 
symbolizes the standard UCB algorithm, and the green curve demonstrates the Thompson Sampling 

algorithm. The Figure 3 only presents the ETC algorithm. The blue curve in Figure 4 represents the 
regret of asymptotically optimal UCB algorithm, with the red, green, and orange curves representing 

standard UCB algorithm with 𝑙 value being 4, 2, and 1. Lastly, in Figure 5, the orange line represents 
the ETC algorithm, the red curve symbolizes the standard UCB algorithm, the blue curve symbolizes 
the asymptotically optimal UCB algorithm, and the green curve demonstrates the Thompson Sampling 
algorithm.  

Based on the color notation, the ETC algorithm carried a high slope during the exploration phase, 
producing a lot of cumulative regrets. Based on Figure 1, when the selected horizon (set at 500) was 
insufficient for completing the exploration phase, the ETC algorithm exhibited the highest cumulative 
regrets among all algorithms. For relatively smaller horizons (ranging from 5,000 to 50,000), ETC 

demonstrated similar cumulative regrets compared to the Thompson Sampling algorithm, occasionally 
even outperforming it. As the horizon increased, the regret of ETC grew notably due to increased 
explorations, ultimately surpassing that of the UCB algorithm, and the difference in cumulative regrets 
comparing to other algorithms became larger as the horizon increased. It has the greatest amount of 
variance among the algorithms according to Figure 2. The regret of ETC algorithm was also influenced 
by the length of exploration phase, which was the product of number of arms and user input value m. In 

condition of horizon being 50,000, when 𝑚 ∗  𝑘 <  5,000 , the maximum average regret of ETC 

decreased as 𝑚 ∗  𝑘 increased, and grew up again with 𝑚 ∗  𝑘 when 𝑚 ∗  𝑘 >  5,000. This justified 

that the ETC algorithm performed the best when limiting the exploration phase being 10% of the number 
of rounds each experiment. Hence, ETC algorithm is second-most efficient when choosing the horizon 
respectively small so the exploration phase can be completed, and it should take exploration phase as 

10% of the horizon to reach the least regret. 
The standard UCB algorithm exhibits its worst performance when selecting a relatively small horizon. 

It outperforms the ETC algorithm and lags behind the Thompson Sampling algorithm when the horizon 
is chosen to be greater than a certain value between 50,000 and 100,000. Its advantage, however, when 
showing the Figure 2, is that its variance is the best among the algorithms. The asymptotically optimal 

UCB algorithm performed better than the standard UCB algorithm when choosing large input constant 
of selecting sub-optimal arms, such as 𝑙 =  4. However, it could not outperform the efficiency from 

choosing smaller input constant, resulting in greater cumulative regret than those of 𝑙 =  2 and 𝑙 =  1. 
Therefore, the standard UCB algorithm could be both efficient and stable when selecting sub-optimal 
arms rationally. Lastly, although the Thompson Sampling algorithm had a large variance among data 

according to Figure 2, it had the least cumulative regrets among the algorithms most of the time in the 
experiment. Hence, as Thompson Sampling algorithm is able to reach the optimal cumulated reward 
among the algorithms most of the time, the ETC algorithm becomes a favorable option for minimizing 
cumulative regrets when utilizing a small number of runs and an exploration phase of approximately 
10% relative to the total number of runs, and UCB algorithm produces the least variance among them. 
Also, it is important to notice that the program utilized a random seed that might cause the difference in 
experiment results. According to previous research, random seed played as an intrinsic factor for the 

reproducibility of the experiment results in reinforcement learning [8]. Hence, in the future, more 
experiments with more random seeds can be applied to such experiments for more stable result [9, 10].  

4.  Conclusion 

This study observed the performance of three Multi-armed Bandit algorithms, ETC, UCB, and 
Thompson Sampling, on the MovieLens dataset to determine the most suitable algorithm for different 

scenarios. The study simulated different scenarios by changing the input parameters, such as the horizon, 
the length of exploration phase for ETC algorithm, and the selection of sub-optimal arms for UCB 
algorithm, to access the performance of each algorithm under different situations. Multiple graphs were 
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drawn by the program to present the cumulative regrets of the algorithms along the experiment. Upon 
observation, the Thompson Sampling algorithm exhibited the greatest potential for minimizing 
cumulative regret across most scenarios, while different UCB algorithms demonstrated more stable 
performance. Furthermore, the ETC algorithm demonstrated superior efficiency compared to UCB when 

selecting a relatively small number of runs. However, its regrets escalated notably as the number of runs 
increased, and it necessitated limitations on the exploration phase to attain minimal regret. The future 
plan would be adapting more experiments with different random seeds to produce more stable result and 
optimizing efficiency and researching on algorithms that take less time on non-competitive arms.  
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