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Abstract. Signal processing, a foundational discipline in modern technology, encompasses a 
diverse array of applications, ranging from audio and image processing to communication 
systems and medical imaging. This review investigates how matrix-based techniques are widely 
used to advance signal processing methodologies. In order to discretize continuous-time signals 
for digital processing, which occurs in the first section of the paper, matrices play a crucial role 
in signal sampling. A key principle, the Nyquist-Shannon Sampling Theorem, directs appropriate 
sampling rates to prevent aliasing, with matrices permitting effective signal representation. The 
effectiveness of matrix-based filtering methods for frequency modulation and noise reduction, 
such as convolution and correlation, is then investigated. By utilising matrix operations, these 
methods enable real-time signal processing. The Fourier Transform and Wavelet Transform are 
also featured in matrix-driven signal transformation, providing insights into frequency analysis 
and non-stationary signal characterization. By reducing noise components, matrix-based 
approaches, particularly Singular Value Decomposition (SVD) denoising, are essential for 
improving signal quality. Additionally, image compression employs SVD. Matrix-based 
compressive sensing revolutionises signal recovery from sparse data and results in data-efficient 
reconstruction. Signal processing has been transformed by matrix-based approaches, which have 
enabled previously unheard-of levels of efficiency, accuracy, and adaptability. The review 
highlights their significant influence on several signal processing fields. 
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1.  Introduction 
Matrices, rectangular arrays of numbers, symbols, or expressions organized in rows and columns.  
Although the idea of matrices has been around since antiquity, it wasn't until the 19th and 20th centuries 
that matrix theory was formally developed as a separate field of mathematics. Persian mathematician al-
Khwarizmi employed them during the Islamic Golden Age [1]. Cayley introduced matrix algebra in the 
nineteenth century, describing operations such as addition, scalar multiplication, and matrix 
multiplication [2]. The notion of determinants was introduced by Gauss [3], and matrix rank was defined 
by Sylvester [4]. Łukasiewicz, Gelfond, and subsequent mathematicians furthered the formalization and 
applications of matrices. As the foundation of linear algebra today, matrix theory offers a strong 
framework for data representation and manipulation, enabling effective algorithms and techniques in 
many areas, including signal processing. 

Signal processing is an interdisciplinary field that encompasses a wide range of techniques for 
manipulating and analyzing signals to extract meaningful information. These signals can come from 
different sources such as images, audio, video, radar, sonar, biomedical sensors, etc. In order to process 
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and interpret these signals effectively, a rigorous mathematical foundation is essential. With its 
versatility and well-defined operations, matrices have become an indispensable tool in the field of signal 
processing. The use of matrices in signal processing dates back to the early developments in the field. 
In the mid-20th century, with the advent of computers and digital signal processing technology, the 
processing of signals became more efficient and accurate. Matrices provide a natural representation of 
discrete signals and allow efficient computation of signal processing operations [5]. The pioneering 
work of researchers such as Wiener laid the foundation for the application of matrix-based techniques 
in signal processing [6]. 

The capacity of matrices to effectively describe and alter signals in both the time and frequency 
domains is one of the fundamental benefits of employing them in signal processing [7]. In the time 
domain, signals are represented as sequences of samples, and matrices enable the concise representation 
and processing of these samples. The employment of matrices in addition, subtraction, and 
multiplication operations allows for the implementation of both linear and nonlinear signal 
transformations. Matrix-based signal analysis and transformation are essential in the frequency domain. 
For instance, the Fourier transform, which enables the breakdown of a signal into its individual 
frequency components, can be visualised as a matrix operation. This frequency representation provides 
valuable insights into the spectral content of a signal, allowing for various applications such as spectral 
analysis, filtering, and modulation [7]. 

The intrinsic capability of matrices to handle vast volumes of data efficiently is another benefit of 
employing them in signal processing. Matrices allow for parallel computation and enable the 
exploitation of hardware acceleration techniques, such as GPUs, to process signals in real-time or near 
real-time scenarios [8]. Matrix-based signal processing techniques are appropriate for a variety of 
applications due to their scalability, including small embedded systems and large-scale data processing 
and communication systems. Additionally, matrices provide a structured framework for expressing and 
resolving signal processing issues. By formulating signal processing tasks as matrix operations, 
researchers and practitioners can leverage well-established mathematical techniques and algorithms. 
This results in effective implementations and the possibility of optimisation, enabling signal processing 
algorithms to operate more quickly and accurately [9]. 

In conclusion, the invention and use of matrices are integral to the history of signal processing. The 
use of matrices in signal processing has become quite popular as a result of its benefits, including 
effective representation, manipulation in the time and frequency domains, scalability, and methodical 
problem-solving. By harnessing the power of matrices, researchers and practitioners continue to advance 
signal processing techniques, enabling innovative applications across various domains. Then, start to 
elaborate on the "Signal Sampling" portion, referencing the Nyquist-Shannon Sampling Theorem, 
pertinent works, and correctly notating the equation in matrix form.  

2.  Method 

2.1.  Signal sampling 
In order to process continuous-time signals digitally, a crucial step in signal processing is signal 
sampling. Due to their ability to effectively represent and reconstruct signals from discrete samples, 
matrices are essential to this process [10]. The Nyquist-Shannon sampling theorem serves as a guiding 
principle for proper sampling rates to prevent aliasing.  

A key conclusion in signal processing is the Nyquist-Shannon theorem, sometimes referred to as the 
Nyquist Sampling Theorem or the Sampling Theorem. It demonstrates that a continuous-time signal 
may be accurately reconstructed from its discrete samples if the sampling frequency is at least twice the 
highest frequency present in the signal. The sampling rate must be greater than or equal to double the 
signal's bandwidth in order to prevent aliasing. 

From a series of real numbers, a continuous-time bandlimited function can be created using the 
Whittaker-Shannon interpolation formula or sinc interpolation [11]. 
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Mathematically, this theorem can be represented using matrices as follows: 

 𝑥(𝑡) → 𝑥[𝑛] = 𝑥(𝑛𝑇') = (𝑇' ∙ 𝑛)	𝑤ℎ𝑒𝑟𝑒	𝑇' =
(
)*!

 (2) 

Here, 𝑥(𝑡) is the continuous-time signal, 𝑥[𝑛] is the discrete-time signal obtained through sampling, 
𝑇' is the sampling interval, 𝑓' is the sampling frequency, and 𝑛 represents the discrete time index. 

In this equation, we can represent the signal sampling process using matrices. The continuous-time 
signal 𝑥(𝑡) can be converted into its discrete-time counterpart 𝑥[𝑛] by sampling at regular intervals 𝑇' 
[12]. The matrix notation [𝑥[0]𝑥[1]𝑥[2]⋯ ]  represents the discrete samples of the signal 𝑥(𝑡)  at 
discrete time indices 𝑛	 = 	0, 1, 2,⋯. 

2.2.  Signal filtering 
Matrix-based filtering techniques are widely used to process signals by modifying their frequency 
content or attenuating unwanted noise and interference [13]. Commonly used techniques include 
convolution, correlation, and adaptive filtering, all of which may be properly expressed and put into 
practise using matrices. 

Techniques for filtering and analysing signals that are essential include convolution and correlation. 
One signal (the input) is convolved or correlated with another (the kernel or template) in these 
procedures, which are theoretically described as matrix operations. These procedures may be carried out 
more effectively thanks to matrices, which makes them computationally possible for real-time signal 
processing [14]. 

2.3.  Signal transformation 
A potent tool for examining the frequency content of signals is the Fourier Transform. It breaks down a 
signal into its individual sinusoidal parts. Modern signal processing heavily relies on the Fast Fourier 
Transform (FFT), an effective approach for performing the Discrete Fourier Transform (DFT), which 
uses matrix operations [15]. Noise reduction is essential in signal processing to improve the quality and 
accuracy of signals in noisy environments. In order to reduce undesired noise while maintaining signal 
integrity, matrix-based approaches offer effective denoising algorithms and filters [16]. SVD is a matrix 
factorization technique widely used in denoising applications. Singular values, right singular vectors, 
and left singular vectors are the three components that make up a signal matrix. To effectively minimise 
noise components, small isolated values can be removed or attenuated [17]. The technique can also be 
used to compress and simplify signals. 

2.4.  Signal recovery 
Signal recovery involves retrieving signals from incomplete or degraded observations . By taking 
advantage of the inherent sparsity of signals, matrix-based approaches, particularly in the area of 
compressive sensing, have revolutionised signal recovery [18]. 

3.  Process and result 
Signal sampling is a critical process that converts continuous-time signals into discrete-time 
representations, enabling digital processing. The Nyquist-Shannon Sampling Theorem, a cornerstone of 
signal processing, establishes the necessary conditions for accurate signal sampling. The importance of 
proper signal sampling cannot be overstated. It forms the basis for the accurate representation and 
faithful reconstruction of continuous-time signals in the discrete domain, forming the foundation for 
various digital signal processing tasks. Proper sampling is particularly crucial in applications such as 
audio and image processing, communication systems, and medical imaging, where the preservation of 
signal integrity is paramount. Numerous literature achievements have contributed to the exploration of 
optimal sampling strategies, extending beyond the traditional uniform sampling. 
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3.1.  Seminal works in signal sampling 
The Nyquist-Shannon Sampling Theorem, which forms the bedrock of signal sampling, can be traced 
back to Claude Shannon's groundbreaking paper "Communication in the Presence of Noise" published 
in 1949 [12]. Shannon's work established the concepts of the theorem, showing that continuous signals 
may be precisely reconstructed from their discrete samples if the sampling frequency is at least twice 
the highest frequency contained in the signal. This work served as the cornerstone for information theory. 
With its solid structure for signal capture and reconstruction, this essential article revolutionised 
communication engineering and digital signal processing. 

Another key figure in the development of sampling theory is the Swedish-American engineer Harry 
Nyquist. Nyquist's work in the 1920s laid the theoretical groundwork for Shannon's theorem,  
contributing the concept of the Nyquist rate and underscoring the need for adequate sampling to avoid 
aliasing [19]. Nyquist’s work on signal-to-noise ratio and minimum sampling rates has been pivotal in 
shaping modern signal processing practices. 

Beyond the Nyquist-Shannon theorem, modern signal sampling has been significantly influenced by 
breakthroughs in compressed sensing. David Donoho, a prominent mathematician, and statistician, has 
made remarkable contributions to compressed sensing theory. Donoho’s work on sparsity-based signal  
reconstruction algorithms and the concept of compressed sensing in high-dimensional data recovery has 
opened new possibilities for efficient sampling and signal processing [20]. Compressed sensing 
leverages the sparsity of signals in certain domains, and it involves the use of measurement matrices to 
acquire fewer samples and reconstruct the original signal. The matrix formulation of compressed sensing 
algorithms allows for the efficient and accurate recovery of signals from a reduced set of non-uniform 
samples. 

Moreover, the contributions of Tao and Candes are notable in advancing the understanding of the 
potential of sparsity-based sampling. Their work on mathematical theory and the design of robust sparse 
signal recovery algorithms has enabled compressed sensing to be applied successfully in various fields 
[21]. 

3.2.  Practical applications of proper signal sampling 
The concept of proper signal sampling finds ubiquitous applications in numerous practical domains. In 
audio processing, for instance, digital audio signals are sampled at rates higher than the Nyquist rate to 
capture the complete audio spectrum without distortion, the process involves matrix multiplications to 
obtain the discrete samples. This ensures that high-frequency components, essential for audio fidelity, 
are preserved during digital conversion. The principles of proper sampling are fundamental to the 
success of modern digital audio formats and high-quality sound reproduction [22]. 

In image processing, pixel sampling plays a pivotal role in preserving the original image details 
during digitization. Pixel sampling is achieved through matrix operations, ensuring that the original 
image details are preserved during the digitization process. Properly sampling image pixels is crucial in 
applications such as digital photography, medical imaging, and video processing [23]. Image sensors in 
digital cameras and medical imaging devices use proper sampling techniques to capture high-resolution 
images that accurately represent the visual information. 

3.3.  Thechinque used for signal filtering 
Signal filtering is a fundamental aspect of signal processing, matrix-based techniques have proven to be 
highly effective in various filtering applications due to their efficiency and versatility. Two common 
filtering methods, convolution and correlation, are expressed as matrix operations, where one signal is 
convolved or correlated with another. 

Convolution is a widely used technique for smoothing or modifying a signal's frequency 
characteristics. It involves sliding a filter kernel over the input signal and computing the weighted sum 
of the overlapping elements. The operation can be efficiently represented using matrix multiplication,  
making it suitable for real-time signal processing applications [24]. Correlation, on the other hand, is 
essential for signal matching and pattern recognition. It measures the similarity between two signals by 
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sliding one signal over another and computing the dot product at each position. Like convolution,  
correlation can be efficiently implemented using matrix operations, enabling rapid and accurate signal 
analysis [24]. 

To illustrate the effectiveness of matrix-based filtering, Figure 1 displays a wave graph show the 
comparison. The noisy signal contains random noise that obscures the underlying pattern. However, 
after convolving the signal with a properly designed filter, the noise is significantly reduced, and the 
original signal is more discernible [25]. 

 
Figure 1. A 3 Hz sine wave that has been contaminated by noise in the top graph, followed by a 
comparison of the output from a three-point moving average filter with the original (actual) signal. 

For instance, consider a scenario where a continuous-time signal represents a sound wave variation 
over time. The raw data might contain various sources of noise, including measurement errors, 
interference, or random fluctuations. As shown in Figure 1, the raw audio data appears to have a 
discernible pattern, but the noise makes it challenging to analyze and extract meaningful information 
from the signal. 

To enhance the quality of the data and highlight the underlying pattern, a convolution-based filtering 
technique can be applied. The filtering process involves using a convolution kernel, designed to smooth 
the signal while preserving essential features. In matrix-based convolution, the filter kernel is 
represented as a matrix, and the convolution operation is performed through matrix multiplication. 

As a result, the noisy sound signal is convolved with the filter kernel, effectively reducing the impact 
of noise and enhancing the clarity of the original pattern. The resulting filtered signal displays a smoother 
and more accurate representation of the sound variation, making it easier for analysts to interpret and 
extract valuable insights from the data. 

Matrix-based filtering techniques, such as convolution, offer computational efficiency, making them 
suitable for real-time signal processing applications, including weather monitoring systems, audio 
processing and image enhancement. The ability to represent filtering operations as matrix 
multiplications contributes to the versatility and effectiveness of matrix-based signal processing 
techniques in a wide range of applications. 

3.4.  Signal transformation 
Signal transformation techniques enable the conversion of signals between several domains, such as 
from time to frequency or from spatial to transform domains. A crucial technique in frequency analysis, 
the Fourier Transform may break down a signal into its individual sinusoidal components. It delivers 
useful details on the frequency content of a signal and is used in a range of industries, including audio 

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/35/20230358

45



processing, image analysis, and communication systems. The Fast Fourier Transform (FFT), a matrix-
based technique that quickly computes the Discrete Fourier Transform (DFT), is a key component of 
modern signal processing [26]. By employing matrices for computation, the FFT significantly reduces 
the computational complexity of the DFT, making it applicable for real-time and large-scale signal 
analysis tasks. Another powerful transformation technique is the Wavelet Transform, which has gained 
widespread popularity in signal processing. The Wavelet Transform represents signals as a combination 
of wavelets of varying scales and positions, providing both frequency and time localization. This 
property makes it particularly useful for analyzing non-stationary signals and detecting transient events. 
Both the Discrete Wavelet Transform (DWT) and Continuous Wavelet Transform (CWT) leverage 
matrix-based operations for wavelet decomposition and reconstruction [27]. These matrix 
representations allow efficient computation of the transform coefficients and facilitate various 
applications, such as image compression, signal denoising, and feature extraction. 

Noise reduction techniques are indispensable for enhancing signal quality and accuracy, especially 
in noisy environments or during signal acquisition processes. Matrix-based methods offer efficient 
denoising algorithms and filters that are widely used in various applications. Singular Value 
Decomposition (SVD) denoising is one such technique that has gained prominence. SVD is a matrix 
factorization method that decomposes a signal matrix into its singular components, namely the left 
singular vectors, singular values, and right singular vectors. In the context of noise reduction, SVD is 
used to identify and attenuate small singular values, which often correspond to noise components in the 
signal. By removing or dampening these noise-related singular values, SVD denoising effectively 
reduces the impact of noise while preserving the important signal features [16]. 

The SVD of a matrix can be used for image compression. Modern technology frequently uses 
digitised images, which are comparable to a matrix representing the value of each pixel's level of grey. 
Pictures made from natural sources typically have fairly huge size. For instance, the image in Figure 2 
corresponds to a picture with large matrix size [28]. 

 
Figure 2. A picture with a matrix on the order of 204 × 290 = 59610 pixels. 

We wish to represent the image with less numerical values than the original number of pixels in order 
to avoid the issue of transmitting or storing the numerical values of such large images. Calculating the 
singular value decomposition of an image and then reconstructing it using an estimate of reduced rank 
is one method of compressing an image. This method is seen in Figure 3, which a rank 25 approximation 
rebuilt almost exactly (to the human sight). This results in an 80% compression ratio [28]. 

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/35/20230358

46



 
Figure 3. The image in Figure 2 originated using 25 pairs of singular vectors with 80% compression 
rate. 

3.5.  Signal recovery 
Signal recovery involves the retrieval of signals from incomplete or degraded observations. Matrix-
based techniques, particularly those used in compressive sensing, have revolutionized signal recovery 
by exploiting the inherent sparsity of signals. Compressive sensing is based on the principle that a signal 
can be accurately recovered from a small number of non-uniform samples, provided the signal is sparse 
or compressible in some domain [29]. This breakthrough technique has significant implications for data 
acquisition and storage, enabling the reconstruction of signals from a fraction of the original data. 

The matrix-based approach in compressive sensing involves the use of sparse matrices for signal 
representation and recovery. The signal is first represented using a sparse matrix, which captures the 
essential information while reducing redundancy [30]. Then, the recovery process utilizes matrix 
operations to reconstruct the original signal from the sparse measurements efficiently. Compressive 
sensing has found applications in various fields, including imaging systems, wireless communication, 
and sensor networks, where it offers significant advantages in terms of data reduction, energy efficiency, 
and robustness to noise and data loss. By leveraging matrices in signal transformation, noise reduction, 
and signal recovery, modern signal processing techniques have attained unprecedented efficiency and 
accuracy. The versatility and power of matrix-based methods have enabled their widespread adoption 
in numerous applications, revolutionizing the way signals are analyzed, processed, and utilized in 
various domains. 

4.  Conclusion 
In the realm of signal processing, the utilization of matrix-based techniques has played an instrumental 
role in transforming the landscape of signal analysis, manipulation, and application. This review has 
delved into the profound impact of matrices across various signal processing domains, highlighting their 
pervasive presence and pivotal contributions. 

The inception of matrix-based signal sampling has fundamentally shaped the way we acquire and 
represent signals in digital form. Guided by the Nyquist-Shannon Sampling Theorem, proper signal 
sampling has become a cornerstone, preventing aliasing and ensuring accurate signal reconstruction.  
Matrix-based signal filtering techniques, exemplified by convolution and correlation, have demonstrated 
exceptional efficacy in frequency modification and noise reduction. Signal transformation, a process 
facilitated by matrices, has empowered the shift between diverse signal domains, uncovering essential 
information vital to various industries. The pinnacle of matrix-based contributions lies in signal  
recovery, where compressive sensing has revolutionized the reconstruction of signals from sparse data. 

In conclusion, the matrix-driven paradigm in signal processing has ushered in an era of 
unprecedented precision, efficiency, and adaptability. From sampling to filtering, transformation to 
noise reduction, and recovery to application, matrices have indelibly transformed signal processing into 
a dynamic, data-driven discipline. The marriage of mathematical elegance and practical utility positions 
matrix-based techniques as a cornerstone of modern signal processing, offering a myriad of tools that 
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empower signal analysts and practitioners to unlock the full potential of signals across diverse 
applications. 
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