
A survey of dynamic programming algorithms 

Yunong Zhang 

Civil Engineering College, Xi’an University of Architecture and Technology, Xi’an, 

Shaanxi Province, China, 710054 

 

zhang.yunong.0209@gmail.com 

Abstract. Dynamic programming is an important algorithmic idea with widespread applications 

in computer science and other disciplines. With the continuous improvement of computing 

power and the increasing complexity of practical problems, dynamic programming algorithms 

have also received more and more attention. However, due to the limitations of the dynamic 

programming algorithm itself, it also brings challenges to the optimization of the algorithm and 

its application in different fields. This paper uses the methods of literature review and case 

analysis to systematically summarize and sort out the basic principles, complexity analysis, 

classic problems, and applications of dynamic programming algorithms. First of all, this paper 

discusses the basic concepts of splitting and optimal substructure characteristics of related 

problems in dynamic programming; secondly, it discusses the time complexity and space 

complexity of dynamic programming algorithms in detail; then, in the classic dynamic 

programming The case part focuses on the knapsack problem, including the 0-1 knapsack 

problem and multiple knapsack problems; finally, this paper discusses the wide application and 

optimization of dynamic programming algorithms in practice, covering natural language 

processing, bioinformatics and How to optimize the dynamic programming algorithm to 

improve the efficiency of problem solving and reduce resource consumption. To sum up, this 

paper fully demonstrates the basic principles and applications of dynamic programming 

algorithms, as well as optimization methods and development trends, and provides guidance and 

references for their academic and practical applications. 
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1.  Introduction 

The dynamic programming algorithm is an important and widely used algorithm idea that shows 

powerful ability and flexibility in solving optimization problems. As a bottom-up solution method, the 

dynamic programming algorithm effectively solves many complex problems in practical applications by 

decomposing complex problems into smaller sub-problems and utilizing the properties of optimal 

substructures. 

In the field of computer science, dynamic programming algorithms are widely used in areas such as 

algorithm design, optimization, sequence alignment, and path search. Its advantage is that many 

seemingly inefficient problems can be solved in polynomial time. By ingeniously designing the state 

definition and state transition equations of the problem, the dynamic programming algorithm can find 

the optimal solution or near-optimal solution in an efficient manner, thus providing important support 

for practical applications. 
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This article will comprehensively introduce the basic principles of dynamic programming algorithms, 

review complexity and classic case analysis, and discuss some extensions and applications of dynamic 

programming algorithms. By integrating the research results of dynamic programming algorithms on 

different issues and the current research frontiers and hotspots of dynamic programming algorithms, it 

provides researchers with a conceptual framework and methodology, and at the same time provides 

directions and inspiration for subsequent research. Dynamic programming algorithms will continue to 

play an important role in research and applications in computer science and other fields as a powerful 

tool. 

2.  Basic principles and complexity analysis of dynamic programming 

2.1.  Basic concept 

Dynamic programming algorithm is a method to solve optimization problems by decomposing complex 

problems into smaller sub-problems and exploiting the optimal substructure properties [1]. The basic 

principle is to divide the original problem into a series of overlapping sub-problems, and solve these 

sub-problems in a recursive manner. Storing the solutions of the solved subproblems avoids repeated 

calculations, thereby improving the efficiency of the algorithm. 

The core idea of a dynamic programming algorithm mainly includes three aspects: optimal 

substructure, recurrence relation, and overlapping subproblems [2]. The first is the optimal substructure 

property, that is, the optimal solution of a problem can be derived from the optimal solution of its 

sub-problems. Second, the recurrence relation is an important step in the solution of dynamic 

programming problems, because it describes the relationship between the current problem and its 

sub-problems. By defining state and state transition equations, a large problem can be decomposed into 

small problems, and the solutions of the subproblems can be used to find the optimal solution of the 

overall problem. Finally, there are overlapping sub-problems. The dynamic programming algorithm 

avoids repeated calculations by solving overlapping sub-problems again and again. In the process of 

solving the problem, the solutions to many sub-problems will continue to be used in the next calculation. 

By saving the solutions of the solved sub-problems, repeated calculations in recursion can be avoided 

and efficiency can be improved. 

2.2.  Time complexity 

Time complexity is used to measure the degree to which the execution time of the algorithm increases 

with the input scale. It expresses the relationship between the time required for algorithm execution and 

the input scale, and is usually represented by the symbol (O). 

The time complexity of the dynamic programming algorithm depends on the number of subproblems 

and the solution time of each subproblem. In general, the time complexity of the dynamic programming 

algorithm can be expressed as O(n*m), where n represents the size of the problem and m represents the 

number of states. It can be seen from this that as the scale of the problem increases, the time complexity 

of the dynamic programming algorithm increases polynomially, and in some cases it will increase 

exponentially, which is also a defect in solving large-scale problems. Therefore, some improved 

algorithms for time complexity have also been proposed, such as pruning strategies and approximation 

algorithms. 

2.3.  Space complexity 

Space complexity is used to measure the degree to which the additional space or memory required by the 

algorithm grows with the increase of the input scale, and it represents the relationship between the 

additional space required for algorithm execution and the input scale. 

The space complexity of the dynamic programming algorithm mainly depends on the size of the state 

table or matrix. Usually, the space complexity of the dynamic programming algorithm is also O(n*m), 

where n represents the size of the problem, and m represents the number of states, which means that a 

two-dimensional table or matrix needs to be created to store the solution of the sub-problem. In some 
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cases, space complexity can be reduced through optimization strategies, such as state compression 

techniques or saving only necessary subproblem solutions to reduce memory usage. 

3.  Classic dynamic programming problem: knapsack problem 

3.1.  Problem description 

The Knapsack Problem is a classic combinatorial optimization problem, usually used to describe how to 

select a group of items to maximize the total value or minimize the total weight under a given knapsack 

capacity [3]. Specifically, the knapsack problem includes the following elements: 

1. Backpack capacity: Given a fixed backpack capacity, usually represented by a positive integer, it 

represents the maximum weight or volume that the backpack can hold. 

2. Collection of items: There is a set of items, each with its own value and weight. Value can indicate 

the importance or utility of the item, while weight indicates the backpack capacity the item occupies. 

3. Selection restrictions: There may be certain restrictions on the selection of each item, for example, 

each item can only be selected once (0-1 knapsack problem) or can be selected multiple times (infinite 

knapsack problem). 

The goal of the knapsack problem is to select a set of items that maximize their total value or 

minimize their total weight while satisfying the knapsack capacity constraints. Common backpack 

problems include: 

0-1 Knapsack Problem: Each item can only be selected once; 

Multiple Knapsack Problem: Each item has multiple optional copies, and each copy has a limit. 

Unbounded Knapsack Problem: Each item can be selected multiple times. 

3.2.  Solution strategy 

The general strategy of the dynamic programming algorithm to solve the knapsack problem is to record 

the optimal solution of the sub-problem through the dynamic programming table, and gradually solve 

the whole problem by filling in the table [4]. 

The first is to transform the original problem into a sub-problem, defining the rows and columns of 

the dynamic programming table as optional items and knapsack capacities, respectively. For example, 

assuming there are n items and a knapsack with a capacity of W, the rows of the dynamic programming 

table dp represent the indexes of the items, and the columns represent the capacity of the knapsack. That 

is, [i] represents the item, and [j] represents the capacity of the backpack. 

Second, initialize the form. Initialize the boundary conditions of the dynamic programming table, 

namely the first row and first column. The boundary condition means that when there are no items to 

choose from or the capacity of the backpack is 0, the value in the backpack is 0. 

Next, according to the characteristics and constraints of the problem, the state transition equation is 

designed to determine the relationship between the optimal solution at the current position and the 

previous position, and the state transition can be performed by comparing the benefits of different 

options. 

If the i-th item can be put in the backpack, consider the two options of putting the item in the 

backpack or not putting it in the backpack, and choose the larger value as the optimal solution. That is,  

𝑑𝑝[𝑖][𝑗] = 𝑚𝑎𝑥(𝑑𝑝[𝑖 − 1][𝑗], 𝑑𝑝[𝑖 − 1][𝑗 − 𝑤[𝑖] + 𝑣[𝑖]]) 

where w[i] represents the i-th The weight of the item, v[i] represents the value of the i-th item. 

dp[i-1][j] indicates the current maximum value when the item is not put in; dp[i-1][j-w[i]] indicates 

that the first i-1 items correspond to when the backpack capacity is j-w[i] The maximum value of , that is, 

the value that it already has when it can just be put into this item. Then add the value v[i] of the item 

itself, which is the value of the item after it is put in. 

If the i-th item cannot be placed in the backpack, then the optimal solution is the same as the optimal 

solution in the previous position. That is, 

𝑑𝑝[𝑖][𝑗] = 𝑑𝑝[𝑖 − 1][𝑗] 
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Finally, according to the state transition equation, traverse and fill the dynamic programming table 

dp. Starting at the upper left corner, calculate row by row or column by column until the entire table is 

filled. The final optimal solution to the knapsack problem is stored in the cell dp[n][W] in the lower right 

corner of dp, where n represents the number of items and W represents the capacity of the knapsack. By 

backtracking the dynamic programming table, starting from the lower right corner, according to the 

conditions of the state transition equation, the specific items and total value put into the backpack can be 

determined. 

3.3.  Examples and applications 

(1)0-1 Knapsack Problem 

Suppose there is a knapsack with a capacity C=10. The following items are now available to choose 

from in your backpack: 

Item 1: weight w1=2, value v1=6 

Item 2: weight w2=3, value v2=8 

Item 3: weight w3=4, value v3=10 

Item 4: weight w4=5, value v4=12 

The requirement of the problem is to select items to maximize the total value of the backpack without 

exceeding the capacity its backpack. 

For such problems, dynamic programming algorithms can be used to solve them. 

First, a two-dimensional array dp can be used to represent the dynamic programming table. dp[i][j] 

represents the maximum value that can be obtained by putting the first i items into a knapsack with a 

capacity of j. And to initialize the table, initialize the first row and the first column of dp to 0, indicating 

that the maximum value is 0 when there is no item or the backpack capacity is 0. 

Second, calculate each position of the dp table one by one according to the state transition equation: 

If the i-th item can be put into the backpack (that is, the current backpack capacity is greater than or 

equal to the weight of the i-th item), consider putting the item in the backpack or not putting it in the 

backpack. Choose the larger value as the optimal solution. 

If you choose to put it in the backpack: 

𝑑𝑝[𝑖][𝑗] = 𝑑𝑝[𝑖 − 1][𝑗 − 𝑤[𝑖]] + 𝑣[𝑖] 

If you choose not to put it in the backpack:  

𝑑𝑝[𝑖][𝑗] = 𝑑𝑝[𝑖 − 1][𝑗] 

If the i-th item cannot be placed in the backpack, then the optimal solution is the same as the optimal 

solution in the previous position: 

𝑑𝑝[𝑖][𝑗] = 𝑑𝑝[𝑖 − 1][𝑗] 

The next step is to fill in the table and calculate: start from the upper left corner, calculate by row or 

column, and fill the entire dp table. Finally, the final maximum value is stored in the lower right cell 

dp[4][10] of the dp table, which is the last element of the dp table. 

In this example, the dp table after calculation is shown in Table 1: 
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Table 1. 0-1 Knapsack problem dp table. 

goods 

backpack capacity 
0 1 2 3 4 5 6 7 8 9 10 

0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 6 6 6 6 6 6 6 6 6 

2 0 0 6 8 8 14 14 14 14 14 14 

3 0 0 6 8 10 14 16 18 18 24 24 

4 0 0 6 8 10 14 16 18 20 24 26 

 

Therefore, the maximum item value in the final backpack is 26. We can backtrack the dynamic 

programming table, starting from the lower right corner, and determine the specific items and total value 

put into the backpack according to the conditions of the state transition equation. In this example, the 

items selected to put in the backpack are items 1, 2, and 4, and their total value is 26. 

(2)Multiple Knapsack Problem 

Suppose there is a knapsack with capacity C=6. The following items are now available to choose 

from in the backpack: 

Item 1: weight w1=2, value v1=4, available quantity n1=2 

Item 2: weight w2=3, value v2=5, available quantity n2=3 

Item 3: weight w3=4, value v3=6, available quantity n3=1 

The requirement of the problem is to select items to maximize the total value of the backpack without 

exceeding its capacity. 

Similar to the 0-1 knapsack problem, use the dynamic programming algorithm to create a 

two-dimensional array dp, where dp[i][j] represents the maximum value when considering the first i 

items and the knapsack capacity is j. 

First, initialize the dp array to 0, and dp[i][j] represents the maximum value when no item is selected. 

Secondly, considering that the number of items that can be used for each item is different for the 

multiple knapsack problem, it is necessary to use the nested loop method to traverse the items and 

knapsack capacity, and update the value in the dp array: 

For each item i, traverse the knapsack capacity j (from 0 to C): 

If people choose not to put items, then dp[i][j] can be updated to dp[i-1][j], which is to maintain the 

maximum value when putting i-1 items. 

If people choose to put items in, then it is divided into two steps: 

For each item i, we can choose to put k items i (0 <= k <= min(n[i], j/w[i])). 

For each k, update dp[i][j] to dp[i-1][j-k*w[i]] + k*v[i], choose the largest value as the result of 

dp[i][j] . 

Table 2. Multiple knapsack problem dp table. 

goods 

backpack 

capacity 

0 1 2 3 4 5 6 

0 0 0 0 0 0 0 0 

1 0 0 4 4 8 8 8 

2 0 0 4 5 8 9 10 

3 0 0 4 5 8 9 10 
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Therefore, the maximum item value in the final backpack is 12. This paper can backtrack the 

dynamic programming table, starting from the lower right corner, and determine the specific items and 

total value put into the backpack according to the conditions of the state transition equation. In this 

example, the items selected to be put in the backpack are 2 item 1 and 1 item 3. 

4.  Application and optimization of dynamic programming algorithms 

4.1.  Application 

Dynamic programming algorithms have a wide range of applications in many fields, such as stochastic 

decision-making, natural language processing, and bioinformatics, for processing data such as text, 

speech, DNA sequences, and protein sequences. 

In natural language processing, dynamic programming algorithms are widely used in tasks such as 

speech recognition, syntax analysis, machine translation, and text generation. By defining appropriate 

states and state transition equations, dynamic programming algorithms can process speech signals, text 

data, and find the best language model, syntax tree, or translation scheme. For example, in speech 

recognition, dynamic programming algorithms can solve problems such as feature extraction of audio 

signals, acoustic model matching, and vocabulary probability calculation, so as to achieve 

high-precision speech-to-text conversion. 

In the field of bioinformatics, dynamic programming algorithms play an important role in DNA 

sequence alignment, protein structure prediction and genomics research. For example, in terms of 

protein structure prediction, AlphaFold has achieved great success in recent years. It is mainly based on 

deep learning and neural network technology, and predicts its three-dimensional structure by analyzing 

the amino acid sequence of proteins [5]. In protein structure prediction, problems such as sequence 

alignment and the longest common subsequence can be solved by dynamic programming algorithms; 

these problems can help identify conserved regions and similarities in protein sequences, thereby 

inferring their structure and function. AlphaFold uses a similar idea to infer the three-dimensional 

structure of the protein by analyzing and modeling the protein sequence. This has important implications 

for understanding the mechanisms of biological systems, disease research, and drug design. 

Therefore, the application of dynamic programming algorithms in the fields of natural language 

processing and bioinformatics provides researchers with powerful tools and methods to solve complex 

problems. Through reasonable modeling of problems, state definition and design of state transition 

equations, dynamic programming algorithms can efficiently process and analyze large-scale data, 

bringing new progress and innovation to the research and application of these fields. 

4.2.  Optimization 

The dynamic programming algorithm has certain limitations in terms of time and space complexity, but 

there are already many different optimization methods for dynamic programming algorithms for 

different problems. This study will briefly introduce three important optimization techniques: memory 

search, state compression dynamic programming, and multi-stage dynamic programming. 

Memorized search is an optimization method of a dynamic programming algorithm. By saving the 

solutions of sub-problems that have been calculated, it avoids repeated calculations and improves the 

efficiency of the algorithm [6]. Memorized search can be regarded as top-down dynamic programming. 

Although it is also solved recursively, it uses a cache to store the calculated results when recursively 

solving the problem. When it needs to be calculated again, it directly gets it from the cache to avoid 

double calculations. Memorized search can significantly reduce the amount of computation and improve 

the efficiency of dynamic programming algorithms. 

State compression dynamic programming is an optimization technique for problems with 

high-dimensional state spaces. In the traditional dynamic programming algorithm, the state is usually 

stored in a complete form, which requires a large space complexity. The state compression dynamic 

programming reduces the size of the state space and reduces the space complexity by compressing the 

high-dimensional state into a one-dimensional or low-dimensional state. State compression dynamic 
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programming improves the efficiency of the algorithm by ingeniously designing the state compression 

method and using bit operations or other techniques for state transfer and calculation while maintaining 

the correctness of the algorithm. 

Multi-stage dynamic programming is a dynamic programming method applied to multi-stage 

decision-making problems. It decomposes the multi-stage decision-making problem into a series of 

sub-problems, and obtains the optimal solution by solving the sub-problems stage by stage. Multi-stage 

dynamic programming is similar to traditional dynamic programming, but it pays more attention to the 

characteristics and mutual influence of decision-making stages when solving problems. Through 

multi-stage dynamic programming, a complex multi-stage decision-making problem can be 

decomposed into a series of simple sub-problems, and the optimal solution can be obtained through state 

transition and step-by-step decision-making. 

In summary, memorized search, state compression dynamic programming and multi-stage dynamic 

programming can all be regarded as improvements and extensions to the dynamic programming 

algorithm. By introducing new ideas and techniques, the efficiency and application range of the 

algorithm are improved. 

5.  Conclusion 

The dynamic programming algorithm is a powerful and widely used algorithm idea that plays an 

important role in solving optimization problems. By dividing the problem into subproblems and 

exploiting the properties of optimal substructure and overlapping subproblems, dynamic programming 

algorithms can efficiently solve many complex problems. In this research, the basic principles of the 

dynamic programming algorithm are deeply discussed, including problem modeling, state definition, 

derivation and solution of the state transition equation. And through the analysis of classic cases such as 

the knapsack problem, it demonstrates the application of dynamic programming algorithms to practical 

problems. In addition, the paper also introduces some extensions and application areas of dynamic 

programming algorithms, such as memory search, state compression dynamic programming and 

multi-stage dynamic programming. These extensions and applications further enrich the application 

range of dynamic programming algorithms and provide more methods for solving complex problems. 

Although the dynamic programming algorithm has certain limitations in terms of time and space 

complexity, its effectiveness and flexibility in solving optimization problems make it an important tool 

in research and practical applications. With the continuous improvement of computing power and the 

continuous advancement of algorithm improvement, dynamic programming algorithms can also be 

expected to play a greater role in a wider range of fields and problems in the future. 

To sum up, the dynamic programming algorithm is a powerful algorithmic idea that has a wide range 

of applications in the solution of optimization problems. By deeply understanding and studying the 

principles and applications of dynamic programming algorithms, we can provide efficient solutions to 

practical problems and open up new possibilities for further research in computer science and other 

fields. 
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