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Abstract. The evolution of natural language processing has transpired through three primary 
phases, with large-scale language models significantly transforming the field. These models have 
heightened the machine's capability to understand, produce, and interact with human language 
in unprecedented ways. Progressing from RNNs to transformer models, transitioning from 
encoder-decoder frameworks to decoder-centric designs, and the journey from BERT to the 
Chat-GPT series have marked significant shifts in the academic discourse. Impressively, these 
sophisticated models have infiltrated a range of sectors, including finance, healthcare, biology, 
and education, revolutionizing both traditional and emerging domains. However, as these 
advancements are celebrated, the ethical and economic challenges they introduce must also be 
addressed. Confronting these pivotal issues and harnessing technology for societal betterment 
has become a priority for academia and industry alike, sparking intense research endeavors in 
recent times. This review dives into the history of natural language processing, highlighting the 
pivotal developments and core principles of large language models. It provides a comprehensive 
perspective on their adoption and influence within the financial sector, crafting a detailed 
narrative of their deployment. In conclusion, the analysis reflects on the current challenges posed 
by these models and presents potential solutions. This study stands as a definitive guide, offering 
readers an in-depth understanding of the development, application, and future trajectories of 
large-scale language models. 
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1.  Introduction 
A century ago, mathematician Andrei Markov found inspiration in the poetic prose of "Eugene Onegin," 
penned by Alexander Pushkin. This encounter led to the inception of the "language modeling" realm. 
Through analyzing sequences of words and phrases in the text, Markov discerned patterns, predicting 
subsequent words or phrases, and essentially mimicking Pushkin's linguistic style using probabilistic 
methods. This technique came to be known as the Markov Chain [1, 2], and its influence reverberated 
across diverse scientific and technological frontiers. 

In the modern era, large-scale language models stand at the forefront of Natural Language Processing 
(NLP), reshaping the dynamics of our interaction with digital systems. Bolstered by advanced artificial 
intelligence methodologies, these models showcase unparalleled prowess in interpreting and 
reproducing human language nuances. 
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The ChatGPT series, in particular, heralds a transformative phase in NLP. It manifests an adeptness 
in orchestrating nuanced, context-aware conversations, a feat made possible due to rigorous training on 
expansive datasets. With its profound grasp of grammar, context, and semantic nuances, ChatGPT finds 
resonance across multifarious sectors. This detailed research exposition offers a panoramic view of the 
progression, utility, and prospective avenues of large-scale language models. It meticulously traces their 
evolutionary arc, elucidating the foundational technological tenets. This study also encapsulates the 
salient application spheres of these models, casting a spotlight especially on the financial sector, 
elucidating the myriad opportunities they present. In addition, the research delves into the inherent 
challenges that contemporary large language models present, offering potential mitigations from five 
distinct vantage points—intending to navigate these intricacies responsibly and sustainably. This 
exploration, encompassing technological intricacies, application spectra, and forward-looking insights, 
equips readers to fathom the monumental role this technology is poised to play in steering future human-
digital dialogues. As NLP continues its metamorphic journey, this document stands as an indispensable 
compass for scholars, professionals, and aficionados venturing into the expansive realm of large-scale 
language models. 

2.  Research on large language model technology 
The advent of large-scale language models represents a revolutionary leap forward in Natural Language 
Processing (NLP), empowering machines to understand and generate text akin to human writing. This 
section provides a historical overview of their development and delves into the technical principles that 
underpin these state-of-the-art language models. 

2.1.  History and current status of large language models 
Mentioning large language models inevitably brings us to the foundational field of Natural Language 
Processing (NLP). NLP is an interdisciplinary domain that intersects computer science, artificial 
intelligence, and linguistics. It focuses on developing computer systems that can effectively 
communicate using natural language. In the following, the author will discuss the historical development 
of the NLP field in three distinct periods. 

In 1950, Alan Turing introduced the famous "Turing Test," which is considered the inception of NLP 
ideas. From the 1950s to the 1970s, during the era known as rule-based natural language processing, 
researchers attempted to mimic human cognitive language processes for natural language understanding. 
They heavily relied on manually crafted rules to process language [3]. However, the limitations of rule-
based approaches, with their inability to cover all possible cases and the high cost of development and 
maintenance, posed challenges in handling complex languages. 

From the 1970s to the early 21st century, with the rapid expansion of the internet and the abundance 
of language corpora, researchers witnessed significant progress in Natural Language Processing (NLP). 
Pioneered by researchers such as Jelinek at IBM Watson Laboratory, statistical-based approaches 
became prominent [4]. They established statistical language models based on the contextual 
characteristics of natural language, simplifying NLP problems into probabilistic ones. By employing 
these methods, the speech recognition rate was enhanced from 70% to 90%, marking a substantial 
breakthrough and transitioning NLP from the laboratory to practical applications. Techniques like N-
gram models, Hidden Markov Models (HMM), Maximum Entropy models, and Support Vector 
Machines (SVM) demonstrated remarkable advancements in tasks such as machine translation, text 
classification, and information retrieval. 

The third stage, beginning around 2010, saw the gradual integration of deep learning techniques into 
the field of NLP. Inspired by the success of deep learning in image and speech recognition, researchers 
started incorporating deep learning into NLP research. The introduction of the Word2Vec model in 2013 
enabled the distributed representation of words, opening a new era for neural network-based NLP 
methods. In 2014, Google released the Seq2Seq model based on Long Short-Term Memory (LSTM), 
showcasing impressive performance in tasks like machine translation. The same year, Facebook 
developed a convolutional neural network-based model for text classification tasks. 
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Figure 1. Refer to the picture in Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and 
Beyond and modify it (Photo/Picture credit: Original). 

As depicted in the figure 1, the true breakthrough of large language models came with the publication 
of the paper "Attention is All You Need" in 2017 [5], which introduced the Transformer model for 
machine translation, proposed by the Google Brain team. Transformer, as the fourth major type of deep 
learning model after MLP, CNN, and RNN, stands out for its self-attention mechanism. It revolutionarily 
abandoned CNN and RNN in the sequence-to-sequence domain, relying solely on a simple network 
architecture with attention structures. This significantly accelerated the training process for sequence 
tasks and made it possible to create even larger models. The release of the BERT model marked the 
application of pre-training techniques in NLP [6]. BERT and its subsequent models like GPT-3, 
RoBERTa, etc., hav2.2 Mainstream architecture analysis of large language models - transformer modele 
achieved remarkable success in various NLP tasks. 

2.2.  Mainstream architecture analysis of large language models - transformer model  
As stated earlier, the advent of the Transformer model revolutionized large language models, surpassing 
the previously dominant RNN-based approaches. So, what makes the Transformer model, with its 
crucial components of self-attention mechanism, multi-head attention, feed-forward neural networks, 
and positional encoding, superior [7]. 

2.2.1.  Advantages of the transformer model. Firstly, the Transformer model showcases superior parallel 
efficiency compared to RNN models. The hidden state at a certain time step in RNNs depends on the 
output of the previous time step’s hidden state, posing a barrier to parallel processing. In contrast, the 
Transformer model processes information from all contextual positions concurrently, minimizing the 
loss of information propagation. 

Secondly, the Transformer model notably minimizes information propagation loss. RNN models, 
even enhanced variants like LSTM and GRU, may grapple with issues such as gradient explosion, 
vanishing gradients, or the forgetting of long-range dependencies when handling exceptionally long 
sequences. On the other hand, the Transformer model efficiently accesses information from all positions 
within a sequence, keeping the distance at one, mitigating these issues. 
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Lastly, the Transformer model proficiently amalgamates information from all positions. Unlike 
convolutional models, which usually consider smaller windows and require multiple convolution layers 
to integrate information from distant elements, the Transformer model adeptly collects information from 
all positions within a distance of one, enhancing the integration of information across the sequence. 

 
Figure 2. Advantages of the transformer model (Photo/Picture credit: Original). 

As a result, the majority of models developed after 2017, such as the GPT series, BERT, RoBERTa, 
XLNet, and others, have adopted the Transformer architecture, making it the undisputed mainstream 
framework for large language models. As shown in Figure 2. 

Moving forward, let's explore this attention-based neural network architecture in greater detail, 
focusing on two aspects: the self-attention mechanism and the diverse structures created by combining 
encoders and decoders. 

2.2.2.  Self-attention mechanism. The self-attention mechanism is an attention mechanism used for 
modeling sequential data. It computes attention weights by measuring the similarity between different 
positions in the input sequence. Given a position in the input sequence, the self-attention mechanism [8] 
calculates similarity scores between this position and other positions, normalizes the scores using the 
Softmax function, and obtains attention weights α (i, j) associated with other positions. These weights 
are then applied to the corresponding Value vectors (typically feature vectors from the input sequence) 
to produce the final attention output. 

In large language models, the most common self-attention mechanisms are Scaled Dot-Product 
Attention and Multi-Head Attention. 

In Scaled Dot-Product Attention, for each position i in the input sequence, similarity scores Score (i, 
j) are computed by taking the dot product of the Query vector and the Key vector of other positions j. 
The scores are then normalized using the Softmax function to obtain attention weights α (i, j). Finally, 
these weights are applied to the Value vectors to compute the attention output Ai for position i. The 
calculation formula is as follows:  

 𝑆𝑐𝑜𝑟𝑒(𝑖, 𝑗) = 𝑄! · 𝑘" (1) 

 𝛼(𝑖, 𝑗) =
exp&!"#$%(',))

√,
'

(" exp&!"#$%(',))
√,

'
 (2) 

 𝐴! =	𝛴" 	𝛼(𝑖, 𝑗) · 	𝑉" (3) 

In Multi-Head Attention, an extension of Scaled Dot-Product Attention, multiple independent 
attention heads are used, each with its own Query, Key, and Value vectors. This allows the model to 
learn different weights and compute attention from different perspectives on the input sequence. For 
each position i in the input sequence, let there be h attention heads, and the output of each head is 
represented as 𝐴!^h. The final multi-head attention output 𝐴!for position i is obtained by concatenating 
or linearly combining the outputs from all attention heads: 

 Ai = 	Concatenate <Ai
1, Ai

2, … , Ai
h> (4) 
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Presently, leading large language models, including GPT-3, BERT, RoBERTa, XLNet, Palm [9], 
and ChatGLM2 employ Multi-Head Attention as their self-attention mechanism. Multi-Head Attention 
allows the models to learn diverse representations and features, thereby enhancing their expressive 
capabilities and demonstrating superior performance in handling complex tasks and long sequences [10]. 

2.2.3.  Different structures for combining encoders and decoders. As shown in Figure 3, similar to most 
seq2seq models, the Transformer architecture consists of an encoder and a decoder. Overall, LLM 
(Language Model) models can be categorized into three major types: Encoder-decoder Architecture, 
Causal Decoder Architecture, and Prefix Decoder Architecture [11].   

 
Figure 3. Structure diagram of Transformer model (caption centred) (Photo/Picture credit: Original). 

The Encoder-decoder Architecture uses the most basic structure and was initially introduced by the 
Seq2Seq model to address sequence-to-sequence tasks, such as machine translation. It consists of an 
encoder and a decoder. The encoder is responsible for transforming the input sequence into a fixed-
dimensional semantic representation, while the decoder uses this semantic representation to generate the 
output sequence. Within the encoder-decoder structure, self-attention mechanisms are commonly 
employed for sequence modeling, enabling the model to handle variable-length input and output 
sequences. This architecture has proven to be highly effective in various sequence-to-sequence tasks, 
such as text translation, text summarization, and dialogue generation. Prominent examples of large 
language models following this architecture include ELMo, BERT, RoBERTa, among others [12]. 
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Currently, the most widely used architecture is the Causal Decoder, which is primarily employed for 
handling autoregressive generation tasks, where each element of the output sequence depends on 
previously generated elements. The Causal Decoder Architecture is an improvement over the Encoder-
decoder structure, as it introduces an autoregressive mechanism in the decoder. This means that when 
generating the current element, the model only uses the elements generated before it. This ensures that 
the model does not have access to future information during the generation process, thereby preserving 
causality. The GPT series (e.g., GPT-3) is a typical example of models that use the Causal Decoder 
Architecture. These models generate text by sequentially producing words one by one, avoiding 
information leakage and enabling the generation of coherent and plausible text. 

Compared to the Encoder-decoder models, Decoder-only models offer several advantages due to 
their simpler structure, faster training and inference speed, suitability for pure generation tasks, and 
advantages in decoder self-supervision. With the release of GPT-3 in 2021, Decoder-Only models have 
become a turning point and have gradually replaced Encoder-Decoder models, dominating the 
development of LLMs. 

2.3.  Large language model training methods - pre-training and fine-tuning 
The concept of pretraining diverges from the traditional training approach based on backpropagation in 
neural networks, where network parameters are initialized randomly. Instead, pretraining involves 
training the model on specific tasks to obtain pretrained parameters. These pretrained parameters are 
then used to initialize the model before further fine-tuning. Pretraining is categorized under transfer 
learning [13]. 

The first-generation pretraining model emerged in 2013 with the introduction of word2vec, which 
provided word representations for training neural networks. However, it had limitations in effectively 
addressing the issue of polysemy in word embeddings. In 2018, ELMo marked the beginning of the 
second-generation pretraining language models, adopting the "pretraining + fine-tuning" paradigm. 
ELMo utilized bidirectional LSTMs as feature extractors, considering contextual word embeddings to 
better represent polysemous words [14]. Later, the more powerful Transformer architecture was applied 
to various subsequent pretraining language models like GPT and BERT, continually achieving state-of-
the-art performance in natural language processing tasks [15]. 

In recent years, the success of PTMs (Pretrained Language Models) lies in integrating self-supervised 
learning with the Transformer architecture. Two highly influential PTMs, GPT and BERT, are based on 
the Transformer and utilize different models, namely autoregressive and autoencoder, respectively [16]. 

Autoregressive models predict preceding and subsequent words based on context. For instance, 
ELMo concatenates two autoregressive models, one running from left to right and the other from right 
to left, creating a bidirectional language model. Nevertheless, it still fundamentally belongs to the 
autoregressive model category. 

Autoencoder models can be viewed as a denoising process, where pretraining involves predicting 
masked words based on context. The advantage of this model lies in its ability to utilize contextual 
information for predicted words. However, during the fine-tuning stage, masked words do not appear, 
leading to inconsistencies between the pretraining and fine-tuning stages due to the presence of [MASK] 
tokens. 

During the pretraining phase, the model learns from an extensive and diverse dataset. Pretraining 
data can be broadly categorized into general data and specialized data. General data, such as web pages, 
books, and conversational texts, are commonly used due to their large scale, diversity, and accessibility. 
This stage enables the model to learn general language patterns and representations, enhancing its 
language modeling and generalization capabilities [17]. 

In the fine-tuning stage, the model is further trained on smaller and more specific datasets related to 
the target task or domain. This process combines the pretrained model's generalization ability with the 
specific requirements of the target task, resulting in improved performance. The fine-tuning process 
typically involves freezing certain parameters, updating top-level parameters, and adjusting others. Once 
fine-tuning is completed, the model can be deployed for specific tasks in practical applications. Notably, 
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Child-Tuning, proposed by Runxin Xu et al., updates a subset of parameters in large pretrained models 
by strategically masking gradients during the backward process, consistently achieving higher scores 
compared to regular fine-tuning (1.5-8.6 points) [18]. Additionally, Long Ouyang et al. fine-tuned GPT-
3 using supervised learning and collected ranking data to further fine-tune the model through 
reinforcement learning with human feedback, resulting in the InstructGPT model. This model 
demonstrated improvements in realism and reduced generation of toxic outputs, while maintaining 
performance regression on public NLP datasets [19]. 

3.  Application analysis of large language models 

3.1.  Overview of application areas 
As depicted in the figure 4, large language models are currently widely utilized in diverse domains, 
including finance [20], [21], healthcare [22]-[24], education [25]-[27], law [28], geographical research 
[29], and literature [30]. The main application approaches encompass information extraction and 
integration, text generation, as well as analysis, prediction, and recommendation [31]. Moving forward, 
let's delve into their applications in the finance domain.  

 
Figure 4. Main application methods and main application areas (Photo/Picture credit: Original). 

3.2.  Typical application cases 
The financial industry, being a specialized field in managing financial commodities, stands out as one 
of the domains where large language models have achieved remarkable advancements. 

Hongyang Yang pioneered the development of FinLLM, a FinTech language model capable of 
providing robot advice, algorithmic trading, and low-code development. They achieved this by 
leveraging automatic data management pipelines and lightweight low-rank adaptation techniques. Shijie 
Wu et al [32]. Constructed BloombergGPT, a financial large language model, by harnessing 
Bloomberg's extensive data sources, including 363 billion tokens from tokenized financial data and an 
additional 345 billion tokens from general datasets. FinBert, an open-source pretraining natural language 
processing (NLP) model, specifically trained on financial data, outperformed almost all other NLP 
technologies used for financial sentiment analysis [33]. Additionally, domain-specific financial large 
language models, such as the Chinese "Xuanyuan," are continuously under development. 

Financial large language models serve as robot advisors, delivering personalized financial advice by 
analyzing investors' risk preferences, financial situations, and investment goals. These models 
recommend investment portfolios that align with their needs, thereby enhancing the accuracy and 
efficiency of investment decisions. They excel in analyzing financial market data and trends, providing 
trading signals for informed trading decisions. By integrating historical data, market trends, and risk 
assessments, these models assist institutions and investors in optimizing investment portfolios. They 
conduct sentiment analysis on social media, news, and public opinion data to better predict market trends. 
Furthermore, they aid financial institutions in achieving more effective risk management, including 
credit risk assessment, bankruptcy prediction, and corporate merger forecasts. Through the analysis of 
transaction data, these models identify potential fraudulent activities, thereby enhancing the security of 
financial transactions. ESG (Environmental, Social, and Governance) scoring has gained increasing 
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attention in the financial industry. Financial large language models can analyze data on companies and 
assets, providing investors with evaluations and rankings related to ESG performance, thereby 
promoting sustainable and socially responsible investments. They also contribute to enhancing financial 
literacy through financial education initiatives [33], continuously empowering the financial industry. 
These models offer more intelligent and efficient solutions to financial institutions and practitioners, 
driving innovation and development in the financial sector. 

However, with the widespread application of large language models, a series of challenges arise, 
including ensuring high reliability and security in their deployment. These issues will be discussed in 
the next chapter. 

4.  Challenges and possible solutions 
The prevailing challenges facing large language models can be categorized into: misinformation, ethical 
concerns, potential bias; data privacy issues; training cost challenges; and multi-modal application 
challenges. First, let's delve into misinformation, ethical concerns, and potential bias. ChatGPT often 
produces factually incorrect or biased outputs. Although this issue is intrinsic to generative AI models, 
its handling of the problem has been criticized [34]. As large language models find more applications, 
the repercussions of misinformation, ethical oversight, and biases, whether based on race, region, or 
other factors, intensify. The credibility of ChatGPT as a primary tool for healthcare education is 
compromised by its frequent inaccuracies, which learners might overlook [35]. Such issues not only 
hinder the broader adoption of these models but also deter users, including patients and practitioners, 
from trusting their responses. This, in turn, curtails the potential of automating healthcare processes. 
Researchers from institutions like OpenAI and the Stanford Institute for Human-Centered Artificial 
Intelligence have been proactive in addressing these issues [36]. Solutions discussed include leveraging 
metadata from online platforms, adopting encryption technologies for media authentication, utilizing 
diverse datasets, innovating anti-discrimination and bias-prevention algorithms, collaborating with a 
range of societal stakeholders, and advocating for relevant regulations. 

Next, let's tackle the data privacy challenges. In 2023, two incidents of device information exposure 
and one of meeting content leakage occurred within a span of 20 days when Samsung permitted 
employees to utilize a certain large language model. Another notable incident involved a bug in the 
Redis open-source library, which triggered a malfunction and subsequent data leak of a large language 
model. Current technologies aimed at privacy protection are restricted by the fluid nature of privacy, the 
intricacies of defining private data, and the hurdles in pinpointing privacy informants. With added 
context, data becomes more dispersed, converting the concept of privacy protection from static to 
dynamic [37]. To address these concerns, H. Brown and team have suggested training language models 
exclusively on data that is designated for unrestricted public use, both now and in the future [38]. 

On the front of training costs, it's undeniable that they pose a significant barrier to the evolution of 
large language models. While advancements have been made through hardware improvements, model 
distillation, and accelerated training methodologies, the costs remain a substantial concern. As Professor 
Yoav Goldberg from Bar-Ilan University in Israel pointed out on GitHub, the "data-hungry" nature of 
these models makes it formidable to emulate the proficiency achieved in English for other languages, 
be it widely-spoken ones like German, French, Arabic, Chinese, or Hindi, or "low resource" languages 
prevalent in regions of Africa and the Philippines. 

Lastly, the horizon looks promising for multi-modal applications. OpenAI's DALL·E, a variant of 
GPT-3 trained for text-to-image transformations, has made waves in the community. Similarly, Danny 
Britz and team have trained a robust multi-modal model, PaLM-E, capitalizing on comprehensive joint 
training spanning language, vision, and visual language domains at an unprecedented scale. Additionally, 
"Irene" integrates cutting-edge NLP and image recognition to aid in medical diagnostics [39]. These 
innovations pave the way for leaps in creativity, assisted production, and cross-domain integration. 
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5.  Conclusion 
Large language models have not only spurred academic advancements but have also seen extensive 
applications across diverse sectors such as finance, healthcare, biology, and education, imbuing these 
industries with unprecedented potential. However, as their integration grows more widespread, a myriad 
of ethical, economic, and other intrinsic challenges emerge, necessitating immediate and discerning 
solutions. Consequently, both scholars and industry professionals are intensely examining these models, 
looking for ways to alleviate these concerns and maximize their positive impact. 

Research meticulously traces the historical development and core principles of large language 
models, with an emphasis on their ramifications in the financial sector. The challenges that have arisen 
during their evolution are addressed, and well-founded solutions are proposed. Through this in-depth 
exploration, a vivid tableau of insights emerges, shedding light on the past, present, and potential futures 
of large language models. Looking forward, it's clear that as technological innovation quickens and 
research becomes more profound, large language models will continue to play a central role in NLP's 
unfolding story. There's optimism for upcoming enhancements to tackle current challenges, catalyzing 
even more groundbreaking innovations for society. Yet, such optimism should be paired with caution, 
constantly assessing potential setbacks and risks to ensure that technology genuinely serves humanity's 
greater good. With persistent research and thoughtful exploration, there's confidence that large language 
models can pave a more promising and advantageous path for the global future. 
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