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Abstract. The proliferation of electromagnetic devices presents a significant challenge in 

developing effective techniques for spectrum monitoring, management, and security. The 

utilization of spectrum cartography has been acknowledged as a viable approach to address the 

aforementioned difficulties. This latter presents a variety of techniques aimed at enhancing the 

efficiency of the current spectrum mapping methodology. The subject matter can be categorized 

into two primary components, namely sampling and spectrum prediction. Sampling part includes 

methods to find the most valuable sampling points and methods of sampling hardware 

optimization. Spectrum prediction includes algorithms utilizing frequency-spatial reasoning 

techniques to estimate the target spectrum map by data from the nearby area, and algorithms 

utilizing ROSMP framework to estimate the spectrum map from past data. The introduction of 

techniques is divided into the 2 types, together with key algorithms and devices used in each 

method. Additionally, the letter lists some drawbacks of certain methods and discuss their 

development prospects. 
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1.  Introduction 

With the rapid proliferation of intelligent terminals and the variety of ultra-wideband applications, the 

sixth generation (6G) wireless communication networks are facing significant challenges in spectrum 

mapping [1-3]. A spectrum map is a representation of the spatial distribution of the received signal 

intensity by projecting the received signal strength to the appropriate geographic coordinates in an area 

of interest. It can give details about how spectrum resources are used as well as how signal sources are 

distributed in an electromagnetic field [4-6]. Spectrum efficiency may be greatly increased by using 

spectrum maps to intelligent spectrum management [7,8]. According to the Federal Communications 

Commission (FCC), significant quantities of spectrum are not being used, incorporating analogue 

cellular phone and broadcast TVs, among other things [9], [10]. The objective of spectrum mapping is 

to generate a comprehensive spectrum map by leveraging spectrum situation awareness. This technology 

allows for the correlation of awareness outcomes with three-dimensional (3D) geographic locations in 

a corresponding manner. The utilization of spectrum maps enables radio frequency (RF) devices to 

effectively access unoccupied spectrum and circumvent areas with high levels of interference [11]. 

Consequently, it is unquestionable that, the development of spectrum mapping is vital and urgently 

needed in wireless communication research, which intends to create a spectrum map of interested 

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/36/20230421

© 2023 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

34



regions to manage the spatial spectrum resources efficiently [12]. There are two main aspects can be 

taken into consideration to tackle with the spectrum mapping issues. One is about sampling, and the 

other one is about spectrum estimation algorithms. The following letter will introduce new methods in 

the 2 aspects respectively. 

2.  Optimization for sampling methods 

The spectrum map, which can be thought of as a visible cartography based on the geolocation database, 

relies on sensors gathering power measurements to estimate the spectrum utilization in a certain area 

and determine the distribution of signal strength, so that it can be improved by optimizing the sampling 

session [11].  

The first group of methods is about the algorithms to find the most valuable sampling points. 

Undoubtedly, the whole three-dimensional spectrum situation map will be precisely produced if the 

spectrum monitoring equipment performs a comprehensive sampling of the entire space, but at a 

significant energy and resource cost [11-13]. Conforming to Nyquist's sampling theory, it is imperative 

for the sample rate to be at least twice the bandwidth of the signal. Achieving Nyquist rate sampling 

becomes exceedingly challenging for a receiver with restricted power and hardware capabilities, 

particularly when confronted with a spectrum of considerable bandwidth that need monitoring. In 

contrast to Nyquist theory, compressed sensing (CS) [14-16], alternatively referred to as compressed 

sampling, obtains random discrete samples of the signal. These aforementioned samples are 

subsequently employed in a nonlinear reconstruction technique in order to replicate the original signal. 

The utilization of the signal's sparsity enables the CS method to attain significant signal reconstruction 

capabilities, especially when the number of measurements is limited. This aligns with our objective of 

approximating the complete three-dimensional wideband spectrum landscape by utilizing as few 

spectrum sample points as possible [11,17]. Furthermore, the utilisation of spatial diversity in 

transceivers can facilitate the allocation of the complete frequency spectrum to many users. This 

allocation strategy effectively reduces the spectrum sampling cost for each transceiver, hence enhancing 

overall sampling efficiency [11,17]. 

In [11], by leveraging the concept of joint sparsity in both spatial and frequency domains, the 3D 

compressed wideband spectrum mapping model is initially converted into a compressed sensing 

optimization problem that encompasses the space, frequency, and time domains simultaneously. Then, 

to optimize the spatial sampling sites, a QR block pivoting is used. Since there is typically little 

coherence across distinct frequency points, arbitrary frequency point selection is employed for every 

spatial position [11,17]. The choice of the spatial sample point, however, has a higher influence on the 

accuracy of scenario recovery since the 3D wideband spectrum situation has a strong correlation in the 

spatial domain, as stated by the law of signal propagation. Such that, achieving comparable performance 

to random sampling can be attained by utilizing a smaller number of sample locations, provided that the 

selected sampling locations effectively leverage the inherent qualities of the spectrum situation. After 

that, the reconstruction of the 3D wideband spectrum situation uses the alternating direction approach 

of multipliers. This method is tested to deliver superior spectrum situation recovery performance 

compared to conventional algorithms' shortcomings [11,17].  

However, the method presented in [11] using right-triangular (QR) pivoting and quadrature, 

information loss will become the result of dimension reduction for guaranteeing the sparse matrix's 

column space size is no bigger than the sampling number.  Additionally, the precision of the signal 

source localization is overemphasized in the spectrum situation recovery, which compromises the 

accuracy of signal strength assessment. Besides that, every spatial point inside the entire space is 

regarded as accessible which overlooks the condition that it seems to be impracticable for data-driven 

spectrum mapping in unauthorized locations where spectrum monitoring equipment are unable to cross 

the boundary for measurement [12].  

In [12], the RCSM algorithm is introduced to optimize the sampling location and deal with the 

obstacle of inaccessible places. This correspondence discusses the implementation of distant spectrum 

mapping in a three-dimensional (3D) setting, with the objective of obtaining a comprehensive and 
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precise 3D spatial power map of inaccessible regions, as depicted in Figure 1. First, the 3D space is 

converted into a spectrum power tensor, then denote the set of all distinct sample locations and assume 

the set of unreachable areas [12]. Secondly, given the lightweight nature and agile mobility of 

Unmanned Aerial Vehicles (UAVs), the utilization of UAVs is proposed to strategically choose sample 

places within accessible regions, so enabling the restoration of spatial power in areas that are otherwise 

inaccessible. Spatial power strength that is obtained is a result of combining signals from various points 

inside the designated three-dimensional space. This motivates us to exploit the inherent sparsity of 

spatial power distribution in order to undertake the subsequent investigation on remote spectrum 

mapping. In this section, an algorithm called the remote compressed spectrum mapping algorithm 

(RCSM) is proposed. This algorithm consists of two main components: optimization of spatial sample 

locations and estimation of spatial power in inaccessible areas [12]. Locating the sampling sites can be 

transformed to a greedy optimization problem. The greedy algorithm chooses a sampling location for 

each iteration that, when coupled with previously selected locations, maximizes the determinant. Finally, 

the simulation demonstrates the RCSM algorithms' superiority over conventional methods [12].  

 

Figure 1. Graphical illustration of remote compressed spectrum mapping [21]. 

The second group of methods is about enhancing the sensors which are used to get raw data from 

sample points. The acquisition of raw data from the target location is an essential stage in spectrum 

cartography. In [18], a large amount of ground sensors was widely spread out, then saved the data for 

later analysis in a database. While the data in [19] was collected either by individual mobile users or by 

moving vehicles. Nevertheless, due to the short sample duration, spectrum cartography requires the pre-

processing of raw data to forecast and complete the missing data. The techniques mentioned above solely 

concentrate on creating two-dimensional (2D) maps using information gathered from the ground or from 

sources of low-altitude radiation. The inclusion of aerial communication platforms should be given due 

consideration while examining the expansion of space-air-ground integrated communication networks, 

as they contribute to the development of a comprehensive 3D spectrum map [20].  

In [20], a prototype for a spectrum mapping system based on unmanned aerial vehicles (UAVs) is 

introduced. The system is designed to autonomously navigate along a predetermined path and collect 

three-dimensional data on the electromagnetic spectrum. A UAV platform, a radio monitoring module, 

an air-to-ground (A2G) communication module, and a ground processing terminal comprise this system, 

as shown in Figure 2. The radio monitoring module created in [20] is attributed to its advantageous 

characteristics, including high mobility, low cost, and ease of deployment. It can gather and store 
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spectrum data from 200 kHz to 8 GHz using a changeable antenna [20]. The A2G communication 

module is responsible for transmitting the gathered spectrum data and additional information to the data 

processing unit. Simultaneously, it receives the up-link control command. Finally, the spectrum map is 

created and shown by the ground processing module. This system predicts, completes, and merges the 

spectrum data before sending it to the cloud servers, where it is then used to rebuild a complete radio 

map spanning many domains, and shows significant advantages in managing radio frequency resources, 

determining the location of radiation sources, and detecting anomalous spectral activity [20]. 

 

 

Figure 2. An overview of Hardware architecture [20]. 

3.  Optimization for prediction algorithms  

The vital work of spectrum mapping is to collect geo-localized measurements from disparate spectrum 

sensors and estimate the status of geographical places where measurement data is lacking, so that 

spectrum prediction algorithms need to be taken into consideration [21]. The existed approaches for 

creating spectrum maps can be categorized into two types: classic schemes that rely on spatial 

correlation, and schemes that combine frequency and spatial correlation. Nevertheless, the procedures 

that are based on spatial correlation necessitate the availability of measurement data inside the target 

sample region. In cases where there is a lack of signal information pertaining to the target frequency, 

the construction of spectrum maps becomes unfeasible. In contrast, the bulk of past endeavours have 

mostly utilized frequency correlation as a means of generating spectrum maps. However, it is important 

to note that this approach does not provide a guarantee of correctness in the absence of substantial data 

from the target [1,21,22].  

The current joint frequency-spatial correlation-based systems that just employ frequency correlation 

without considering how differently frequencies fade throughout propagation. Two precise approaches 

for creating spectrum maps are put forward in [1] utilizing various frequency-spatial reasoning 

techniques. Also, to make the full use of frequency and spatial correlations completely and properly 

generate the target spectrum map, in [1], a model for representing joint frequency-spatial spectra is 

established. After that, two neural networks, namely a novel Conditional Generative Adversarial 

Network (CGAN) and a novel autoencoder, are constructed with the purpose of introducing two 

intelligent frequency-spatial reasoning approaches [1]. As for the method based on the novel 

autoencoder, the steps are shown in Figure 3. In this method, the spectrum maps are arranged in layers 
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along the third dimension, taking into account the numerical relationship between frequencies within a 

certain fundamental radio propagation scenario.  This makes single spectrum maps to be efficiently 

correlated throughout the frequency domain, and radio propagation environment frequency 

characteristics can be learnt in a three-dimensional (3D) structure. The proposed approach utilizes an 

autoencoder network to investigate the frequency and spatial features of the radio propagation 

environment. By training the model on these datasets, it acquires a comprehensive understanding of 

these properties, ultimately facilitating the generation of the desired spectral map. As for the method 

based on the novel CGAN, it shares the same progress of data collecting in 3D with the former method. 

The process of training the model involves the application of the generative adversarial training principle 

in the unique Conditional Generative Adversarial Network (CGAN), as depicted in Figure 4. Both sub-

networks acquire knowledge about the radio propagation environment by earning the frequency fading 

characteristics in the frequency dimension and the spatial fading characteristics in the other geographical 

dimensions. The underlying notion guiding this approach to network parameter optimization is that, 

modifying the parameters of the discriminator and generator networks iteratively via backward 

propagation. This process aims to enhance the discriminating and construction performance of both sub-

networks using a game-like mechanism. The primary objective of training the generator is to ensure that 

its generated output closely resembles the distribution of real spectrum data found in the datasets. This 

is done in order to make it difficult for the discriminator to differentiate between the artificially made 

false samples and the authentic ones. The objective of the discriminator training is to effectively 

ascertain the authenticity of the input 3D spectrum representation samples, distinguishing between 

actual and artificially generated data. Both two methods can capture intricate radio propagation features 

and rationalize the data distribution of target spectrum maps which accomplish a trade-off between 

computing speed and construction accuracy, making them suited for processing 3D data [1].   

 

 

Figure 3. The proposed accurate spectrum map construction scheme using an intelligent frequency-

spatial reasoning method [1]. 
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Figure 4. The proposed autoencoder structure [1]. 

Besides that, in [21], a non-parametric algorithm is introduced for creating spectrum maps. The 

received signal power is modelled as a linear combination of centred power functions at different places, 

and the weights, centroid locations, and exponent are simultaneously optimized using an alternating 

minimization approach. Similar to RBF-based approaches [23], the received signal power is modulated 

at each point as a weighted contribution from various functions. The K-means++ method [24] is used to 

meaningfully initialize the centroids positions while avoiding the performance instabilities caused by 

random selection. This non-parametric method is inspired by the functional form of most route loss 

models, and it is independent of transmitter and propagation environment factors. 

Different from the above methods which need the frequency-special data at presence, in [25], a new 

method using the past data is introduced. Through the examination of the inherent structure of previous 

observations, the process of spectrum map prediction has the ability to estimate the spectrum map at 

every given point in time. The new method uses the reliable online spectrum map prediction (ROSMP) 

framework, which enables accurate spectrum map prediction even with faulty and incomplete historical 

observations [25], as shown in Figure 5. The problem of spectrum map prediction based on incomplete 

and incorrect historical observations is formulated as a joint optimization problem of tensor completion 

and subspace learning by effectively integrating the time series forecasting techniques. A robust online 

spectrum map prediction algorithm is designed by taking an alternating direction minimization 

procedure to efficiently solve the optimization problem. 

[25]. In [25], a definition called tensor is used as cornerstone, which is firstly introduced by [26]. As 

the frequency and time, which are also crucial factors for the spectrum data, cannot be reflected, and the 

spectrum map just depicts the distribution of the signal intensity in space. Tensor pattern is introduced 

in [26] to demonstrate the expansion of work conducted on a two-dimensional spectrum map to 

encompass a three-dimensional or higher-dimensional spectrum map, thereby effectively representing 

the multi-dimensional characteristics inherent in spectrum data. In [26], a new approach to recover the 

spectrum map from the insufficient received signal strengths is introduced. The spectrum map prediction 

can be transformed into a tensor completion problem [26]. Then, there are many algorithms in other 

filed can be invoked such as the new multi-dimensional CS reconstruction formula from [27] and so on. 
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The algorithm presented in [28] seems to be the best choice as the simulation recommends, since it can 

predict larger missing areas of the spectrum data by functioning with fewer samples [26]. 

 

Figure 5. An exemplary database-driven spectrum map prediction system [25]. 

4.   Conclusion 

In this paper, several methods are introduced to optimize the existing spectrum mapping approach. They 

can be divided in two main aspects, one is about sampling, and the other is about spectrum prediction. 

In the first part, the sampling session can be improved both by finding the most valuable sample points 

and enhancing the sensor to get more accurate and comprehensive raw data. In the second part, the 

prediction session can be improved by using different algorithms. The need of raw data by these 

algorithms is also different. Because of this, all sorts of data, such as data about frequency and spatial 

correlations, data about signal attenuation model in the target district, and even data observed in the past 

can be used to conduct an accurate spectrum map. These methods make spectrum map much easier, 

more accurate and less costly than before, and largely contribute to the development profusion of 

intelligent devices and ultra-wideband services. 
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