
A parallel Breadth-First Search using shared memory level-

synchronization

Kaiwen Zheng

Department of Computer Science, University of Toronto, Toronto City, M5S 2E8,

Canada

helloworld.zheng@mail.utoronto.ca

Abstract. Breadth-first search (BFS) stands as a cornerstone in graph exploration techniques,

enabling systematic traversal of a provided graph. As the digital era continues to burgeon, there

has been a marked upswing in the need to process vast graph-based data sets. To harness the

power of such data effectively, it becomes imperative to use computational tools efficiently.

Parallelizing BFS emerges as a pivotal strategy in this regard, leveraging the expansive

capabilities of multiprocessor systems to maximize efficiency. This manuscript introduces a

level-synchronous parallel BFS that is predicated on the shared-memory model. Recognizing the

potential pitfalls of such an approach, especially regarding overhead induced by implicit barriers

and critical sections, meticulous optimization techniques are infused into the model. These

strategies are not mere afterthoughts; they are woven into the fabric of the design, ensuring

smooth operations even when scaled. To validate the efficacy of this model, a rigorous

assessment is carried out using the Graph500 benchmark. This offers insights into the

performance scale of the parallel BFS algorithm, especially focusing on its speedup in relation

to the number of operational threads. Concluding this exploration, the paper delineates

prospective avenues for refining and further enhancing the proposed parallel implementation,

aiming for even greater efficiencies in future endeavors.

Keywords: Shared-Memory Model, Graph Search, OpenMP, Parallelization.

1. Introduction

The breadth-first search algorithm stands as a pivotal technique in graph traversal, systematically

navigating a given graph tier by tier. Its indispensability is underscored not only in its foundational role

for myriad graph-specific algorithms, like determining the maximum flow via the Ford-Fulkerson

algorithm and ascertaining if a graph is bipartite, but also in its broader applications. Particularly, when

data is delineated as graphs, BFS proves invaluable in tasks such as identifying relational connections

within a social network or deducing the shortest route connecting two cities on a specified map [1,2]. In

today's data-driven epoch, BFS's intrinsic data-intensiveness melds with the burgeoning magnitude of

graph-based structures, leading to compelling challenges. The conundrum, precisely, lies in the capacity

to process massive graphs efficiently, especially as transistor counts in processors reach their asymptotic

limits. Hence, the imperative arises to exploit BFS in a parallelized framework, harnessing the might of

multiprocessor systems. In response to this evolving need, this manuscript elucidates a level-

synchronous parallel BFS technique anchored in the shared-memory paradigm. The emphasis is not

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/36/20230442

© 2023 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

180

merely on parallelization but also on meticulous optimizations. These refinements strategically curtail

layer synchronization overheads and mitigate the intricacies tied to race conditions, ensuring the

algorithm's robustness [3]. Concurrently, a discerning evaluation measures the algorithm's performance

enhancements, specifically gauging the speedup in relation to the count of engaged threads.

2. Breadth-First Search

Given a graph 𝐺 = (𝑉, 𝐸), where 𝑉 is the set of vertices and 𝐸 is the set of edges, and a starting vertex

𝑣 ∈ 𝐺 , BFS returns a set 𝑃 = {𝑣, 𝑣1, 𝑣2, … , 𝑣𝑛} such that ∀𝑢 ∈ 𝑃, 𝑢 ∈ 𝐺 and ∀𝑣𝑖, 𝑣𝑗 ∈

𝑃, 𝐼𝑠𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝑣𝑖 , 𝑣𝑗). There are several implementations of BFS, and one classic instance utilizes a

container-centric approach [4], the pseudo code shown below uses two containers called border and

next_ Border, where frontier is used to keep track of all vertices at the same layer (i.e., vertices that are

equally distant to the starting vertex) and next_ frontier is used to store the neighbouring vertices of

those in frontier [5].

 1 func serial_BFS(G = (V, E), src) {

 2 levels[|V|] := a collection of level values for a given vertex v;

 3 foreach vertex v in V do {

 4 levels[v] := -1;

 5 }

 6 frontier := {}, next_frontier := {};

 7 levels[src] := 0, curr_level := 0;

 8 frontier.insert(src);

 9 while frontier is not empty do {

10 foreach vertex v in frontier do {

11 foreach neighbor n of v do {

12 if levels[n] = -1 do {

13 next_frontier.insert(n);

14 levels[n] := curr_level + 1;

15 }

16 }

17 }

18 frontier := next_frontier;

19 next_frontier := {};

20 curr_level := curr_level + 1;

21 }

22 }

A notable characteristic of the aforementioned serial BFS implementation is its systematic

exploration, wherein each layer of the graph is meticulously processed prior to advancing to the

subsequent layer [6]. Such a structured approach intuitively lends itself to parallelization, especially

when contemplating simultaneous traversals across individual layers of the graph. Contrarily, another

prevalent BFS approach employs a queue, denoted as Q, to maintain a record of vertices awaiting

exploration. Within this method, for a given vertex 'v' found in Q, vertices neighboring 'v' are

sequentially appended to Q. This process is appropriately explained in the pseudocode shown below [7].

However, despite its popularity, this queuing strategy is less favored when juxtaposed with the method

illustrated. The primary challenge arises in ascertaining if a specific subset of vertices genuinely coexists

within an identical layer. Such a determination demands intricate dependency checks, complicating the

parallelization process and thus rendering it less straightforward [8].

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/36/20230442

181

 1 func serial_BFS(G = (V, E), src) {

 2 queue := empty;

 3 queue.insert(src);

 4 mark src as visited;

 5 while queue is not empty do {

 6 v := queue.popfront();

 7 foreach neighbor n : v {

 8 if n is not visited do {

 9 mark n as visited;

10 queue.insert(n);

11 }

12 }

13 }

14 }

3. Methodology

In the section prior, it was highlighted that the block commencing from line 10 in Figure 1 offers an

avenue for parallel execution. This manuscript leans towards a shared-memory-based parallelization

approach, chiefly due to its lower overhead related to communication among multiple processes, in

contrast to the message-passing model [9]. To materialize this shared-memory approach, the OpenMP

framework is employed, leveraging its signature fork-join model. Here, as the primary thread ventures

into a parallel domain, it spawns multiple worker threads. As this parallel section concludes, these

worker threads reunite with the master, ensuring a synchronized merge. Given this framework, the

intuitive method for parallelization is the distribution of vertex processing duties in each layer across all

accessible threads through the fork-join paradigm. However, this approach isn't devoid of challenges.

Utmost vigilance is required to counter synchronization concerns emerging from race conditions. A

glaring instance of such a race condition emerges in the block starting from line 12: when two threads

tackle two different vertices with a mutual neighbor 'n,' the levels[n] could undergo multiple updates.

To counteract this, a critical section is imperative, initially realized through the #pragma omp critical

directive [10]. But there's a hitch: given that the directive locks the block rather than the data structure

threads interact with, it could induce inefficiencies. These inefficiencies manifest as threads wait for

another's completion. A subtler approach utilizes the #pragma omp atomic capture, targeting precise

data modifications.

Furthermore, when considering vertex level values, if levels[v] remains -1 post interaction by two

threads, it implies 'v' is unvisited, mandating its addition to the next frontier. This necessitates a local

variable to ascertain successful level[v] updates. Another predicament is the multi-threaded addition to

next_frontier, potentially skewing the BFS-intended vertex sequence. A workaround is the

local_next_frontier container, recording each thread's output. On a thread's conclusion, these local

vertices amalgamate into the shared next_frontier, with the merge shielded by a critical section. Finally,

returning focus to parallelizing the block from line 10, a preliminary solution might be the #pragma omp

parallel for directive. Yet, its implicit barrier post every loop introduces unwanted overheads. The

remedy? The use of #pragma omp parallel for nowait, eliminating these barriers without synchronicity

issues, thanks to the preceding atomic section introduction.

4. Results

To measure the speedup of the parallel BFS, which is defined as the ratio between the execution time

taken by the serial BFS and that taken by the parallel counterpart, graph benchmarks are selected on

www.networkrepository.com, and 500 experiments are run on each graph. In each experiment, the time

taken by the serial BFS (in milliseconds) and the time taken by the parallel BFS (in milliseconds) are

measured using omp_ get_ wtime () from <omp.h>. Upon finishing all the experiments, the average

execution time for each algorithm is calculated (the average execution time is defined as the total

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/36/20230442

182

execution time divided by the number of experiments). The experiments are run on a machine with its

system specifications summarized in Table 1, and the specifications of the graphs selected for

experimentation are summarized in Table 2. The speedup of the parallel BFS is plotted against the

number of threads used for parallelization in Figure 1, with the maximum number of threads being 32,

which is twice as many threads as there are available in the system’s processor.

Table 1. Specifications for the system used for experimentation.

Processor AMD Ryzen 7 Pro 4750U mobile processor with AMD Radeon graphics

Installed

RAM
32.0 GB

System Type 64-bit operating system. X64-based processor

Table 2. Specifications of graphs used for experimentation.

Graphs
Number

of Nodes

Number of

Edges
Density

Maximum

Degree

Minimum

Degree

Average

Degree
Directedness

1 30.8K 1.3M 0.00266671 4.6K 1 82 Undirected

2 18.8K 198.1K 0.00112411 504 0 21 Undirected

With 500 experiments run, Figure 1 plots the speedup of both graphs against the number of threads

used to execute the parallel BFS.

Figure 1. Speedup of the parallel BFS (Photo/Picture credit: Original).

5. Conclusions

This manuscript unveils an enhanced parallel Breadth-First Search (BFS) algorithm, meticulously

designed for proficient traversal of expansive graphs on shared-memory architectures. An empirical

analysis, conducted with real-world graph data sets, serves as a testament to the algorithm's robustness,

exhibiting a pronounced speedup with the escalation of thread engagement. The results gleaned from

these evaluations accentuate the comparative advantage of the parallel BFS over its sequential

counterpart, especially when harnessing the full power of the available system threads. Statistical

evaluations shed light on the performance dichotomy, offering a compelling narrative on the efficacy of

both approaches. Nevertheless, future work that can lead to potentially more promising speedup as well

as robustness should still be undertaken. For example, questions, such as 1) whether the directedness of

a graph affects the performance of our parallel BFS implementation, 2) whether and how data

partitioning that gives rise to load-balancing issues can be resolved using a shared-memory model, 3)

how is the density of a graph related to the effectiveness of the parallel BFS, and 4) how scalable is the

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/36/20230442

183

current implementation of parallel BFS, shall be investigated by controlling respective variables for

reaching a quantitative conclusion.

References

[1] Harel R, Mosseri I, Levin H, et al. Source-to-source parallelization compilers for scientific shared-

memory multi-core and accelerated multiprocessing: analysis, pitfalls, enhancement and

potential[J]. International Journal of Parallel Programming, 2020, 48: 1-31.

[2] Kadosh T, Schneider N, Hasabnis N, et al. Advising OpenMP Parallelization via a Graph-Based

Approach with Transformers[J]. arXiv preprint arXiv:2305.11999, 2023.

[3] Perciano T, Heinemann C, Camp D, et al. Shared-memory parallel probabilistic graphical

modeling optimization: Comparison of threads, openmp, and data-parallel primitives[C]//High

Performance Computing: 35th International Conference, ISC High Performance 2020,

Frankfurt/Main, Germany, June 22–25, 2020, Proceedings 35. Springer International

Publishing, 2020: 127-145.

[4] Harel R, Pinter Y, Oren G. Learning to parallelize in a shared-memory environment with

transformers[C]//Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles

and Practice of Parallel Programming. 2023: 450-452.

[5] Kadosh T, Hasabnis N, Mattson T, et al. Quantifying OpenMP: Statistical Insights into Usage and

Adoption[J]. arXiv preprint arXiv:2308.08002, 2023.

[6] Cho H. Memory-efficient flow accumulation using a look-around approach and its OpenMP

parallelization[J]. Environmental Modelling & Software, 2023, 167: 105771.

[7] Datta D, Gordon M S. A massively parallel implementation of the CCSD (T) method using the

resolution-of-the-identity approximation and a hybrid distributed/shared memory

parallelization model[J]. Journal of Chemical Theory and Computation, 2021, 17(8): 4799-

4822.

[8] Harel R, Pinter Y, Oren G. POSTER: Learning to Parallelize in a Shared-Memory Environment

with Transformers[J]. 2023.

[9] Velarde A. Parallelization of Array Method with Hybrid Programming: OpenMP and MPI[J].

Applied Sciences, 2022, 12(15): 7706.

[10] Gambhir G, Mandal J K. Shared memory implementation and scalability analysis of recursive

positional substitution based on prime-non prime encryption technique[C]//Computational

Intelligence, Communications, and Business Analytics: Second International Conference,

CICBA 2018, Kalyani, India, July 27–28, 2018, Revised Selected Papers, Part II 2. Springer

Singapore, 2019: 441-449.

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/36/20230442

184

