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Abstract. Breadth-first search (BFS) stands as a cornerstone in graph exploration techniques, 

enabling systematic traversal of a provided graph. As the digital era continues to burgeon, there 

has been a marked upswing in the need to process vast graph-based data sets. To harness the 

power of such data effectively, it becomes imperative to use computational tools efficiently. 

Parallelizing BFS emerges as a pivotal strategy in this regard, leveraging the expansive 

capabilities of multiprocessor systems to maximize efficiency. This manuscript introduces a 

level-synchronous parallel BFS that is predicated on the shared-memory model. Recognizing the 

potential pitfalls of such an approach, especially regarding overhead induced by implicit barriers 

and critical sections, meticulous optimization techniques are infused into the model. These 

strategies are not mere afterthoughts; they are woven into the fabric of the design, ensuring 

smooth operations even when scaled. To validate the efficacy of this model, a rigorous 

assessment is carried out using the Graph500 benchmark. This offers insights into the 

performance scale of the parallel BFS algorithm, especially focusing on its speedup in relation 

to the number of operational threads. Concluding this exploration, the paper delineates 

prospective avenues for refining and further enhancing the proposed parallel implementation, 

aiming for even greater efficiencies in future endeavors. 
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1.  Introduction 

The breadth-first search algorithm stands as a pivotal technique in graph traversal, systematically 

navigating a given graph tier by tier. Its indispensability is underscored not only in its foundational role 

for myriad graph-specific algorithms, like determining the maximum flow via the Ford-Fulkerson 

algorithm and ascertaining if a graph is bipartite, but also in its broader applications. Particularly, when 

data is delineated as graphs, BFS proves invaluable in tasks such as identifying relational connections 

within a social network or deducing the shortest route connecting two cities on a specified map [1,2]. In 

today's data-driven epoch, BFS's intrinsic data-intensiveness melds with the burgeoning magnitude of 

graph-based structures, leading to compelling challenges. The conundrum, precisely, lies in the capacity 

to process massive graphs efficiently, especially as transistor counts in processors reach their asymptotic 

limits. Hence, the imperative arises to exploit BFS in a parallelized framework, harnessing the might of 

multiprocessor systems. In response to this evolving need, this manuscript elucidates a level-

synchronous parallel BFS technique anchored in the shared-memory paradigm. The emphasis is not 
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merely on parallelization but also on meticulous optimizations. These refinements strategically curtail 

layer synchronization overheads and mitigate the intricacies tied to race conditions, ensuring the 

algorithm's robustness [3]. Concurrently, a discerning evaluation measures the algorithm's performance 

enhancements, specifically gauging the speedup in relation to the count of engaged threads. 

2.  Breadth-First Search 

Given a graph 𝐺 = (𝑉, 𝐸), where 𝑉 is the set of vertices and 𝐸 is the set of edges, and a starting vertex  

𝑣 ∈ 𝐺 , BFS returns a set 𝑃 =  {𝑣, 𝑣1, 𝑣2, … , 𝑣𝑛} such that ∀𝑢 ∈ 𝑃, 𝑢 ∈ 𝐺  and ∀𝑣𝑖, 𝑣𝑗 ∈

𝑃, 𝐼𝑠𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝑣𝑖 , 𝑣𝑗). There are several implementations of BFS, and one classic instance utilizes a 

container-centric approach [4], the pseudo code shown below uses two containers called border and 

next_ Border, where frontier is used to keep track of all vertices at the same layer (i.e., vertices that are 

equally distant to the starting vertex) and next_ frontier is used to store the neighbouring vertices of 

those in frontier [5]. 

 

 1 func serial_BFS(G = (V, E), src) { 

 2     levels[|V|] := a collection of level values for a given vertex v; 

 3     foreach vertex v in V do { 

 4         levels[v] := -1; 

 5     } 

 6     frontier := {}, next_frontier := {}; 

 7     levels[src] := 0, curr_level := 0; 

 8     frontier.insert(src); 

 9     while frontier is not empty do { 

10        foreach vertex v in frontier do { 

11            foreach neighbor n of v do { 

12                if levels[n] = -1 do { 

13                    next_frontier.insert(n); 

14                    levels[n] := curr_level + 1; 

15                } 

16            } 

17        } 

18        frontier := next_frontier; 

19        next_frontier := {}; 

20        curr_level := curr_level + 1; 

21    } 

22 } 
                                          
A notable characteristic of the aforementioned serial BFS implementation is its systematic 

exploration, wherein each layer of the graph is meticulously processed prior to advancing to the 

subsequent layer [6]. Such a structured approach intuitively lends itself to parallelization, especially 

when contemplating simultaneous traversals across individual layers of the graph. Contrarily, another 

prevalent BFS approach employs a queue, denoted as Q, to maintain a record of vertices awaiting 

exploration. Within this method, for a given vertex 'v' found in Q, vertices neighboring 'v' are 

sequentially appended to Q. This process is appropriately explained in the pseudocode shown below [7]. 

However, despite its popularity, this queuing strategy is less favored when juxtaposed with the method 

illustrated. The primary challenge arises in ascertaining if a specific subset of vertices genuinely coexists 

within an identical layer. Such a determination demands intricate dependency checks, complicating the 

parallelization process and thus rendering it less straightforward [8]. 
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 1 func serial_BFS(G = (V, E), src) { 

 2     queue := empty; 

 3     queue.insert(src); 

 4     mark src as visited; 

 5     while queue is not empty do { 

 6         v := queue.popfront(); 

 7         foreach neighbor n : v { 

 8             if n is not visited do { 

 9                 mark n as visited; 

10                 queue.insert(n); 

11             } 

12         } 

13     } 

14 } 

3.  Methodology 

In the section prior, it was highlighted that the block commencing from line 10 in Figure 1 offers an 

avenue for parallel execution. This manuscript leans towards a shared-memory-based parallelization 

approach, chiefly due to its lower overhead related to communication among multiple processes, in 

contrast to the message-passing model [9]. To materialize this shared-memory approach, the OpenMP 

framework is employed, leveraging its signature fork-join model. Here, as the primary thread ventures 

into a parallel domain, it spawns multiple worker threads. As this parallel section concludes, these 

worker threads reunite with the master, ensuring a synchronized merge. Given this framework, the 

intuitive method for parallelization is the distribution of vertex processing duties in each layer across all 

accessible threads through the fork-join paradigm. However, this approach isn't devoid of challenges. 

Utmost vigilance is required to counter synchronization concerns emerging from race conditions. A 

glaring instance of such a race condition emerges in the block starting from line 12: when two threads 

tackle two different vertices with a mutual neighbor 'n,' the levels[n] could undergo multiple updates. 

To counteract this, a critical section is imperative, initially realized through the #pragma omp critical 

directive [10]. But there's a hitch: given that the directive locks the block rather than the data structure 

threads interact with, it could induce inefficiencies. These inefficiencies manifest as threads wait for 

another's completion. A subtler approach utilizes the #pragma omp atomic capture, targeting precise 

data modifications. 

Furthermore, when considering vertex level values, if levels[v] remains -1 post interaction by two 

threads, it implies 'v' is unvisited, mandating its addition to the next frontier. This necessitates a local 

variable to ascertain successful level[v] updates. Another predicament is the multi-threaded addition to 

next_frontier, potentially skewing the BFS-intended vertex sequence. A workaround is the 

local_next_frontier container, recording each thread's output. On a thread's conclusion, these local 

vertices amalgamate into the shared next_frontier, with the merge shielded by a critical section. Finally, 

returning focus to parallelizing the block from line 10, a preliminary solution might be the #pragma omp 

parallel for directive. Yet, its implicit barrier post every loop introduces unwanted overheads. The 

remedy? The use of #pragma omp parallel for nowait, eliminating these barriers without synchronicity 

issues, thanks to the preceding atomic section introduction. 

4.  Results 

To measure the speedup of the parallel BFS, which is defined as the ratio between the execution time 

taken by the serial BFS and that taken by the parallel counterpart, graph benchmarks are selected on 

www.networkrepository.com, and 500 experiments are run on each graph. In each experiment, the time 

taken by the serial BFS (in milliseconds) and the time taken by the parallel BFS (in milliseconds) are 

measured using omp_ get_ wtime () from <omp.h>. Upon finishing all the experiments, the average 

execution time for each algorithm is calculated (the average execution time is defined as the total 
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execution time divided by the number of experiments). The experiments are run on a machine with its 

system specifications summarized in Table 1, and the specifications of the graphs selected for 

experimentation are summarized in Table 2. The speedup of the parallel BFS is plotted against the 

number of threads used for parallelization in Figure 1, with the maximum number of threads being 32, 

which is twice as many threads as there are available in the system’s processor. 

Table 1. Specifications for the system used for experimentation. 

Processor AMD Ryzen 7 Pro 4750U mobile processor with AMD Radeon graphics 

Installed 

RAM 
32.0 GB 

System Type 64-bit operating system. X64-based processor 

Table 2. Specifications of graphs used for experimentation. 

Graphs 
Number 

of Nodes 

Number of 

Edges 
Density 

Maximum 

Degree 

Minimum 

Degree 

Average 

Degree 
Directedness 

1 30.8K 1.3M 0.00266671 4.6K 1 82 Undirected 

2 18.8K 198.1K 0.00112411 504 0 21 Undirected 

 

With 500 experiments run, Figure 1 plots the speedup of both graphs against the number of threads 

used to execute the parallel BFS. 

 

Figure 1. Speedup of the parallel BFS (Photo/Picture credit: Original). 

5.  Conclusions 

This manuscript unveils an enhanced parallel Breadth-First Search (BFS) algorithm, meticulously 

designed for proficient traversal of expansive graphs on shared-memory architectures. An empirical 

analysis, conducted with real-world graph data sets, serves as a testament to the algorithm's robustness, 

exhibiting a pronounced speedup with the escalation of thread engagement. The results gleaned from 

these evaluations accentuate the comparative advantage of the parallel BFS over its sequential 

counterpart, especially when harnessing the full power of the available system threads. Statistical 

evaluations shed light on the performance dichotomy, offering a compelling narrative on the efficacy of 

both approaches. Nevertheless, future work that can lead to potentially more promising speedup as well 

as robustness should still be undertaken. For example, questions, such as 1) whether the directedness of 

a graph affects the performance of our parallel BFS implementation, 2) whether and how data 

partitioning that gives rise to load-balancing issues can be resolved using a shared-memory model, 3) 

how is the density of a graph related to the effectiveness of the parallel BFS, and 4) how scalable is the 
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current implementation of parallel BFS, shall be investigated by controlling respective variables for 

reaching a quantitative conclusion. 
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