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Abstract. The mainstream model in neural machine translation, the Transformer, relies heavily 

on self-attention mechanisms for translation operations. This approach has significantly 

improved both accuracy and speed. However, there are still some challenges. For instance, it 

lacks the incorporation of linguistic knowledge and the ability to leverage syntactic structure 

information in natural language for translation, leading to issues such as mistranslation and 

omission. Addressing the limitations of the Transformer's autoregressive decoding, which 

decodes from left to right without fully utilizing context information and is prone to exposure 

bias, this paper proposes a syntax-aware bidirectional decoding neural machine translation model. 

By employing both forward and backward decoders, the generated decoding results can 

encompass contextual information. Additionally, the model integrates dependency syntax to 

generate target language sentences with syntactic guidance. Finally, an optimization strategy 

involving the Teacher Forcing mechanism is introduced to balance the discrepancies between 

the Teacher Forcing training phase and the autoregressive testing phase, thus alleviating 

exposure bias issues. 
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1.  Introduction 

In recent years, the continuous evolution of machine learning techniques alongside advancements in 

computer hardware systems has propelled the field of machine translation through distinct phases: from 

rule-based machine translation and statistical machine translation to the current era of neural machine 

translation (NMT). Throughout this progression, both the accuracy and efficiency of translation have 

exhibited gradual improvements. Initially, rule-based machine translation relied on linguists to 

summarize and deduce transformation rules between different languages, which were subsequently 

utilized as translation knowledge and executed by computers. Given its inherent reliance on manual 

labor, rule-based machine translation suffered from drawbacks such as low translation efficiency, 

challenges in rule extraction, and elevated human resource costs. 

With the growth of internet technologies, statistical machine translation emerged as the dominant 

paradigm for machine translation towards the end of the 20th century. Statistical machine translation 

employed data models to describe transformation rules between languages, guiding the construction of 

latent structures to achieve translation across different languages. However, this approach retained 

several challenges, including difficulties in managing reordering that affected the fluency of generated 

translations and the inability to capture global dependencies solely through local features. 
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In 2013, Kalchbrenner and Blunsom introduced a neural network-based approach to machine 

translation [1]. Subsequently, numerous scholars developed fully neural-based neural machine 

translation models, resulting in substantial improvements in translation performance. This evolution was 

driven by the ability of neural networks to capture complex patterns and relationships within linguistic 

data, consequently overcoming some limitations of previous paradigms. As we navigate the landscape 

of NMT in this paper, we delve into its underlying mechanisms, address challenges, and explore 

potential avenues for further advancements. Through this exploration, we contribute to the ongoing 

discourse on the enhancement of translation technologies in an era characterized by intensified global 

communication. 

The Transformer decoder employs an autoregressive approach, decoding words from left to right. It 

generates the current word based on the previous word's decoding output and the encoder's output. 

However, decoding target language sentences using an autoregressive decoder lacks access to 

information beyond the current word. Additionally, due to the disparity between the Teacher Forcing 

training phase and the autoregressive testing phase, exposure bias issues can arise. To address these 

challenges, this paper proposes a syntax-aware bidirectional decoding neural machine translation model. 

This model leverages contextual information around the current word to predict it, thereby enhancing 

decoding accuracy. Moreover, the model incorporates the Scheduled Sampling mechanism, which 

probabilistically replaces reference translations with candidate translations, mitigating the 

environmental differences between training and testing phases. 

2.  Related work 

The Transformer's autoregressive decoder decodes from left to right during testing, limiting its ability 

to fully leverage complete context information and potentially slowing down the decoding process. 

Moreover, the disparity between the Teacher Forcing training and the Autoregressive testing 

environments gives rise to exposure bias issues. To tackle these concerns, researchers have made various 

optimizations to the decoder. These optimizations can be broadly categorized into building bidirectional 

decoding models to exploit contextual information and enhancing the efficiency of decoding through 

improved beam search strategies. 

In 2016, Liu et al. [2] proposed a joint training approach involving bidirectional decoders, aiming to 

find target words that both decoders assign high probabilities to during testing. This strategy ensures 

consistency between left-to-right and right-to-left decoders, thus enhancing overall translation quality. 

In 2017, Freitag et al. [3] accelerated decoding speed by enhancing the beam search strategy. This 

approach adjusted the candidate window size at each time step based on changes in candidate scores. 

Additionally, they introduced four pruning methods, including relative threshold pruning, absolute 

threshold pruning, relative local threshold pruning, and maximum candidate number per node, to boost 

decoding efficiency. In 2018, Zhang et al. [4] introduced a backward decoder to the encoder-decoder 

framework. This backward decoder decoded from right to left based on the hidden state sequence 

generated by the encoder, providing contextual information. The forward decoder then decoded from 

left to right, ensuring the consideration of context information in every decoding time step to enhance 

translation quality. In 2019, Zhou et al. [5] introduced Synchronous Bidirectional Decoding in Neural 

Machine Translation (SDB-NMT), employing synchronized bidirectional decoding. This model 

simultaneously predicts outputs by interacting between left-to-right and right-to-left decoding. 

Importantly, the generation from left-to-right (right-to-left) depends not only on previously generated 

output but also on the future word information predicted by right-to-left (left-to-right) decoding. 

Further advancements followed in 2019 when Fu et al. [6] introduced a reference network that 

integrated the reference process into the translation decoding process. Utilizing local coordinate 

encoding, they acquired a global context vector encompassing monolingual and bilingual context 

information. This vector was then employed in the decoding process. In 2021, Feng et al. [7] introduced 

a Seer decoder in the encoder-decoder framework to access future word information. The Seer decoder 

guided the original decoder's behavior through knowledge distillation. When the traditional decoder's 

predicted distribution closely resembled the Seer decoder's, the traditional decoder's performance was 
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considered akin to the Seer decoder's. During testing, the translation model solely reasoned with the 

traditional decoder to achieve accurate translation results. Additionally, more recent works consider the 

character-level decoder [8] or model cost [9-10] for the neural machine translation. 

3.  Method 

In natural language, each word in a sentence maintains inherent connections with other words. When 

predicting a word, using contextual information significantly improves predictive performance 

compared to relying solely on preceding or subsequent context. For instance, in the sentence "I like 

eating rice," when considering the known portion of the source sequence, "I like ... rice." and "I like ...," 

the predictive effect for "eating" is notably better in the former case. Therefore, when decoding target 

language translations, this paper employs both forward and backward decoders to decode the current 

word from two directions, effectively utilizing the current word's contextual information. 

Simultaneously, when predicting a word, the contribution of predictions to unmasked words is assessed, 

further enhancing decoding accuracy. During the training phase, decoding follows the Teacher Forcing 

mechanism, while in the testing phase, autoregressive decoding is used. To balance the differences 

between training and testing environments, the training phase aims to simulate the testing environment 

as closely as possible, thus reducing this environmental disparity. 

3.1.  Backward decoder 

In this model, the backward decoder decodes the target language from right to left, serving two primary 

purposes. Firstly, it provides the contextual information decoded from right to left to the forward decoder. 

This allows the forward decoder to accurately utilize contextual cues for decoding the final target 

language output. Secondly, the backward decoder's decoding results are probabilistically substituted for 

the ground truth, thus reducing the environmental disparity between the training and testing phases. The 

training and decoding flow of the translation model described in this paper is outlined as follows: 

First, the natural language sequence, which translates to "I love China." is fed into the encoder. After 

undergoing word embedding and positional embedding, the encoder generates semantic encoding 

vectors. These vectors are then input into the backward decoder for decoding. In the backward decoder, 

training is carried out using the Teacher Forcing method, which involves substituting the decoding 

results with the reference translation "I love China." The decoding process involves a stack of multiple 

decoder layers, with each decoder layer comprising three sub-layers. 

In the multi-head masked attention mechanism sub-layer, three matrices WQ, WK, and WV are 

defined. These matrices are utilized to perform linear transformation operations on the input sequence, 

yielding three new vectors qt, kt, and vt respectively. The collection of all qt vectors is concatenated 

into a large matrix denoted as the query matrix Q, while the collection of all kt vectors is concatenated 

into a large matrix called the key matrix K, and the collection of all vt vectors is concatenated into a 

large matrix referred to as the value matrix V. At this stage, matrices K, Q, and V are all sourced from 

the decoder. The first word's query vector q is then multiplied with the key matrix K to obtain attention 

weights for the first word. Subsequently, these weights are subjected to a softmax operation to ensure 

their sum equals 1. The obtained weights are multiplied with the corresponding word's value vector vt 

and summed accordingly, resulting in the output of the first word. A similar procedure is carried out for 

subsequent input vectors to obtain all outputs following the multi-head masked attention mechanism 

sub-layer. Before applying softmax, the input sequence's word information is masked by adding the 

initial masking matrix to the associative matrix. This step aims to maintain consistency between training 

and testing environments possible. The initial masking matrix M for the backward decoder is depicted 

in Figure 1. 
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Figure 1. Initial masking matrix of backward decoder. 

3.2.  Forward decoder 

The proposed model's overall architecture encompasses two forward decoders. To distinguish between 

the two decoders, the decoder responsible for the first stage of decoding is referred to as Decoder 1, and 

the decoder for the second stage is termed the forward decoder. Decoder 1 performs synchronous 

decoding with the backward decoder during the first stage. After decoding, the obtained results are 

probabilistically replaced with the reference translation to alleviate exposure bias. The forward decoder, 

operating in the second stage, generates the final target sequence. Once results are generated by the 

backward decoder and Decoder 1, the forward decoder employs a probability-based substitution of the 

reference translation. Specifically, the forward decoder's input is the reference translation with the first-

stage decoding results substituted in. Additionally, the forward decoder integrates prior contextual 

information acquired from the backward decoder as prior knowledge to assist in generating the final 

target language sequence. To facilitate this integration, the forward decoder employs a cross-attention 

sub-layer to incorporate the contextual information generated by the backward decoder. This is 

mathematically expressed as shown in Equation (1). 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑓𝑑 , 𝐾𝑏𝑑 , 𝑉𝑏𝑑) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑓𝑑𝐾𝑏𝑑

√𝑑𝑘

) 𝑉𝑏𝑑 (1) 

Where Qfd represents the query matrix from the forward decoder, Kbd, Vbd represent the key and 

value matrices from the backward decoder. The decoding process of the forward decoder is analogous 

to that of the backward decoder, with the key difference being that the forward decoder operates from 

left to right. 

3.3.  Teacher forcing decoding optimization 

Currently, the majority of neural machine translation models employ the Teacher Forcing mechanism 

during the training phase. This technique efficiently utilizes the target language translations from 

bilingual datasets to enhance the model's ability to fit the desired translations accurately. The essence of 

Teacher Forcing lies in using the true target language translations as inputs to the decoder at each time 

step during training, instead of relying on the model's own generated outputs. This approach accelerates 

model convergence and facilitates the learning of meaningful translation patterns. 

However, when transitioning to the testing phase, a discrepancy arises. The model must generate 

translations autonomously without access to the ground truth target language translations. Each 

generated word becomes the foundation for predicting the next word, creating a chain of dependencies. 

If the initial predictions deviate slightly from the actual intended translations, these errors can propagate 

and accumulate, leading to a significant divergence between the model's outputs and the true translations. 

To address this challenge and enhance the model's robustness, this paper introduces an innovative 

optimization to the Teacher Forcing mechanism within a bidirectional decoding Transformer model. 

This model capitalizes on the strengths of both left-to-right and right-to-left decoding strategies. In 

contrast to traditional sequential models like RNNs, Transformers process input sequences in parallel, 

making the incorporation of sequential dependencies more intricate. To tackle this, the proposed model 
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incorporates an additional forward decoder, labeled Decoder 1 in section 3.2. Decoder 1 contributes a 

left-to-right decoding approach, generating translations as if guided by the true translations from the 

ground truth. This generated output from Decoder 1 serves as a type of planned sample, aiding the 

subsequent optimization steps. 

By introducing bidirectional decoding and planned sampling within the Transformer framework, this 

paper contributes to mitigating the issues caused by the discrepancies between training and testing 

environments, thereby enhancing the translation quality of the model. The innovative utilization of 

Decoder 1, combined with the synergy between forward and backward decoders, provides a 

comprehensive solution to address the challenges associated with the Teacher Forcing mechanism in 

machine translation. 

 

Figure 2. Bidirectional decoding of the Transformer model architecture. 

4.  Experiment 

4.1.  Dataset 

This paper builds upon the Transformer model proposed by Ashish Vaswani et al. and introduces 

enhancements. The experiments are conducted on the Chinese-English language pair from the WMT17 

dataset and the English-German language pair from the WMT14 dataset. The dataset used for the 

Chinese-English translation task is the same as described in Chapter 3. For the English-German 

translation task, the WMT14 dataset is used as the training set, newstest2013 is employed as the 

validation set, and newstest2014 serves as the test set. Out-of-vocabulary words are represented as 

"UNK." The scale of the experimental data is illustrated in Table 1. 

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/37/20230463

12



Table 1. Experimental data scale statistics. 

Language Pair 
Training Set Sentence 

Pairs 
Validation Set Sentence 

Pairs 
Test Set Sentence 

Pairs 

Chinese-English 227k 2k 2k 

English-German 4.5M 3k 3k 

4.2.  Setting of parameters 

The experimental setup of this paper is presented in Table 2 as follows: 

Table 2. Experiment environment configuration. 

Environment Specifications 
Operating System Windows 10 

Memory 32GB 
Disk Space 1TB 

CPU Intel Core i7 
GPU NVIDIA GeForce RTX 2060 

Programming Language Python 3.6 (64-bit) 
Deep Learning Framework TensorFlow 

 

Relevant studies have indicated that when the size of Beam_size exceeds 5, it significantly impairs 

translation performance, a phenomenon commonly referred to as the "beam search curse," which is listed 

among the six major challenges in Neural Machine Translation (NMT). In light of this, the testing phase 

of this paper employs a beam search strategy with different values for beam_size, specifically, setting it 

to 1, 3, and 5 respectively, for experimental comparison. 

4.3.  Experimental results and analysis 

In the scope of this study, the focus is on enhancing the established Transformer baseline model. Two 

modified versions are introduced: the Transformer (+BD+DE) model, which incorporates bidirectional 

decoding and incorporates dependency information, and the Transformer (+BD) model, which omits 

dependency information integration. A benchmark for comparison is provided by the ABD-NMT model, 

as proposed by Zhang et al. For the testing phase, a beam search strategy is applied, aligning with prior 

research that has highlighted the impact of different beam sizes (k) on decoding performance. To 

systematically address this concern, the beam size parameter is tested at three levels: 1, 3, and 5. The 

choice of k = 1 corresponds to employing a greedy search approach for decoding. Evaluation of the 

models is conducted using the BLEU metric, which assesses the quality of translations. The outcome of 

these experiments is summarized in Table 3 for reference and analysis. 

Table 3. Experimental comparison results. 

Model Beam Size Chinese-English English-German 

Transformer 
1 22.33 26.25 
3 23.15 26.98 
5 23.21 27.10 

ABD-NMT 
1 23.04 26.83 
3 23.67 27.32 
5 23.85 27.51 

Transformer (+BD) 
1 23.23 26.92 
3 23.96 27.77 
5 24.06 27.72 

Δ1 +0.85 +0.62 
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Table 3. (continued). 

Transformer (+BD+DE) 
1 23.58 27.16 
3 24.31 27.93 
5 24.38 28.06 

Δ2 +1.17 +0.9 

 
From Table 3, it is evident that under the same dataset conditions, the proposed bidirectional 

decoding translation model outperforms the baseline model and the ABD-NMT model. Translation 

accuracy using beam search is superior to that of greedy search. For the Transformer(+BD) model, in 

the English-German dataset, the BLEU score for k=5 is lower than that for k=3. However, for all other 

translation results, the BLEU score for k=5 is higher than that for k=3 and k=1. Therefore, this paper 

primarily compares the translation performance of the model at k=5 with the baseline model. The 

bidirectional decoding translation model proposed in this paper achieves a BLEU score of 24.06 in the 

Chinese-English translation task, surpassing the baseline model by 0.85 BLEU points. In the English-

German translation task, the BLEU score reaches 27.72, which is an improvement of 0.62 BLEU points 

over the baseline model. Additionally, by introducing dependency syntax in the decoding process based 

on bidirectional decoding, a further enhancement of 0.32 BLEU points in the Chinese-English 

translation task and 0.34 BLEU points in the English-German translation task is observed. Overall, it 

can be concluded that the proposed approach effectively enhances the translation performance of the 

Transformer model. 

5.  Conclusion 

Addressing the issue of inadequate utilization of contextual information by the autoregressive decoder, 

this paper proposes a novel approach: the Syntax-Aware Bidirectional Decoding Neural Machine 

Translation model. By introducing a backward decoder, this model augments the forward decoder with 

contextual information, ensuring more informed decoding and consequently enhancing translation 

accuracy. Moreover, the integration of sentence syntax structure during the decoding process aids the 

model in comprehending semantic nuances. To mitigate the exposure bias problem that arises during 

decoding, the paper introduces the Scheduled Sampling mechanism, which bridges the gap between 

training and testing decoding environments. Experimental findings demonstrate that the proposed model 

outperforms traditional Transformer models in both the Chinese-English and English-German 

translation tasks. While the inclusion of the backward decoder in the Transformer model resolves the 

underutilization of contextual information during decoding, it does introduce a time cost to the decoding 

process. In future research, attention will be directed towards enhancing decoding efficiency. Strategies 

such as beam search optimization through pruning will be explored to reduce decoding time while 

maintaining translation quality. 
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