
A design of multiplier based on Radix_4 Booth algorithm and

4-2 Wallace compression tree

Chenghao Liu1,4, Jingyu Sun2, Ruihong Tang3

1Electronic and Information Engineering, Tongji University, Shanghai, 201804, China
2Electronic and Computer Engineering, University of Limerick, Limerick, V94 T9PX,

Ireland
3Electronic Information, Central South University, Changsha, 410083, China

41952228@tongji.edu.cn

Abstract. In a multitude of computational and signal processing scenarios, the multiplier

functions as a fundamental arithmetic component. Given the complex hardware arrangement of

multipliers and their usual positioning within the crucial pathway of digital systems, their

significance is substantial. Therefore, approximations of multipliers can greatly optimize system

performance. This essay examines the fundamental ideas behind the Wallace tree, the Carry

ahead adder, and the Radix-4 Booth algorithm. Additionally, instead of the more common 3-2

compressors, a Wallace tree structure with 4-2 compressors is used to compact these products

for the manufacture of partial products. This reduction in compression stages to three

significantly curtails delays along critical paths, thereby substantially improving overall

performance. The compressed outcomes from the Wallace tree undergo processing via a 64 bit

carry ahead adder, effectively addressing delays stemming from mutual carry propagation among

sequentially connected regular full adders. Leveraging these principles and processes, a 32-bit

signed multiplier is designed. Building upon this foundation, an approximate Booth multiplier is

developed, enhancing both computational speed and reducing critical path delays. The

functionality of the multiplier was validated using Vivado simulation, demonstrating its

correctness. Additionally, the RTL-level circuitry of different segments of the multiplier was

showcased.

Keywords: Radix_4 Booth Algorithm, Wallace Tree, Carry Ahead Adder.

1. Introduction

In various types of chips such as high-speed Digital Signal Processors, microprocessors, and Reduced

Instruction Set Computers (RISC), multipliers are indispensable arithmetic logic units. Therefore,

optimizing their speed and area is of paramount importance. The fundamental operational steps of a

multiplier involve the generation and compression of partial products. Currently, the most widely

applied multiplier algorithms and structures are the Radix_4 Booth algorithm and the Wallace tree

structure [1]. This article delves into the Radix_4 Booth algorithm and the Wallace tree structure while

simultaneously introducing a novel approach for designing a 32-bit signed multiplier. This approach

involves the utilization of an improved version of the Radix_4 Booth algorithm, namely the approximate

Booth algorithm, for generating partial products. Subsequently, the generated partial products are

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/37/20230498

© 2023 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

166

compressed using a Wallace tree structure featuring 4-2 compressors, deviating from the traditional 3-2

compressors. This reduction in compression stages to three minimizes the delay along the critical path,

thereby enhancing overall performance. Furthermore, the compressed results from the Wallace tree are

processed using an advanced carry lookahead adder, addressing the delay arising from mutual carry

propagation in series-connected regular full adders. By adopting approximate Booth multiplier not only

is the delay along the critical path reduced, but the layout area is also minimized.

2. Principle and structure

2.1. Principle of Radix_ 4 Booth Multiplier

The Radix_4 Booth algorithm’s theoretical justification is as follows: Assume that A is the n-bit

multiplicand and B is the multiplier’s n-bit multiplier. A and B are the complement forms of ordinary

binary. PP is the result of the multiplier. The operation of a multiplier can be expressed as:

 PP=A×B (1)

The n-bit multiplier B can be expressed as: B=𝑏𝑛−1𝑏2𝑛−2. . . 𝑏1𝑏0 = −𝑏𝑛−12𝑛−1𝑏2𝑛−22𝑛−2. . . 𝑏121𝑏020,

Then:

 B=𝑏𝑛−1𝑏2𝑛−2. . . 𝑏1𝑏0=∑ (−2𝑏2𝑖+1 + 𝑏2𝑖 + 𝑏2𝑖+1) × 4𝑖
n

2
−1

i=0
 (2)

Bringing equation (2) into equation (1) yields:

 PP=A×B=∑ A × (−2b2i+1 + b2i + b2i+1) × 4i n−1
i=0 (3)

Specifically, when i=0, b-1 with the value of 0, it is necessary to add a “0” bit after the least significant

bit of multiplier B during Booth algorithm encoding [2]. After filling in “0”, to obtain the corresponding

partial product, encode the multiplicand by crossing three adjacent bits of the multiplier. All cases of

𝑏2𝑖+1 𝑏2𝑖 𝑏2𝑖−1 are listed in the table, where 𝑃𝑃𝑖 is the partial product generated by encoding and Neg is

the symbol compensation bit. The Radix_4 Booth algorithm encoding mode is shown in table 1.

Table 1. Radix_4 Booth algorithm encoding mode.

𝑏2𝑖+1 𝑏2𝑖 𝑏2𝑖−1 𝑃𝑃𝑖 Neg

000 +0 0

001 +A 0

010 +A 0

011 +2A 0

100 -2A 1

101 -A 1

110 -A 1

111 -0 1

When 𝑏2𝑖+1 𝑏2𝑖 𝑏2𝑖−1 are 000 and 111, the value of the partial product 𝑃𝑃𝑖 obtained is +0, so all

partial products in this row are 0. When 𝑏2𝑖+1 𝑏2𝑖 𝑏2𝑖−1 are 001 and 010, the value of the partial product

PPi obtained is 0 [3]. When 𝑏2𝑖+1 𝑏2𝑖 𝑏2𝑖−1 are 011, the resulting partial product 𝑃𝑃𝑖 has a value of +2A,

achieved by shifting the multiplier one bit to the left. When the three adjacent bits of the multiplier

𝑏2𝑖+1 𝑏2𝑖 𝑏2𝑖−1 are 100, the value of the partial product 𝑃𝑃𝑖 obtained is -2A. Firstly, shift the multiplier

A to the left one bit to obtain +2A, and then use an inverter to negate +2A, with the sign compensation

bit Neg being 1 [4]. When 𝑏2𝑖+1 𝑏2𝑖 𝑏2𝑖−1 are 101 and 110, the value of the partial product 𝑃𝑃𝑖 obtained

is -A. 𝑃𝑃𝑖 is achieved by inverting the multiplicand A through an inverter and adding the sign

compensation bit Neg to its least significant bit [5].

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/37/20230498

167

2.2. Principle of Wallace Tree

A parallel structure called a Wallace Tree is frequently used to create high-speed multipliers. The design

concept of Wallace Tree is to split multiplication operations into different parts and improve the speed

of operations through parallel computing [6]. It uses a hierarchical structure, where partial multiplication

and accumulation are performed on each layer, resulting in the complete product.

The following is the working principle of the 64-bit multiplier Wallace Tree: In the booth algorithm,

two 32-bit multipliers are divided into multiple partial products. The product of each part is usually 3

bits. The multiplier and the multiplicand are multiplied bit by bit, resulting in a partial product and

corresponding carry.

For each 3-bit partial product, perform a series of bit alignment and partial sum operations. These

operations add the products of adjacent parts and maintain the correctness of carry. Firstly, perform a

bit alignment operation. Shift the products of adjacent parts left and right based on their weights to align

them. For multi-level Wallace trees, multiple rounds of bit alignment operations are required. Then,

proceed with the partial sum operation. Add the products of adjacent aligned parts and consider the carry

from the previous level. This can be achieved through a full adder circuit to ensure the correct sum and

carry. After multiple rounds of bit alignment and partial sum operations, the obtained partial sum can

continue to the next round of bit alignment and partial sum operations until the final 64-bit multiplication

result is obtained [7]. The structure of 4-2 Wallace compression tree is shown in figure 1.

Figure 1. Structure of 4-2 Wallace compression tree (Photo/Picture credit: Original).

In this essay, the utilization of 4-2 compressors stems from their effectiveness in managing addition

and subtraction operations involving extensive numerical data. When dealing with multiple sets of data,

it is customary to compress these operands. This compression process is executed through a Wallace

tree, which comprises an arrangement of compressors. Presented below is a gate level and logical

expressions overview of the 4-2 compressor. When given four inputs and a (carry-in), the 4-2

compressor produces both Sum and Carry outputs as well as one that can be used in the subsequent 4-2

compressor’s. The 4-2 compressor gate level circuit is shown in figure 2.

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/37/20230498

168

Figure 2. 4-2 compressor gate level circuit (Photo/Picture credit: Original).

The 4-2 compressor logical expressions as showed as followed:

 𝐶𝑜𝑢𝑡 = 𝑋3 ⋁ 𝑋4 ⋀ 𝑋1 ⋁ 𝑋2 (4)

 𝑆𝑢𝑚 = 𝑋3 ⊕ 𝑋4 ⊕ 𝑋1 ⊕ 𝑋2 ⊕ 𝐶𝑖𝑛 (5)

 𝐶𝑎𝑟𝑟𝑦 = 𝑋1 ⋀ (𝑋4 ⊕ 𝑋3 ⊕ 𝑋2 ⊕ 𝑋1) ⋁ 𝐶𝑖𝑛 ⋀ (𝑋4 ⊕ 𝑋3 ⊕ 𝑋2 ⊕ 𝑋1) (6)

2.3. Principle of Carry Ahead Adder

A parallel adder called the Carry Ahead Adder was created to enhance the regular full adder by primarily

addressing the mutual carry delay that occurs when a regular full adder is coupled in series. If the ith bit

of a binary adder is 𝐴𝑖 and 𝐵𝑖 , the carry input is 𝐶𝑖 ,the output is 𝑆𝑖 , and the carry output is 𝐶𝑖+1 , then:

 𝑆𝑖 = 𝐴𝑖 ⊕ 𝐵𝑖 ⊕ 𝐶𝑖 (7)

 𝐶𝑖+1 = (𝐴𝑖 ⋀ 𝐵𝑖) ⋁ (𝐴𝑖 ⋀ 𝐶𝑖) ⋁ (𝐴𝑖 ⋀ 𝐵𝑖) = (𝐴𝑖 ⋀ 𝐵𝑖) ⋁ (𝐴𝑖 ⋁ 𝐵𝑖) ⋀ 𝐶𝑖 (8)

If 𝐺𝑖 = 𝐴𝑖 ⋀ 𝐵𝑖 ,𝑃𝑖 = 𝐴𝑖 ⋁ 𝐵𝑖 , then 𝐶𝑖+1 = 𝐺𝑖 ⋁ 𝑃𝑖 ⋀ 𝐶𝑖 .When 𝐴𝑖 and 𝐵𝑖 are both 1, 𝐺𝑖 = 1,

resulting in 𝐶𝑖+1 = 1; When 𝐴𝑖 and 𝐵𝑖 exist with a value of 1, 𝑃𝑖 = 1, pass 𝐶𝑖+1 = 𝐶𝑖+1 . Therefore,

𝐺𝑖 generates a signal for carrying, while 𝑃𝑖 carries the signal. 𝐺𝑖 has a higher priority than pi, which

means that when 𝐺𝑖 = 1 and 𝑃𝑖 = 1, a carry is unconditionally generated regardless of 𝐶𝑖 .The carry

output is 𝐶𝑖 related to the logic before 𝐶𝑖 when𝐺𝑖 = 0 and 𝑃𝑖 = 1. A circuit that performs the logical

expression above is a Carry Look ahead Unit, or a CLA component for short. The adder that uses this

carry method is a carry ahead adder. It is a kind of parallel carry adder, since each carry is produced in

parallel. More digits on a CLA component simply increase the number of inputs to the logic gate, not

the number of logic gate levels. However, the number of connections and entries in the CLA component

will greatly increase the delay of the gate and will not improve circuit performance. Hence, adders with

more bits can be built with 4-bit CLA components and 4-bit carry-ahead adders.

3. Implementation and simulation

The multiplier in this study is described using Verilog HDL and functionally simulated using Vivado

software. By writing testbench files with six sets of random 32-bit signed inputs, test data for 64-bit

signed numbers is computed. The calculations reveal that the results are accurate.

3.1. Radix_4 booth RTL schematic and simulation result

The methodology employed in this study involves encoding a 32-bit signed multiplier using the Radix-

4 Booth algorithm, and then corresponding bit operations are performed on the 32-bit signed

multiplicand, resulting in the generation of sixteen 64-bit signed partial products. The generated partial

product is arranged in an array form for the convenience of compressing the tree structure [8]. The

approach to handling the symbol compensation bit involves logical gate operations, and logical

expressions are derived through Karnaugh map simplification. In the Vivado software, utilizing Verilog

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/37/20230498

169

HDL’s case statement to generate 64-bit signed partial products, a logical expression for the symbol

compensation bit (Neg) is formulated as follows:

Neg = 𝑏2𝑖+1 ⋀ 𝑏2𝑖 ⋁ 𝑏2𝑖+1 ⋀ 𝑏2𝑖−1 (9)

Subsequently, the outcome of the sign extension bit is integrated into the Wallace tree, where parallel

computations are executed alongside the 64-bit signed partial products within the 4-2 compressor. This

strategy effectively enhances the operational efficiency of the multiplier within a single clock cycle [6].

Vivado was used to implement the code for the Radix-4 Booth method used in this work and its

simulation. This implementation includes equivalent conditional statements and logical gate expressions

for scenarios using sign extension bits (Neg). The Radix_4 booth RTL schematic is shown in figure 3.

Figure 3. Radix_4 booth RTL schematic (Photo/Picture credit: Original).

The simulation result of the Radix_4 booth is shown in figure 4.

Figure 4. The simulation result of the Radix_4 booth (Photo/Picture credit: Original).

3.2. Wallace tree multiplier utilizing 4-2 compressor

In this study, the 64-bit signed partial products are compressed using 4-2 compressors using the Wallace

tree. According to Figure 1, the Wallace tree consists of three layers. The first layer includes com00,

com01, com02, and com03, where the 4-2 compressors take their four inputs from the 64-bit signed

partial products, and the fifth input is the symbol compensation bit generated from the Radix_4 Booth

algorithm.

However, in the second and final layers of the Wallace tree, the 4-2 compressors’ four inputs

comprise not only the Sum values from the previous level’s 4-2 compressors but also a combination of

Carry and symbol compensation bit. Since the Carry is left-shifted by one bit compared to the Sum, the

Carry only considers bits 0 to 62, and the remaining one bit is filled by one symbol compensation bit.

The Wallace tree RTL schematic is shown in figure 5.

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/37/20230498

170

Figure 5. Wallace tree RTL schematic (Photo/Picture credit: Original).

The circuit gate expression of the 4-2 compressor is displayed by the Vivado program. The 4-2

compressor logic gate flow is shown in figure 6.

Figure 6. The 4-2 compressor logic gate flow (Photo/Picture credit: Original).

The summation outcome of both Wallace_c and Wallace_s corresponds to the ultimate product of

the two 32-bit signed numbers. The simulation result of the Wallace tree with 4-2 compressors is shown

in figure 7.

Figure 7. The simulation result of the Wallace tree with 4-2 compressors.

(Photo/Picture credit: Original)

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/37/20230498

171

3.3. 64-bit carry ahead adder

A 64-bit advance carry adder is a digital circuit used to perform the addition operation of 64-bit binary

numbers. Compared with the traditional continuous carry adder, the advance carry adder can pre-

calculate the carry of each bit in parallel during the addition process, which significantly reduces the

delay of carry propagation and thus increases the speed of the addition operation [9].

Input: The input is two 64-bit binary numbers, usually labelled A and B. These numbers are

represented using their respective 64-bit binary arrays. Output: The output of the 64-bit advance carry

adder is a 65-bit binary number. The first 64 bits represent the sum of the input numbers in each bit, and

the 65th bit is the carry output of the most significant bit (MSB).

The advanced carry adder is useful because it can predict the carry before the addition operation.

This prediction allows the carry to propagate in parallel during addition, greatly reducing the overall

latency. The model of 64-bit carry-ahead adder is shown in figure 8.

Figure 8. The model of 64-bit carry-ahead adder (Photo/Picture credit: Original).

The principle of the adder can be roughly divided into four steps: (1) Recalculating the carry of each

bit. This step involves getting the carry output of each bit from the input bit in each pair, the carry of the

previous bit, and the carry generator of the previous bit. (2) At each bit, it adds the corresponding bits

from A and B to the pre-calculated carry. (3) Calculate the sum of the bit and the carry output. This step

is done in parallel and does not propagate the carry bit by bit like a continuous carry adder. (4) Repeat

this process until all 64 bits have been processed. The implementation of the advance carry adder

requires the use of a logic gate circuit and a pre-calculated carry generator. The RTL schematic is shown

in figure 9.

Figure 9. RTL schematic (Photo/Picture credit: Original).

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/37/20230498

172

Simulation results: The two-input data are 64-bit symbol numbers, the input carry is 0, the output is

a 64-bit symbol number, and the 65th bit is regarded as overflow data. The Simulation results is shown

in figure 10.

Figure 10. Simulation results (Photo/Picture credit: Original).

4. Construction and Analysis of Approximate Multipliers

The accurate Booth multiplier is an algorithm used for binary multiplication, which achieves

multiplication by generating and accumulating partial products. However, it can be complex, especially

in hardware implementations. The approximate Booth multiplier is a method that sacrifices some

precision to reduce computation cost or latency. It is primarily used in applications where lower

computational accuracy is acceptable, but higher computational efficiency and resource utilization are

required. Examples include embedded systems, audio and image processing, machine learning inference,

cryptographic applications, image and audio codecs [10].

The ensuing enumeration delineates several methodological paradigms germane to the practice of

approximative Booth multiplication: a. Partial Precision Booth Multiplier: In multiplication operations,

you can reduce the precision of partial products to decrease the computation load. This means that during

multiplication, some bits can be discarded, thereby reducing the computation requirements. This method

can provide sufficient accuracy in certain applications while lowering computational complexity. b.

Approximate Encoding Booth Multiplier: This method encodes the multiplicand to reduce partial sum

and shift operations in the multiplier. This approach often introduces some approximation to reduce

hardware resource usage. c. Table-based Approximate Booth Multiplier: Approximate Booth

multiplication can be performed using a table-based approach, especially for common multiplicand

values. By precomputing partial products and storing them in a lookup table, computation can be

reduced. However, this may introduce some error. d. Probabilistic Booth Multiplier: This method uses

a probabilistic approach to perform multiplication by introducing randomness, which can reduce

computational complexity in some cases. This usually involves random number generation and

probabilistic algorithms.

It’s important to note that the application of approximate Booth multipliers requires careful

consideration based on specific needs and use cases. Reducing precision or introducing approximation

can impact the correctness and precision of computations. Therefore, when selecting an approximate

Booth multiplier, careful consideration is necessary.

The research paper unveils an innovative approximation technique for the Booth encoder and a

corresponding structure involving a reduction tree. In this method, the approximated Booth encoder

intentionally introduces positive discrepancies during the generation of partial products. Simultaneously,

the structure of the approximated reduction tree is tailored to diminish partial products, thereby

introducing negative deviations. This orchestrated interplay aims to effectively balance out errors and

achieve compensation for inaccuracies.

The novel approximation strategy for the Booth encoder revolves around a creative approach:

reversing the numeric values within the Karnaugh map of the Radix_4 Booth encoder. In this context,

the notation “1→0” signifies the transformation of an output value from 1 to 0, while conversely, “0→
1” denotes a shift from an output value of 0 to 1. The specifics of this new Booth encoder design leverage

this mechanism.

The Karnaugh map portraying the approximation process of the multiplier is visually represented in

Table 2.

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/37/20230498

173

Table 2. Karnaugh map of the approximate multiplier.

 𝑏2𝑖+1𝑏2𝑖𝑏2𝑖−1

𝑎𝑗𝑎𝑗−1
000 001 011 010 110 111 101 100

00 0 0 0 0 1 0→1 1 1

01 0 0 1→0 0 1 0→1 1 0→1

11 0 1 1 1 0 0 0 0

10 0 1 0→1 1 0 0 0 1→0

Among these alterations, there are 4 instances where approximate values shift from 0 to 1, and 2

instances where approximate values shift from 1 to 0. Consequently, in the initial iteration of the new

approximate Booth encoder introduced in this study, there is a prevalence of positive errors compared

to accurate values, resulting in a net positive deviation in errors. The error rate of this novel

approximation method for the Booth encoder is calculated as follows: P1 = 6/32 = 18.75%. This signifies

that approximately 18.75% of the cases exhibit errors under this approach.

As discerned from table 2, the logical expression of the proposed approximative Booth encoder is

elucidated as presented in equation (10).

 𝐴𝑃𝑃𝑖𝑗 = 𝑎𝑗 ⋀ 𝑏2𝑖+1
̅̅ ̅̅ ̅̅ ̅ ⋀ 𝑏2𝑖−1 ⋁ 𝑎𝑗 ⋀ 𝑏2𝑖+1

̅̅ ̅̅ ̅̅ ̅ ⋀ 𝑏2𝑖 ⋁ 𝑎�̅� ⋀ 𝑏2𝑖+1 (10)

The Gate-level circuit of the approximate encoder is shown in figure 11.

Figure 11. Gate-level circuit of the approximate encoder (Photo/Picture credit: Original).

In this context, 𝐴𝑃𝑃𝑖𝑗 designates the partial product generated by the proposed approximative Booth

encoder for the i-th row and j-th column. The range of values for i spans from 0 to 15, while the range

for j extends from 0 to 31. “𝑎𝑗” signifies a bit from the multiplicand, and “b[2i-1]”, “b[2i]”, and “b[2i+1]”

correspond to the adjacent three bits of the multiplier.

During the multiplication operation involving a 32-bit signed number, where the 32nd bit represents

the sign bit, applying Karnaugh map inversion can lead to significant discrepancies in the outcome.

Consequently, when calculating the final bit, as indicated in table 2, precise Booth encoding is performed.

The logical expression for this scenario is depicted in equation (11).

 𝐴𝑃𝑃𝑖𝑗 = (𝑏2𝑖 ⊕ 𝑏2𝑖−1) ⋀ (𝑏2𝑖+1 ⊕ 𝑎𝑗) ⋁ (𝑏2𝑖 ⊕ 𝑏2𝑖−1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) ⋀ (𝑏2𝑖 ⊕ 𝑏2𝑖+1) ⋀ (𝑏2𝑖+1 ⊕ 𝑎𝑗−1) (11)

The Gate-level circuit of the accurate encoder is shown in figure 12.

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/37/20230498

174

Figure 12. Gate-level circuit of the accurate encoder (Photo/Picture credit: Original).

Upon analyzing the two designs, it is evident that the gate-level arrangement of the Radix_4 Booth

encoder includes a total of 1 OR gate, 1 inverter, 2 AND gates, 3 NOR gates, and 5 XOR gates. In sharp

contrast, the gate-level configuration of the approximate Booth encoder is constructed using only 2

inverters, 5 AND gates, and 1 OR gate. This juxtaposition underscores a noticeable disparity in logic

gate quantities between these two designs, with the approximate encoder employing notably fewer logic

gates compared to the Radix_4 Booth encoder.

5. Conclusion

In this article, the Radix_4 Booth algorithm is implemented to encode the 32-bit signed multiplier, and

subsequently, the article employs a Wallace tree structure. Using 4-2 compressors, it compresses the 64-

bit signed partial products, resulting in a 32-bit multiplier. Additionally, the use of an advanced carry

lookahead adder significantly enhances the operational speed of the multiplier. The design also

introduces an approximate Booth multiplier, which, when compared with the 32-bit multiplier using the

Radix-4 Booth algorithm, exhibits lower power consumption and a shorter critical path.

Big data, cloud computing, and the Internet of Things are three emerging technologies that are posing

significant hardware and power supply concerns for terminal devices. The demand for novel, effective,

and low-power computer systems is on the rise. However, it should be noted that the multiplier proposed

in this design is a 32-bit signed multiplier, constrained by its bit width. Therefore, further research will

be conducted in subsequent work to address considerations related to bit width. The experimental

comparisons conducted in this study are relatively limited, resulting in incomplete experimental data.

Future research endeavours will focus on refining experimental comparisons to scientifically identify

the optimal design solution.

Authors Contribution

All the authors contributed equally and their names were listed in alphabetical order.

References

[1] Wu MQ, Zhao HL and Liu XH 2019 A design of multiplier based on modified Booth⁃4 algorithm

and Wallace tree (Electronic Design Engineering) p145-150

[2] Sheng YX 2022 Design of Approximate Booth Multiplier Based on Error Compensation (Hefei

University of Technology)

[3] Zhai ZY and Han ZG 2014 32 Bit Pipeline Multiplier Design Based on Booth

Encoder(Microelectronics & Compute)p146-149
[4] Wang JL and Hu YL 2020 Design and implementation multiplier based on new booth selector

and compressor (Microelectronics & Compute) p5-8

[5] Huang T, Run R and Hu Y 2023 Design of a high energy efficiency based 4-Booth coding parallel

multiplier (Application of Electronic Technique)p117-122

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/37/20230498

175

[6] Wang D, Yu NM and Zhang YL 2007 Low Power and High-Speed Parallel Multiplier Design

Using Modified Booth Wallace Tree (Chinese Journal of Electron Devices) p252-255

[7] Shao L, Zhang SD and Yu ZG 2007 The Design of Wallace Tree by Using a Structure of Modified

Mixed Compression (electronics & packaging)p12-14+18

[8] Shi M,Wang G,Yi QM 2016 An Optimised Design Of Multiplier Based On Improved Booth

Encoding And Wallace Tree (Computer Applications and Software) P13-16

[9] Xuan-Vy Luu, Trong-Thuc Hoang, and Trong-Tu Bui 2014 A High-speed Unsigned 32-bit

Multiplier Based on Booth-encoder and Wallace-tree Modififications (International

Conference on Advanced Technologies for Communications)

[10] Sheng YX, Zhang SD and Yu ZG 2022 An Approximate Booth Multiplier Based on Novel

Wallace Tree(Microelectronics)

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/37/20230498

176

