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Abstract. Federated Learning (FL) is a distributed alternative to traditional machine learning 

frameworks that computes a global model on a centralized aggregation server according to the 

parameters of local models, which can address the privacy leakage problem caused by 

collecting sensitive data from local devices. However, the classic FL methods with 

synchronous aggregation strategies, in many cases, shall suffer from limitations in resource 

utilization due to the need to wait for slower devices (stragglers) to aggregate during each 

training epoch. In addition, the accuracy of the global model can be affected by the uneven 

distribution of data among unreliable devices in real-world scenarios. Therefore, many 

Asynchronous Federated Learning (AFL) methods have been developed on many occasions to 

improve communication efficiency, model performance, privacy, and security. This article 

elaborates on the existing research on AFL and its applications in many areas. The paper first 

introduces the concept and development of FL, and then discusses in detail the related work 

and main research directions of AFL, including dealing with stragglers, staleness, 

communication efficiency between devices, and privacy and scalability issues. Then, this paper 

also explores the application of AFL in different fields, especially in the fields of mobile device 

edge computing, Internet of Things devices, and medical data analysis. Finally, the article 

gives some outlook on future research directions and believes that it is necessary to design 

efficient asynchronous optimization algorithms, reduce communication overhead and 

computing resource usage, and explore new data privacy protection methods. 

Keywords: Asynchronous Federated Learning, Secure Aggregation, Differential Privacy, 

Distributed Machine Learning. 

1.  Introduction 

Federated learning (FL) [1, 2] is a distributed alternative to traditional training methods, in which 

models are obtained by distributing training data on mobile devices and aggregating updates and 

sharing of local computations, so it has better performance in representing and generalizing large 

amounts of training data from different users. In terms of specific application practice, the relevant 

research of early researchers in the field of Parameter Servers[3, 4, 5] solved the management and 

coordination of model parameters of each participating device in FL and provided support for the 

development of FL. While parallel training on different devices to process large sample datasets, FL 

should also be able to meet the legal requirements for privacy protection in different regions: some 

countries/regions, such as the European Economic Area (EEA), have clear data protection and privacy 

rules under their General Data Protection Regulation (GDPR). Similarly, the USA, China, India, 
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Australia, and Russia, as well as other countries, have their own specific data protection and privacy 

laws. There are some methods with which the protection of privacy can be guaranteed in federated 

learning, including Differential Privacy [6] and Secure Aggregation [7]. 

Several disadvantages become apparent when using classical FL on resource-constrained devices 

[8]: (1) Unreliability. The presence of heterogeneous devices poses a challenge for the aggregation 

server being delayed for waiting for local gradients updated from each device. However, these devices 

can go offline unexpectedly due to their inherent unreliability. (2) The aggregating efficiency is 

reduced. In each training epoch, the faster device is forced to wait for an outdated local model from 

the slower device (the straggler). This delay is caused by the dual factors of device heterogeneity 

(differences in resources between devices) and data heterogeneity (uneven distribution of training data 

among devices). (3) Communication efficiency. Current node selection algorithms are inefficient, 

often resulting in the selection of multiple capable devices that are rarely selected to participate. (4) 

Security and privacy breaches. Classical FL methods are vulnerable to various security threats, such as 

poisoning and backdoor attacks. Additionally, there are concerns about privacy due to potential data 

leakage during training. 

To address the challenges of device unreliability, reduced aggregation efficiency, and low resource 

utilization, asynchronous federated learning (AFL) emerges as a promising solution. In AFL, the 

central server starts global model aggregation immediately after receiving the local model. Since AFL 

can ignore abnormally offline devices, concerns about device unreliability are alleviated. AFL 

improves aggregation efficiency by eliminating the need to wait for slow devices for local model 

uploads before aggregation. AFL also improves the utilization of computing resources across 

heterogeneous systems by allowing devices with different operating efficiencies to train their 

respective local models at their own pace. 

Therefore the choice of whether to use synchronous or asynchronous algorithms is the most basic 

decision, which will directly affect the design framework of the overall model [9]. Although there 

have been many developments and applications of asynchronous training in earlier deep learning 

research, synchronous large-batch training has been the focus of many researchers in federated 

learning, in contrast to asynchronous federated learning that has been overlooked in many potentially 

more suitable applications and research situations. Especially when plenty of devices participate in 

computing, and plenty of stragglers may occur at the moment, making global synchronization difficult 

[10]. (This is because availability and completion time vary from device to device, more specifically 

by the device's limited computing power and different battery times.) 

There is already a precedent for asynchronous training in traditional distributed Stochastic Gradient 

Descent (SGD) tasks [11, 12], in which researchers use regularized local optimization to complete 

SGD. In AFL, Xie et al.[10] Based on the combination of the above asynchronous training method and 

FL, proposed FedAysnc, an asynchronous federated optimization scheme, to finish aggregation tasks 

by regularizing local optimization and adopting the non-blocking update of the global model. 

FedAysnc had a profound impact on subsequent research on AFL. 

In this article, we will carefully sort out and analyze some important works under the existing AFL 

framework and its practical application in the fields of the Internet of Things (such as industry 4.0, 

smart home, healthcare, autonomous driving, etc.), and put forward exploratory suggestions for 

possible cross-application directions in the future. 

2.  Related Work 

FL is born out of distributed machine learning, that is, efficient machine learning processing on 

multiple computing nodes, which faces the challenges of large data volume and complex computing 

tasks, so it has received extensive attention and research in recent years. 

Early distributed learning research mainly focused on how to extend traditional machine learning 

algorithms to distributed environments to solve problems such as large data volumes and limited 

computing resources. One of the most representative is Zinkevich, et al[13], who discusses how to 

achieve distributed linear regression by stochastic gradient descent (SGD). On this basis, further 

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/39/20230588

123



 

workers began to explore the optimization strategy of distributed machine learning at a deeper level. 

For example, Dean, et al[14] mentioned the training method of deep networks under distributed 

systems. However, these methods also have some problems, such as uneven data distribution, large 

communication costs, and difficulty in ensuring data security. In response to these questions, FL is 

proposed and provides a new way of thinking. 

In 2016, Google first introduced the concept of FL, the core idea of which is to let devices train 

with local data under the premise of guaranteed privacy of data, and then govern the sharing model 

update. This reduces the need for data transmission while protecting user privacy. Based on H.B. 

McMahan, et al.[2] first proposed the FedAvg algorithm and elaborated on the working principle and 

advantages of FL, Kairouz, et al.[15] further discussed the confronting challenges and future 

developments of FL. 

In detail, there are four main problems faced by FL [2, 15]: 

i. Communication efficiency issues: Each round of training requires the transfer of model 

parameters between the server and the local computer, which may lead to a large communication 

overhead. A representative solution to the problem in this direction was proposed by Sattler [16] to 

reduce the communication load through a thinned gradient update method. 

ii. Non-IID Data problem: Since data is uploaded and obtained locally on every device, FL 

often needs to deal with non-independent homogeneous data. Zhao, et al. [17] proposed an FL 

algorithm that can share a small amount of data to optimize non-IID data.  

iii. Security and privacy issues: Although the original intention of FL is to protect the data 

privacy of users[2], there may still be potential security threats in practice, for example, attackers may 

infer users' private data by analyzing the information received by the central server; Or break updates 

to the global model by interfering with local model training. Bonawitz, et al. [7] discussed these 

potential threats in their study and proposed several countermeasures.  

iv. System design and implementation issues: How to effectively design and implement an 

efficient and scalable federated learning system is also a major challenge. To solve this problem, 

Google developed TensorFlow Federated (TFF) and shared its design philosophy and usage in the 

official blog [18]. 

3.  Asynchronous Federated Learning 

Asynchronous federated learning (AFL) is an essential extension of FL, which is mainly used to solve 

asynchronous problems caused by device participation inconsistency, network latency, and limited 

computing power. In the past few years, remarkable research progress has been made in this field. 

Early asynchronous machine learning research focused on problems in single-machine, multi-threaded, 

or clustered environments, such as Recht, et al. [19] who proposed the HOSWILD! algorithm, which 

achieves efficient parallel SGD through lock-free programming. After the introduction of federated 

learning, due to the uncertainty of device availability and network conditions, asynchronous 

algorithms are more critical in this scenario. 

3.1.  Stragglers 

In traditional federated learning, every device is required to wait for other slower devices (the 

stragglers) to complete local training before uploading gradients to a central server, which limits the 

speed of training. To address this problem, Xie, et al. [10] introduced an AFL protocol with an 

averaging algorithm called FedAsync, which allows non-blocking communication between the client 

and server by using an asynchronous communication mechanism. FedAysnc decouples training from 

communication so that a client can independently train locally and upload gradients, thereby 

improving parallel efficiency. Specifically, in the gradient update, the client will calculate the gradient 

according to its local data and the current global model, upload it to the server, and gain the latest 

global parameters from the server. Such global parameters are fused by the server periodically handing 

the gradient of the client and using weighted average or more complex methods. Sprague, et al. [20] 

leverage FedAsync-like protocols in geospatial applications to train global models asynchronously and 
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additionally allow new devices to join midway. For the same application scenario, Zhou, et al. [21] 

also proposed an AFL algorithm based on practical applications, namely image-based geolocation 

using state-of-the-art convolutional neural networks (DNNs). These results lay the foundation for 

using FL on large-scale ocasstions,  constantly updating machine learning models with unknown 

codings. 

3.2.  Staleness 

However, one major problem with FedAsync, and some of the protocols it derives, is that in AFL 

systems, due to different devices updating the model and training at different times, the gradients 

received by the server may be based on an outdated global model. This means these gradients may not 

be optimal and could even lead to a decline in model performance [6].  

To reduce the impact of gradient staleness, many researchers have done a lot of work. In [22], the 

researchers restrain the number of devices trained simultaneously in the AFL system. A throttled size 

cache with a weighted averaging algorithm has been deployed on the server to reduce the negative 

influence of model staleness. The experimental results support the increase in convergence speed and 

model accuracy. In other respects, by introducing a parameter that explains staleness, the staleness can 

be reduced and the weight of the latest local model increased during aggregation. Several papers have 

taken this approach. In [10], a time-weighted aggregation method is introduced that shifts the weight 

of the lately updated local model when aggregating at both simple and deep levels. Experiments of 

neural networks (CNN and LSTM) illustrate an increase in the convergence speed and accuracy of the 

global model as well as another time-based algorithm is introduced in [23].  

Also, in [22], a weighted aggregation algorithm based on stale caching is proposed. In [24], 

attenuation coefficients with a similar effect are proposed, balancing previous and current models. 

Devices that have more data or less communication ability are compensated by dynamic learning step 

size. Experimental results on three real datasets show that their scheme converges quickly, and a 

double-weighted gradient update strategy is proposed, in which the global model is separated into 

multiple branches, and the aggregation process can be transformed into a branch-weighted merging 

process. And dynamically adjust aggregate weights based on the training accuracy of all devices in 

order to protect the global model from overfitting which is caused by uploading gradients too 

frequently. 

3.3.  Communication-Efficiency 

In some cases derived from AFL, the server may be overwhelmed by receiving too many local updates 

gained from a large number of devices [6]. At the same time, Chen, et al. [25] found that gradient 

staleness can have a considerable negative impact on the accuracy of asynchronous optimization, 

while synchronous optimization has no effect on gradient staleness but is dragged down by stragglers, 

so they proposed the concept of introducing alternate workers to improve synchronous optimization 

algorithms. Further, Nishio & Yonetani [26] propose a new FL method (FedCS) that can filter clients 

by their wireless channel state, computing power (e.g., whether CPUs or GPUs can be freed up to 

update the model), and data resource sizes related to related data resources, thereby alleviating 

inefficiencies and efficiently performing optimization tasks. Then a semi-asynchronous federated 

learning protocol, combining synchronous and asynchronous training, is proposed by Wu et al. [6]. 

This protocol incorporates a client selection method that decouples the central server and the selected 

client to reduce the average turn time. Additionally, it utilizes a lag tolerance mechanism model 

distribution to address the trade-off between faster convergence and lower communication overhead. 

As a result, the Semi-Asynchronous protocol is ideal for unreliable and constrained training 

environments. 

Another idea to improve communication efficiency is to cluster devices into tiers based on their 

response latency [27]. Faster layers are responsible for faster convergence tasks, while slower layers 

are required to help improve model accuracy. In addition, the scheme adopts a compression algorithm 
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based on polyline coding to improve communication efficiency. And experiments on multiple datasets 

and models confirm that their model has lower communication costs and higher accuracy. 

3.4.  Scalability and Privacy 

Besides, the study of scalability is also an important direction in AFL to reduce staleness and improve 

communication efficiency. [28] claims a model called Fedbuff, in which a dedicated buffer containing 

a certain number of model updates is designed on the aggregation server, and the convergence of the 

model is mathematically guaranteed. FedBuff addresses scalability and privacy issues in AFL by 

buffering asynchronous aggregations, specifically by aggregating updates from K clients in a safe 

buffer before updating the global model. This framework greatly improves the training efficiency, and 

thanks to the high concurrent training, the framework is less sensitive to the diminishing return 

problem caused by increasing the number of clients than traditional FL methods. In addition, FedBuff' 

is the first asynchronous federated optimization framework compatible with secure aggregation and 

global user differential privacy, outperforming synchronous federated learning at low privacy settings 

and still being quite competitive at high privacy settings. In addition, [29] introduces a model that 

leverages a secure buffer on the server. This model includes a secure aggregation protocol, specifically 

designed to prevent the server from gaining any information about local updates. 

4.  Applications of Asynchronous Federated Learning 

AFL has found adoption in diverse application scenarios due to its efficient and adaptable training 

procedure across heterogeneous devices while ensuring the privacy of local training data. This makes 

AFL a highly researched and promising area with significant potential across multiple industries and 

applications. 

4.1.  Mobile Device Edge Computing 

The portable and anytime-and-anywhere nature of mobile devices often faces challenges such as 

unstable network connections and battery consumption. In this case, AFL is very useful, and an early 

application example is Google's Gboard, which uses FL to improve the next-word prediction feature of 

its keyboard application [1]. 

In addition to Google, other companies and organizations are applying or researching AFL for 

various use cases:  

 Apple uses federated learning techniques in its iOS ecosystem, specifically for improving 

Siri’s voice recognition. 

 OpenMined is a collaborative open-source community dedicated to the research, development, 

and promotion of tools that enable secure, privacy-preserving, and value-aligned artificial intelligence. 

This community also actively explores the use of AFL as part of its initiatives. 

 Nvidia also incorporates federated learning into its software stack with a solution known as 

Nvidia Clara. It is mainly used for collaborative AI model training across multiple hospitals while 

preserving patient privacy. 

 Owkin, a start-up, uses federated learning in healthcare for better prediction and 

understanding of diseases. Their product Owkin Connect applies these techniques for researchers to 

collaborate without sharing raw data. 

These examples indicate that AFL is increasingly being recognized and adopted for its advantages, 

especially in scenarios where privacy and resource optimization are critical. 

4.2.  Internet of Things(IoT) Device 

IoT devices tend to be scattered and work at different times. For example, in a smart grid, a collection 

device may upload electricity usage data at different times. In this environment, AFL can provide a 

more efficient solution. In [30], the application of AFL in the field of Internet of Things is mainly 

divided into 6 categories:  
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 Industry 4.0: Optical Character Recognition (OCR) for the labels, smart and automatic 

Incoming Quality Control (IQC), and smart Process Quality Control (PQC).  

 Healthcare: Smart wearable devices are used to monitor the health status of patients, such as 

heartbeat, blood pressure, and glucose level  

 Smart Home: Wake-Up-Word speech recognition and Automatic Speech Recognition (ASR) 

 Smart City: Various IoT devices that enable city managers to control physical objects in real-

time and provide intelligent information to citizens from all aspects of life will be a task that requires a 

fairly high level of privacy assurance 

 Autonomous Driving: With the deepening of the development of vehicle automatic control 

technology, the sensor on the vehicle will collect more data in the process of the vehicle's time and 

space changes, and the potential risk of privacy leakage will increase. The large data transmission and 

limited network bandwidth can lead to communication overhead, which in turn may result in 

inaccurate real-time response of the driving system to spatial changes. However, AFL is capable of 

effectively addressing this issue. 

 Metaverse and VR: As the metaverse is formed to connect local devices to people, there will 

be a lot of interaction and measurement data, which will inevitably come with the risk of privacy 

exposure. Using AFL balances accuracy and speed of interaction with privacy. 

4.3.  Medical Data Analysis 

Different from the IoT framework built by medical devices. Local data centers in hospitals and 

healthcare facilities often hold large amounts of patient data, but this data is often not shared directly 

due to privacy protection and data security needs. However, AFL can enable healthcare organizations 

to share the results of learning algorithms while maintaining data privacy. According to the latest 

results [31, 32, 33, 34], AFL methods can be initially applied as an auxiliary tool in the field of disease 

identification and diagnosis. 

5.  Conclusions 

AFL is a new method of training machine learning models in parallel, which is mainly used in 

distributed environments and allows participating devices to complete their model updates at different 

times. Although this approach has shown advantages in dealing with communication delay, device 

failure, and data privacy protection, the problems of balancing gradient staleness and model stability, 

as well as server data overload, have not been fully solved. 

Considering the advantages and limitations of AFL, we believe that the future research direction 

mainly includes the following parts: 1) Design efficient asynchronous optimization algorithms to solve 

the problem of global model instability. You may want to consider how to balance the weights of each 

device and how to handle differences in data distribution between devices. 2) Research how to reduce 

communication overhead and the use of computing resources while ensuring model performance. This 

may require the introduction of compression and bandwidth-saving techniques such as model 

compression, gradient compression, etc. 3) Explore new ways to protect data privacy to ensure the 

security of user data. This may include further research and improvements to cryptographic techniques 

such as differential privacy, secure multi-party computation, and more. 

At the same time, AFL has a wide range of application prospects. For example, in mobile device 

edge computing scenarios, AFL can be used for real-time intelligent analysis and prediction. In IoT 

devices, it is possible to handle the large amount of data uploaded by devices that are distributed 

everywhere; In medical data analysis, through AFL, hospitals and medical institutions can share the 

results of learning algorithms while keeping data private, thereby enabling cross-institutional 

knowledge sharing. However, how to effectively apply AFL to practical problems also needs to solve 

a series of key problems, such as how to build suitable machine learning models, how to deal with 

non-independent and homogeneous data between devices, and how to evaluate and ensure the quality 

of learning results. 
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In general, AFL, as an emerging machine learning method, although still in the development stage, 

has shown great potential. With the development and improvement of related technologies, AFL will 

play an increasingly important role in the future. 
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