
Grader system built on ruby on rails

Haojie Hu

Art and Science College, The Ohio State University, 5001 Olentangy River R.D.,

Taylor House STE#133, Columbus, OHIO, America

Hu.2339@buckeyemail.osu.edu

Abstract. This paper presents a Ruby on Rails-based grader application system designed to

streamline the process of matching students with grading positions within the Computer Science

and Engineering (CSE) department. Motivated by the need for efficiency and consistency, the

system offers role-based user access, enabling students, instructors, and administrators to engage

seamlessly. Leveraging Model-View-Controller (MVC) architecture, the system integrates

external tools for enhanced development, while the dynamic database schema efficiently

manages data. Key functionalities encompass application submission, administrator interface,

and real-time course management. This innovative system fosters collaboration, improves

administrative oversight, and adapts to changing academic demands. In conclusion, the
presented grader application system has achieved powerful functions which enables users to

login, view available courses, and most importantly, accept or decline the applications from

students whom want to be a grader for a specific course.

Keywords: Model view controller, rails, ruby, web application.

1. Introduction

In today's dynamic educational landscape, managing the allocation of qualified undergraduate students
to various course sections for grading purposes is a complex endeavor. The Computer Science and
Engineering (CSE) department at university is no exception, as it annually recruits a substantial number
of student graders to assist with its diverse array of courses [1,2,3]. However, the existing approach to
matching students with course sections lacks a systematic and efficient workflow. This deficiency has
prompted the need for a more structured solution that not only streamlines the allocation process but
also enhances the quality of information gathering and consistency.

The aim of this paper is to present a comprehensive overview of a Ruby on Rails web application
designed to address the challenges [3,4,5]. By leveraging the capabilities of modern web technologies,
this application seeks to revolutionize the way student graders are assigned to course sections within the
CSE department. We will delve into the design, functionality, and critical features of the application,
outlining how it facilitates the seamless interaction between students, instructors, and administrators,
while harnessing the power of an external API for data retrieval and manipulation.

Through this paper, we intend to provide a comprehensive understanding of the innovative web
application, its technical underpinnings, and its potential to transform the way course grading

assignments are managed within the CSE department. By adopting cutting-edge technologies and

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/40/20230622

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

13

adhering to best practices in software design, this application promises to revolutionize the efficiency
and effectiveness of the grading allocation process, benefiting both students and faculty alike.

In the subsequent sections, we will delve into the specifics of the project requirements, the
implementation details, and the anticipated outcomes of deploying this web application within the CSE

department.

2. Tools utilized
In the pursuit of developing a robust and innovative Ruby on Rails application to streamline the course
grading assignment process, a strategic selection of auxiliary tools was employed to enhance various
aspects of the project. Beyond the fundamental Rails framework and its encompassing GEM ecosystem,

a quartet of specialized tools played a pivotal role in shaping the project's success [5].

⚫ JSONvue
Firstly, the integration of JSONvue, a Chrome extension tailored for API interactions, empowered
seamless communication with the external OSU course catalog API. This tool facilitated the real-time
visualization and interpretation of API responses, thereby expediting data extraction and validation

processes.

⚫ DBDiagram
To ensure a comprehensive understanding of the underlying database structure, DBDiagram, a web-
based platform, was harnessed to visually depict the database schema. This intuitive visualization
facilitated collaborative design decisions and promoted a lucid comprehension of the data architecture.

⚫ GitHub Copilot
Furthermore, the efficiency of development was significantly augmented by leveraging GitHub Copilot,
an extension for Visual Studio Code. This AI-powered tool extended beyond the conventional Rails
GEMs, offering intelligent code suggestions that expedited coding and improved code quality,
ultimately contributing to an optimized development workflow.

⚫ ERB-VSCode
Additionally, the ERB-VSCode-Snippets extension for Visual Studio Code furnished a repository of
pre-configured code snippets tailored for Embedded Ruby (ERB) templates [6]. These snippets
expedited the creation of dynamic web content within the Rails views, streamlining the process of
crafting user interfaces and enhancing the consistency of code implementation.

Collectively, the amalgamation of these supplementary tools fortified the development journey,
enhancing efficiency, code quality, and collaboration, and ultimately leading to the creation of a
sophisticated web application poised to revolutionize the course grading assignment process within the
CSE department

3. Architecture and Design

In alignment with the fundamental principles of the Model-View-Controller (MVC) architecture, our
Ruby on Rails application has been meticulously structured to ensure modularity, separation of concerns,
and efficient data flow [4,7]. This architectural approach has enabled us to create a robust and
maintainable solution for the course grading assignment process within the CSE department (Figure 1).

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/40/20230622

14

Figure 1. Rails architecture (Original)

• Models
At the core of our application's data management are the models, which encapsulate the essential entities
and their relationships. Notably, the `Course`, `Section`, `Term ,̀ and `User` models play pivotal roles

in representing courses, course sections, academic terms, and users respectively. These models are
complemented by associations such as `belongs_to`, `has_many`, and `has_one ,̀ which seamlessly
establish relationships and enable data integrity. For instance, the `User` model associates with an
`Application` model to facilitate the submission and management of grading applications. Furthermore,
the `Week` model, linked to the `Section` model, enables structured handling of lab-based course
schedules.

• Controllers
The controller layer of our application encompasses three distinct categories. The `Admin ̀directory
hosts controllers that manage administrative functionalities, including course catalog reloading, course
editing, and user permissions. Meanwhile, the `User ̀directory houses controllers responsible for user
authentication, registration, and profile management. Finally, directly under the controller directory, a
suite of controllers orchestrates the primary functionalities of the application, such as courses, sections,
and user profiles [8]. For example, in the application controller file, we wrote functions such as

update_allowed_parameters, check_admin, check_sign_in, and check_teacher functions, allowing users
make changes on application. These controllers not only handle user input and interactions but also
mediate the communication between models and views.

• Views
Utilizing the Embedded Ruby (ERB) template system, our application's views seamlessly combine
dynamic data with HTML markup to create interactive and user-centric interfaces [5]. While the views

are grounded in simplicity, they effectively render information from the models to the end users.
Although no special templates were employed, our views are distinguished by their effective
communication of data and the seamless integration of CSS files for styling purposes.

Our application's views epitomize a harmonious blend of functionality and aesthetics, with the
homepage standing as a testament to this design philosophy. At the apex of the homepage, a
commanding black banner unfurls, adorned with the OSU emblem on the left and the succinct title
"Grader System" beneath. The banner serves as a beacon, ushering users into the application's world.
Directly beneath, a discreet white row extends, accommodating the user's name and a "Log Out" button,

positioned for convenience and ease of access. This row encapsulates essential user-related information
within a clean and unobtrusive layout. Continuing the visual journey, five distinct grey plates unfold
beneath the banner and user row. Each plate represents a gateway to a distinct functional realm: "Admin

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/40/20230622

15

Page," "Course Catalog," "Teacher," "Application Page," and "Profile." This intuitive arrangement
ensures effortless navigation and encourages users to explore facets most relevant to their roles.
Incorporating CSS seamlessly, our views merge dynamic content and design elements, culminating in a
user-centric and visually engaging homepage. Through thoughtful color choices, structured layouts, and

strategic placement of essential information, the homepage sets a compelling tone for the user
experience within the application (Figure 2).

Figure 2. Homepage of Views (Original)

4. Database Design and Schema
The foundation of our application's functionality and data management lies within a meticulously
designed database schema (Figure 3). The schema encapsulates the intricate interplay of entities,

attributes, and relationships, creating a coherent structure that underpins the entire system [9,10].

Figure 3. Entity-Relational Diagram/Schema Diagram (Original)

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/40/20230622

16

• User-Centric Entities
Central to our schema is the ̀ User` entity, representing the users of the system. This entity harmoniously
captures essential user-related information, including names, email addresses, roles, and authentication

credentials. The `Profile` entity complements the `User`, offering a platform for users to provide
additional details such as contact information, biography, and an optional avatar. This user-centric
approach aligns seamlessly with the application's user management and authentication.

• Courses, Sections, and Terms
The schema artfully accommodates academic information through the `Course ,̀ `Section ,̀ and `Term ̀
entities. A `Course` encompasses attributes like name, number, description, and subject, enabling the

cataloging of distinct courses. Each `Course` establishes a one-to-many relationship with `Sections`,
which encapsulate class details such as section numbers, instructors, and schedules. A `Term` serves as
a bridge between `Courses` and provides the temporal context for academic offerings.

• Application and Recommendations
The schema supports the core workflow of the grader assignment process through the `ApplicationPage ̀
entity. Applicants' submissions, including course preferences and availability, are stored here.

Furthermore, the `Recommendations ̀ entity encapsulates recommendations provided by instructors,
comprising the teacher-student relationship and recommendation content.

• Dynamic Data and Availability
For dynamic data management, the schema integrates the `Week` entity, intricately linked with
`Sections`, to represent weekly availability. This dynamic schema element empowers the application
to allocate graders based on their schedule preferences and section demands.

• Efficient Data Storage with Active Storage
Our database design is further enriched by the seamless integration of Active Storage, an essential
component for managing file attachments. Tables such as `ActiveStorageBlobs ̀ and
`ActiveStorageAttachments` efficiently store and associate attachments, ensuring streamlined access to
files like avatars and other user-generated content.

In summation, our meticulously crafted database schema harmoniously embodies the application's

core functionalities and user interactions. The schema's structured design, thoughtful entity attributes,
and judiciously defined relationships provide a robust and intuitive foundation for data management,
reinforcing the seamless user experience and dynamic workflow of our Ruby on Rails application.

5. Functionality and Features

Our Ruby on Rails application boasts a comprehensive suite of functionalities and features carefully
designed to streamline and enhance the intricate processes within the grading system. These capabilities
encompass a wide spectrum, catering to the needs of students, instructors, and administrators alike.

• General Functionality
At the core of our application's user experience is a user-friendly homepage that seamlessly integrates
options for login, registration, and course catalog browsing. For authenticated users, a password reset

feature is available, enhancing security and accessibility (Figure 4). During signup, users can specify
their role as a Student, Instructor, or Admin, with at least one default Admin created with a predefined
password. Our system ensures that user identities adhere to the OSU name.#@osu.edu format,
facilitating efficient linkage to instructor recommendations, grader assignments, and future expansions.

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/40/20230622

17

Figure 4. Functionalities of Log In and Sign Up (Original)

• Student Functionality
Students are empowered with an intuitive login mechanism, granting them access to a wealth of
academic offerings through the course catalog. This functionality facilitates efficient exploration of
course details, enabling students to make informed academic decisions (Figure 5).

Figure 5. Functionality of Browsing Courses (Original)

• Instructor Functionality
Instructors benefit from a dedicated login portal, granting them entry into the course catalog. This
tailored access equips instructors with the information they need to effectively plan and manage their
course offerings.

• Admin Functionality
Administrators wield a comprehensive toolkit encompassing course catalog browsing, editing, and
reloading functionalities. Administrators are empowered to oversee the hiring process, review
applications, and approve Instructor or Admin requests. This functionality places administrative control
at the heart of the system, ensuring seamless and effective management (Figure 6).

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/40/20230622

18

Figure 6. Functionality of Editing Course Information (Original)

• Critical Features
Our application's critical features address the fundamental aspects of the grading system, ensuring its
smooth operation and comprehensive coverage. A standardized application submission form empowers

students to express their interest in grading positions, providing essential contact information and course
preferences. Dynamic schedule information allows graders to be matched with sections requiring
specific availability, adapting to changing schedules and qualifications over different semesters.

The administrator interface is a linchpin of the system, furnishing office staff with vital insights to
make informed hiring decisions. This interface illuminates sections with assigned graders and highlights
those in need, facilitating efficient allocation. Administrators can also adjust the number of required
graders, optimizing staffing resources (Figure 7).

Figure 7. Functionality of Pass Permission (Original)

The management of available courses and sections, which evolve with each semester, is seamlessly
addressed by our application. It dynamically accommodates changes in course offerings, adapting to
shifting academic demands and schedule variations. Leveraging external data sources, our system

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/40/20230622

19

ensures section offering information is always current, facilitating timely updates. Figure 8 is the
functionality of updating course

Figure 8. Functionality of Updating Course (Original)

Recommendation submission, a pivotal feature, bridges the gap between instructors and potential
graders. Our standardized form empowers instructors to endorse students for future considerations or
explicitly request their assignment as graders for specific sections. This feature anticipates the
complexities of recommendation submissions even when the recommended student has not yet logged
into the system, ensuring a comprehensive and inclusive process.

6. Conclusion
In this paper, we have presented a comprehensive overview of our Ruby on Rails-based grader
assignment system, highlighting its architecture, design, database schema, and an array of functionalities
that collectively contribute to its robust and user-centric nature. With a strong foundation rooted in the
MVC architecture, our application seamlessly integrates various tools and technologies to create an

intuitive and efficient platform. In the future, we will try to improve the scale of the application, more
specifically, revise the database so that it’s large enough to enable more users to log in to the application.

References
[1] Denys Klochkov and Jan Mulawka, 2021, Improving Ruby on Rails-Based Web Application

Performance, 2021 Mdpi Ag 12 319, p 319.

[2] Emoto, M., Yoshida, M., Iwata, C., Inagaki, S., Nagayama, Y., Emoto, M., Yoshida, M., Iwata,
C., Inagaki, S., Nagayama, Y., Efficient development of web applications for remote
participation using Ruby on Rails, ISSN: 0920-3796, Publisher: Elsevier B.V. 2010

[3] Jacquelyn W. BLAZ and Patricia F. Perace, Using Ruby On Rails to Develop A Web Interface:
A Research-Based Exemplar with a Computerized Physical Activity Reporter, 2019, pp 281-
283

[4] Wang Ning Li Liming Wang Yanzhang Wang Yi-bing Wang Jing, 2008, Research on the Web

Information System Development Platform Based on MVC Design Pattern, DOI:
10.1109/WIIAT.2008.64.

[5] UZUN, Erdinç, 01-11-2020, A regular expression generator based on CSS selectors for efficient
extraction from HTML pages., Turk J Elec Eng & Comp Sci, 2020, 28: pp 3389-3401,
doi:10.3906/elk-2004-67

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/40/20230622

20

[6] Saputra, Dimas Gilang Azizah, Fazat Nur, 2013, A Metadata Approach for Building Web
Application User Interface., Procedia Technology; 2013, 11, p903-911.

[7] Al-Hawari, F., Software design patterns for data management features in web-based information
systems, Journal of King Saud University 2022, 34(10):10028-10043

[8] Guaman, D. Delgado, S. Perez, J., Classifying Model-View-Controller Software Applications
Using Self-Organizing Maps, IEEE Access, 2021. 9:45201-45229 2021

[9] Curry, E. Grace, P., 2008, Flexible Self-Management Using the Model-View-Controller Pattern,
IEEE Software, 2008 25(3).

[10] Sauter, Patrick, Vögler, Gabriel, Specht, Günther, Flor, Thomas, 2005, A Model-View-Controller
extension for pervasive multi-client user interfaces, Personal & Ubiquitous Computing, 2005,
100-107.

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/40/20230622

21

